Chapter 5 Multiple Random Variables

Convergence in Didtribution

Outline

Basic Properties

Separating and Convergence Determining

Discrete Random Variables Characteristic Functions Moment Generating Functions

We say that X_n converges to X in distribution $(X_n \to \mathcal{D} X \text{ or } X_n \Rightarrow X)$ if, for every bounded continuous function $h : \mathbb{R} \to \mathbb{R}$,

 $\lim_{n\to\infty} Eh(X_n) = Eh(X).$

Convergence in distribution differs from the other modes of convergence in that it is based not on a direct comparison of the random variables X_n with X but rather on a comparison of the distributions $P\{X_n \in A\}$ and $P\{X \in A\}$. Using the change of variables formula, convergence in distribution can be written

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}h(x)\,dF_{X_n}(x)=\int_{-\infty}^{\infty}h(x)\,dF_X(x).$$

In this case, we may also write $F_{X_n} \rightarrow^{\mathcal{D}} F_X$

Let X_n be uniformly distributed on the points $\{1/n, 2/n, \dots n/n = 1\}$. Then, using the convergence of a Riemann sum to a Riemann integral, we have as $n \to \infty$,

$$Eh(X_n) = \sum_{i=1}^n h\left(\frac{i}{n}\right) \frac{1}{n} \to \int_0^1 h(x) \, dx = Eh(X)$$

where X is a uniform random variable on the interval [0, 1].

Define the bump function b(x) with support [-1/2, 1/2], ramping up from 0 to 1, taking the value 1 at x = 0 and than ramping back to zero. In addition, define the shift $b_{x_0}(x) = b(x - x_0)$

For X_n and X, integer-valued random variables, then

$$\lim_{n \to \infty} P\{X_n = x_0\} = \lim_{n \to \infty} Eb_{x_0}(X_n) = Eb_{x_0}(X) = P\{X = x_0\}$$

Thus, convergence in distribution for integer-valued random variables is the same is the convergences of the mass function.

Example. Let $p \in (0,1)$ and let $X_n \sim Hyper([np], n - [np], k)$. Then,

$$P\{X_n = x_0\} = \binom{k}{x_0} \frac{([np])_{x_0}(n - [np])_{k-x_0}}{(n)_k} = \binom{k}{x_0} \frac{([np])_{x_0}}{(n)_{x_0}} \cdot \frac{(n - [np])_{k-x_0}}{(n - x_0 + 1)_{k-x_0}}$$
$$\to \binom{k}{x_0} p^{x_0} (1 - p)^{k-x_0}$$

and the limiting distribution is Bin(k, p).

Convergence in Distribution

Define the ramp function r(x)ramping down from 1 to 0 on [-1/2, 1/2], continuous and flat elsewhere, In addition, define $r_{x_0,\epsilon}(x) = r((x - x_0)/\epsilon)$.

With the choice $r_{x_0,\epsilon}(x)$, taking the limit as $\epsilon \to 0$, we show that $X_n \to^{\mathcal{D}} X$ if and only if

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$$

for all points x that are continuity points of F_X .

Example. For X_n be uniformly distributed on the points $\{1/n, 2/n, \dots, n/n = 1\}$

$$\mathbb{P}\{X_n \le x\} = \frac{[nx]}{n} \to x = \mathbb{P}\{X \le x\}$$

Example. Let $X_i, 1 \le i \le n$, be independent uniform random variable in the interval [0, 1] and let $Y_n = n(1 - X_{(n)})$. Then,

$$F_{Y_n}(y) = P\{n(1 - X_{(n)}) \le y\} = P\{1 - \frac{y}{n} \le X_{(n)}\} = 1 - (1 - \frac{y}{n})^n \to 1 - e^{-y}.$$

Thus, the magnified gap between the highest order statistic and 1 converges in distribution to an exponential random variable, parameter 1.

Example. Let X_p be Geo(p). Then $P\{X_p > n\} = (1-p)^n$. $EX_p = (1-p)/p$, $E[pX_p] = (1-p) \sim 1$ for p near 0. Then,

$$P\{pX_p > x\} = P\{X_p > x/p\} = (1-p)^{[x/p]} \to \exp(-x) \text{ as } p \to 0.$$

Therefore pX_p converges in distribution to an Exp(1) random variable.

Convergence in Distribution

Example. Let X_i , $i \ge 1$, be independent Exp(1) random variables. Define $M_n = \max_{1 \le i \le n} X_i$. To see how quickly M_n grows, we simulate.

