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Convergence in Distribution
We say that Xn converges to X in distribution (Xn →D X or Xn ⇒ X ) if, for every
bounded continuous function h : R→ R,

lim
n→∞

Eh(Xn) = Eh(X ).

Convergence in distribution differs from the other modes of convergence in that it is
based not on a direct comparison of the random variables Xn with X but rather on a
comparison of the distributions P{Xn ∈ A} and P{X ∈ A}. Using the change of
variables formula, convergence in distribution can be written

lim
n→∞

∫ ∞
−∞

h(x) dFXn(x) =

∫ ∞
−∞

h(x) dFX (x).

In this case, we may also write FXn →D FX
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Convergence in Distribution
Let Xn be uniformly distributed on the points {1/n, 2/n, · · · n/n = 1}.Then, using the
convergence of a Riemann sum to a Riemann integral, we have as n→∞,

Eh(Xn) =
n∑

i=1

h

(
i

n

)
1

n
→
∫ 1

0
h(x) dx = Eh(X )

where X is a uniform random variable on the interval [0, 1].
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Define the bump function b(x) with
support [−1/2, 1/2], ramping up
from 0 to 1, taking the value 1 at
x = 0 and than ramping back to
zero. In addition, define the shift
bx0(x) = b(x − x0)
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Convergence in Distribution
For Xn and X , integer-valued random variables, then

lim
n→∞

P{Xn = x0} = lim
n→∞

Ebx0(Xn) = Ebx0(X ) = P{X = x0}

Thus, convergence in distribution for integer-valued random variables is the same is the
convergences of the mass function.

Example. Let p ∈ (0, 1) and let Xn ∼ Hyper([np], n − [np], k). Then,

P{Xn = x0} =

(
k

x0

)
([np])x0(n − [np])k−x0

(n)k
=

(
k

x0

)
([np])x0

(n)x0
· (n − [np])k−x0

(n − x0 + 1)k−x0

→
(
k

x0

)
px0(1− p)k−x0

and the limiting distribution is Bin(k , p).
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Convergence in Distribution
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Define the ramp function r(x)
ramping down from 1 to 0 on
[−1/2, 1/2], continuous and flat
elsewhere, In addition, define
rx0,ε(x) = r((x − x0)/ε).

With the choice rx0,ε(x), taking the limit as ε→ 0, we show that Xn →D X if and only
if

lim
n→∞

FXn(x) = FX (x)

for all points x that are continuity points of FX .

Example. For Xn be uniformly distributed on the points {1/n, 2/n, · · · n/n = 1}

P{Xn ≤ x} =
[nx ]

n
→ x = P{X ≤ x}

and X ∼ U(0, 1).
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Convergence in Distribution

Example. Let Xi , 1 ≤ i ≤ n, be independent uniform random variable in the interval
[0, 1] and let Yn = n(1− X(n)). Then,

FYn(y) = P{n(1− X(n)) ≤ y} = P
{

1− y

n
≤ X(n)

}
= 1−

(
1− y

n

)n
→ 1− e−y .

Thus, the magnified gap between the highest order statistic and 1 converges in
distribution to an exponential random variable, parameter 1.

Example. Let Xp be Geo(p). Then P{Xp > n} = (1− p)n. EXp = (1− p)/p,
E [pXp] = (1− p) ∼ 1 for p near 0. Then,

P{pXp > x} = P{Xp > x/p} = (1− p)[x/p] → exp(−x) as p → 0.

Therefore pXp converges in distribution to an Exp(1) random variable.
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Convergence in Distribution

Example. Let Xi , i ≥ 1, be independent Exp(1) random variables. Define
Mn = max1≤i≤n Xi . To see how quickly Mn grows, we simulate.

> simexp<-matrix(rexp(100000),ncol=100)

> cmax<-matrix(numeric(100000),ncol=100)

> medmax<-numeric(100)

> for (i in 1:1000){cmax[i,]<-cummax(simexp[i,])}

> for (j in 1:100){medmax[j]<-median(cmax[,j])}

> plot(1:100,medmax,xlim=c(1,100),ylim=c(0,5),

xlab="number of exponentials",ylab="median of maximum")

> par(new=TRUE)
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Convergence in Distribution
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> curve(log(x),1,100,ylim=c(0,5),col="aquamarine3",xlab="",ylab="")
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Convergence in Distribution

Thus, define Yn = max1≤i≤n Xi − ln n. Then,

P{Yn ≤ y} = P{X1 ≤ y + ln n, . . . ,Xn ≤ y + ln n} = P{X1 ≤ y + ln n}n

= (1− e−(y+ln n))n = (1− e−y

n
)n

→ exp(e−y ) as n→∞

This is called a Gumbel distribution and is an example of an extreme value distribution.
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Separating and Convergence Determining

1. A collection H of continuous and bound functions is called separating if for any
two distribution functions F ,G ,∫

h dF =

∫
h dG for all h ∈ H

implies F = G .

2. A collection H of continuous and bound functions is called convergence
determining if for any sequence distribution functions {Fn; n ≥ 1} and a
distribution F ,

lim
n→∞

∫
h dFn =

∫
h dF for all h ∈ H

implies Fn →D F .

Convergence determining sets are separating.
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Separating and Convergence Determining

Example. For integer-valued random variables, then by the uniqueness of power series,
the collection H = {zx ; , 0 ≤ z ≤ 1} is separating. Take the mass functions fXk

= I{k}
to see that it is not convergence determining.