- > simexp<-matrix(rexp(100000),ncol=100)</pre>
- > cmax<-matrix(numeric(100000),ncol=100)</pre>
- > medmax<-numeric(100)</pre>
- > for (i in 1:1000){cmax[i,]<-cummax(simexp[i,])}</pre>
- > for (j in 1:100){medmax[j]<-median(cmax[,j])}</pre>
- > plot(1:100,medmax,xlim=c(1,100),ylim=c(0,5), xlab="number of exponentials",ylab="median of maximum")
- > par(new=TRUE)

Convergence in Distribution

> curve(log(x),1,100,ylim=c(0,5),col="aquamarine3",xlab="",ylab="")

Convergence in Distribution

Thus, define $Y_n = \max_{1 \le i \le n} X_i - \ln n$. Then,

$$P\{Y_n \le y\} = P\{X_1 \le y + \ln n, \dots, X_n \le y + \ln n\} = P\{X_1 \le y + \ln n\}^n$$
$$= (1 - e^{-(y + \ln n)})^n = (1 - \frac{e^{-y}}{n})^n$$
$$\to \exp(e^{-y}) \text{ as } n \to \infty$$

This is called a Gumbel distribution and is an example of an extreme value distribution.

1. A collection \mathcal{H} of continuous and bound functions is called separating if for any two distribution functions F, G,

$$\int h \ dF = \int h \ dG$$
 for all $h \in \mathcal{H}$

implies F = G.

2. A collection \mathcal{H} of continuous and bound functions is called convergence determining if for any sequence distribution functions $\{F_n; n \ge 1\}$ and a distribution F,

$$\lim_{n\to\infty}\int h\ dF_n=\int h\ dF\ \text{for all}\ h\in\mathcal{H}$$

implies $F_n \rightarrow^{\mathcal{D}} F$.

Convergence determining sets are separating.

Separating and Convergence Determining

Example. For integer-valued random variables, then by the uniqueness of power series, the collection $\mathcal{H} = \{z^x; 0 \le z \le 1\}$ is separating. Take the mass functions $f_{X_k} = I_{\{k\}}$ to see that it is not convergence determining.

If we want to use a separating collection for convergence in distribution, we will need an additional requirement on the distribution functions to ensure that "mass does not run off to infinity."

Definition. A collection \mathcal{F} of distribution functions is called tight if for each $\epsilon > 0$, then exists M > 0 such that

$$F(M) - F(-M) \ge 1 - \epsilon$$
, for all $F \in \mathcal{F}$.

Exercise. Any finite collection of distribution functions is tight.

 $\lim_{n\to\infty}\int h\ dF_n$

Theorem. Let $\{F_n; n \ge 1\}$ be a tight family of distribution functions and let \mathcal{H} be separating. Then $F_n \rightarrow^{\mathcal{D}} F$ if and only if

exists for all $h \in \mathcal{H}$. In this case, the limit is $\int h \, dF$. Proof. Cantor diagonalization argument.

The goal, for any given separating class, is to find a sufficient condition to ensure that the distributions in the approximating sequence of distributions are tight. For example,

Theorem. Let $\{X_n; n \ge 1\}$ be \mathbb{N} -valued random variables having respective probability generating functions $\rho_n(z) = Ez^{X_n}$. If

$$\lim_{n\to\infty}\rho_n(z)=\rho(z),$$

and ρ is continuous at z = 1, then X_n converges in distribution to a random variable X with generating function ρ .

Discrete Random Variables

Let X_n be a Bin(n, p) random variable. Then

$$\rho_{X_n}(z) = E z^{X_n} = ((1-p) + p z)^n = ((1+p(z-1))^n).$$

Set $\lambda = np$, then

$$\lim_{n\to\infty} Ez^{X_n} = \lim_{n\to\infty} (1+\frac{\lambda}{n}(z-1))^n = \exp\lambda(z-1),$$

the generating function of a Poisson random variable. The convergence of the distributions of $\{X_n; n \ge 1\}$ follows from the fact that the limiting probability generating function is continuous at z = 1.

Discrete Random Variables

Let $z \in [0, 1)$ and choose $\zeta \in (z, 1)$. Then for each *n* and *k*,

 $P\{X_n=k\}z^k<\zeta^k.$

Thus, by the Weierstrass *M*-test, ρ_n converges uniformly to an analytical function $\tilde{\rho}$ on $[0, \zeta]$ and thus $\tilde{\rho}$ is continuous at *z*.

$$\lim_{n \to \infty} P\{X_n > x\} = \lim_{n \to \infty} \lim_{z \to 1} \left(\rho_n(z) - \sum_{k=1}^x P\{X_n = k\} z^k \right)$$

=
$$\lim_{z \to 1} \lim_{n \to \infty} \left(\rho_n(z) - \sum_{k=1}^x P\{X_n = k\} z^k \right) = \lim_{z \to 1} \left(\tilde{\rho}(z) - \sum_{k=1}^x \tilde{\rho}^{(k)}(0) z^k \right)$$

=
$$\tilde{\rho}(1) - \sum_{k=1}^x \tilde{\rho}^{(k)}(0) < \epsilon$$

by choosing x sufficiently large. Thus, we have that $\{X_n; n \ge 1\}$ is tight.

Discrete Random Variables

Consider families of discrete random variables and let $\{F_X(\cdot|\theta_n); n \ge 1\}$ be a sequence of distributions from that family. Then

 $F_X(\cdot|\theta_n) \to^{\mathcal{D}} F_X(\cdot|\theta)$ if and only if $\theta_n \to \theta$.

This applies to binomial, geometric, negative binomial (*p*), and Poisson (λ) families of random variables.

In each case,

$$\lim_{n\to\infty} E_{\theta_n} z^{X_n} = \lim_{n\to\infty} \rho_{\theta_n}(z) = \rho_{\theta}(z).$$

and $\rho_{\theta}(z)$ is continuous at z = 1.

We now move on to continuous random variables.

Characteristic Functions

The characteristic function or the Fourier transform for a probability distribution F on \mathbb{R}^d is

$$\phi(\theta) = \int e^{i\langle \theta, x \rangle} dF(x) = E e^{i\langle \theta, X \rangle}$$

where X is a random variable with distribution function F. Because the Fourier transform is one-to-one $\{e^{i\langle\theta,x\rangle}; \theta \in \mathbb{R}^d\}$ is a separating class of functions. Here is the main result.

Continuity Theorem. Let $\{F_n; n \ge 1\}$ be a sequence of distributions on \mathbb{R} with corresponding characteristic function $\{\phi_n; n \ge 1\}$ satisfying

- 1. $\lim_{n\to\infty} \phi_n(\theta)$ exists for all $\theta \in \mathbb{R}$, and
- 2. $\lim_{n\to\infty} \phi_n(\theta) = \phi(\theta)$ is continuous at $\theta = 0$.

Then there exists a distribution function F with characteristic function ϕ and $F_n \rightarrow^{\mathcal{D}} F$.

Continuous Random Variables

Consider families of continuous random variables and let $\{F_X(\cdot | \theta_n); n \ge 1\}$ be a sequence of distributions from that family. Then

 $F_X(\cdot|\theta_n) \to^{\mathcal{D}} F_X(\cdot|\theta)$ if and only if $\theta_n \to \theta$.

This applies to beta, gamma, Pareto (α, β) , chi-square (ν) , exponential (λ) , chi-square, $t(\nu)$, exponential (λ) , $F(\nu_1, \nu_2)$, normal, log-normal (μ, σ) , logistic (μ, s) and uniform (a, b) families of random variables.

In each case,

 $\lim_{n\to\infty}\phi_{\theta_n}(z)=\phi_{\theta}(z).$

and $\phi_{\theta}(\theta)$ is continuous at $\theta = 0$.

Moment Generating Functions

In using the characteristic function to establish convergence in distribution, we must work with the issues of the logarithm on the complex plane \mathbb{C} . In particular, no continuous definition for the logarithm exists whose domain is all of \mathbb{C} .

A alternative is the moment generating function or the Laplace transform. For a probability distribution F on \mathbb{R}^d ,

$$M(t) = \int e^{\langle t,x
angle} \; dF(x) = E e^{\langle t,X
angle}$$

where X is a random variable with distribution function F. Because the Laplace transform is one-to-one $\{e^{i\langle\theta,x\rangle}; \theta \in \mathbb{R}^d\}$ is a separating class of functions. Here is the corresponding result.

Moment Generating Functions

Theorem. Let $\{F_n; n \ge 1\}$ be a sequence of distributions on \mathbb{R} with corresponding moment generating function $\{M_n; n \ge 1\}$ satisfying

- 1. $\lim_{n\to\infty} M_n(t)$ exists for all $t \in (-\delta, \delta), \delta > 0$, and
- 2. $\lim_{n\to\infty} M_n(t) = M(t)$ is continuous at t = 0.

Then there exists a distribution function F with moment generating function M and $F_n \rightarrow^{\mathcal{D}} F$.

This is not as general as the theorem using characteristic functions. However, taking the logarithm $K_n(t) = \ln M_n(t)$ is straightforward and we can replace the moment generating function with the cumulant generating function in the theorem above.