If we want to use a separating collection for convergence in distribution, we will need
an additional requirement on the distribution functions to ensure that “mass does not
run off to infinity.”

Definition. A collection F of distribution functions is called tight if for each ε > 0,
then exists M > 0 such that

F (M)− F (−M) ≥ 1− ε, for all F ∈ F .

Exercise. Any finite collection of distribution functions is tight.
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Separating and Convergence Determining
Theorem. Let {Fn; n ≥ 1} be a tight family of distribution functions and let H be
separating. Then Fn →D F if and only if

lim
n→∞

∫
h dFn

exists for all h ∈ H. In this case, the limit is
∫
h dF .

Proof. Cantor diagonalization argument.

The goal, for any given separating class, is to find a sufficient condition to ensure that
the distributions in the approximating sequence of distributions are tight. For example,

Theorem. Let {Xn; n ≥ 1} be N-valued random variables having respective probability
generating functions ρn(z) = EzXn . If

lim
n→∞

ρn(z) = ρ(z),

and ρ is continuous at z = 1, then Xn converges in distribution to a random variable X
with generating function ρ. 13 / 20
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Discrete Random Variables

Let Xn be a Bin(n, p) random variable. Then

ρXn(z) = EzXn = ((1− p) + pz)n = ((1 + p(z − 1))n.

Set λ = np, then

lim
n→∞

EzXn = lim
n→∞

(1 +
λ

n
(z − 1))n = expλ(z − 1),

the generating function of a Poisson random variable. The convergence of the
distributions of {Xn; n ≥ 1} follows from the fact that the limiting probability
generating function is continuous at z = 1.
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Discrete Random Variables
Let z ∈ [0, 1) and choose ζ ∈ (z , 1). Then for each n and k ,

P{Xn = k}zk < ζk .

Thus, by the Weierstrass M-test, ρn converges uniformly to an analytical function ρ̃ on
[0, ζ] and thus ρ̃ is continuous at z .

lim
n→∞

P{Xn > x} = lim
n→∞

lim
z→1

(
ρn(z)−

x∑
k=1

P{Xn = k}zk
)

= lim
z→1

lim
n→∞

(
ρn(z)−

x∑
k=1

P{Xn = k}zk
)

= lim
z→1

(
ρ̃(z)−

x∑
k=1

ρ̃(k)(0)zk

)

= ρ̃(1)−
x∑

k=1

ρ̃(k)(0) < ε

by choosing x sufficiently large. Thus, we have that {Xn; n ≥ 1} is tight.
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Discrete Random Variables

Consider families of discrete random variables and let {FX (·|θn); n ≥ 1} be a sequence
of distributions from that family. Then

FX (·|θn)→D FX (·|θ) if and only if θn → θ.

This applies to binomial, geometric, negative binomial (p), and Poisson (λ) families of random
variables.

In each case,
lim

n→∞
Eθnz

Xn = lim
n→∞

ρθn(z) = ρθ(z).

and ρθ(z) is continuous at z = 1.

We now move on to continuous random variables.
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Characteristic Functions
The characteristic function or the Fourier transform for a probability distribution F on
Rd is

φ(θ) =

∫
e i〈θ,x〉 dF (x) = Ee i〈θ,X 〉

where X is a random variable with distribution function F . Because the Fourier
transform is one-to-one {e i〈θ,x〉; θ ∈ Rd} is a separating class of functions. Here is the
main result.

Continuity Theorem. Let {Fn; n ≥ 1} be a sequence of distributions on R with
corresponding characteristic function {φn; n ≥ 1} satisfying

1. limn→∞ φn(θ) exists for all θ ∈ R, and

2. limn→∞ φn(θ) = φ(θ) is continuous at θ = 0.

Then there exists a distribution function F with characteristic function φ and
Fn →D F .
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Continuous Random Variables

Consider families of continuous random variables and let {FX (·|θn); n ≥ 1} be a
sequence of distributions from that family. Then

FX (·|θn)→D FX (·|θ) if and only if θn → θ.

This applies to beta, gamma, Pareto (α, β), chi-square (ν), exponential (λ), chi-square, t (ν),
exponential (λ), F (ν1, ν2), normal, log-normal (µ, σ), logistic (µ, s) and uniform (a, b) families
of random variables.

In each case,
lim

n→∞
φθn(z) = φθ(z).

and φθ(θ) is continuous at θ = 0.
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Moment Generating Functions

In using the characteristic function to establish convergence in distribution, we must
work with the issues of the logarithm on the complex plane C. In particular, no
continuous definition for the logarithm exists whose domain is all of C.

A alternative is the moment generating function or the Laplace transform. For a
probability distribution F on Rd ,

M(t) =

∫
e〈t,x〉 dF (x) = Ee〈t,X 〉

where X is a random variable with distribution function F . Because the Laplace
transform is one-to-one {e i〈θ,x〉; θ ∈ Rd} is a separating class of functions. Here is the
corresponding result.
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Moment Generating Functions

Theorem. Let {Fn; n ≥ 1} be a sequence of distributions on R with corresponding
moment generating function {Mn; n ≥ 1} satisfying

1. limn→∞Mn(t) exists for all t ∈ (−δ, δ), δ > 0, and

2. limn→∞Mn(t) = M(t) is continuous at t = 0.

Then there exists a distribution functtion F with moment generating function M and
Fn →D F .

This is not as general as the theorem using characteristic functions. However, taking
the logarithm Kn(t) = lnMn(t) is straightforward and we can replace the moment
generating function with the cumulant generating function in the theorem above.
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