Chapter 5
Multiple Random Variables
Convergence in Distribution
Outline

Basic Properties

Separating and Convergence Determining
- Discrete Random Variables
- Characteristic Functions
- Moment Generating Functions
Convergence in Distribution

We say that X_n converges to X in distribution ($X_n \xrightarrow{D} X$ or $X_n \Rightarrow X$) if, for every bounded continuous function $h : \mathbb{R} \to \mathbb{R}$,

$$\lim_{n \to \infty} E h(X_n) = E h(X).$$

Convergence in distribution differs from the other modes of convergence in that it is based not on a direct comparison of the random variables X_n with X but rather on a comparison of the distributions $P\{X_n \in A\}$ and $P\{X \in A\}$. Using the change of variables formula, convergence in distribution can be written

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} h(x) \, dF_{X_n}(x) = \int_{-\infty}^{\infty} h(x) \, dF_X(x).$$

In this case, we may also write $F_{X_n} \xrightarrow{D} F_X$.
Convergence in Distribution

Let X_n be uniformly distributed on the points $\{1/n, 2/n, \ldots, n/n = 1\}$. Then, using the convergence of a Riemann sum to a Riemann integral, we have as $n \to \infty$,

$$E h(X_n) = \sum_{i=1}^{n} h\left(\frac{i}{n}\right) \frac{1}{n} \to \int_{0}^{1} h(x) \, dx = E h(X)$$

where X is a uniform random variable on the interval $[0, 1]$.

Define the bump function $b(x)$ with support $[-1/2, 1/2]$, ramping up from 0 to 1, taking the value 1 at $x = 0$ and then ramping back to zero. In addition, define the shift $b_{x_0}(x) = b(x - x_0)$.
Convergence in Distribution

For X_n and X, integer-valued random variables, then

$$\lim_{n \to \infty} P\{X_n = x_0\} = \lim_{n \to \infty} E_{x_0}(X_n) = E_{x_0}(X) = P\{X = x_0\}$$

Thus, convergence in distribution for integer-valued random variables is the same as the convergences of the mass function.

Example. Let $p \in (0, 1)$ and let $X_n \sim \text{Hyper}([np], n - [np], k)$. Then,

$$P\{X_n = x_0\} = \binom{k}{x_0} \binom{[np]}{x_0} \frac{(n - [np])_{k-x_0}}{(n)_k} = \binom{k}{x_0} \binom{[np]}{x_0} \cdot \frac{(n - [np])_{k-x_0}}{(n - x_0 + 1)_{k-x_0}}$$

$$\to \binom{k}{x_0} p^{x_0} (1 - p)^{k-x_0}$$

and the limiting distribution is $\text{Bin}(k, p)$.
Convergence in Distribution

Define the ramp function $r(x)$ ramping down from 1 to 0 on $[-1/2, 1/2]$, continuous and flat elsewhere. In addition, define $r_{x_0,\epsilon}(x) = r((x - x_0)/\epsilon)$.

With the choice $r_{x_0,\epsilon}(x)$, taking the limit as $\epsilon \to 0$, we show that $X_n \xrightarrow{D} X$ if and only if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

for all points x that are continuity points of F_X.

Example. For X_n be uniformly distributed on the points $\{1/n, 2/n, \cdots, n/n = 1\}$

$$P\{X_n \leq x\} = \frac{\lfloor nx \rfloor}{n} \to x = P\{X \leq x\}$$
Convergence in Distribution

Example. Let $X_i, 1 \leq i \leq n$, be independent uniform random variable in the interval $[0, 1]$ and let $Y_n = n(1 - X(n))$. Then,

$$F_{Y_n}(y) = P\{n(1 - X(n)) \leq y\} = P\left\{1 - \frac{y}{n} \leq X(n)\right\} = 1 - \left(1 - \frac{y}{n}\right)^n \to 1 - e^{-y}.$$

Thus, the magnified gap between the highest order statistic and 1 converges in distribution to an exponential random variable, parameter 1.

Example. Let X_p be $Geo(p)$. Then $P\{X_p > n\} = (1 - p)^n$. $EX_p = (1 - p)/p$, $E[pX_p] = (1 - p) \sim 1$ for p near 0. Then,

$$P\{pX_p > x\} = P\{X_p > x/p\} = (1 - p)^{[x/p]} \to \exp(-x) \quad \text{as} \quad p \to 0.$$

Therefore pX_p converges in distribution to an $Exp(1)$ random variable.
Convergence in Distribution

Example. Let $X_i, i \geq 1$, be independent $Exp(1)$ random variables. Define $M_n = \max_{1 \leq i \leq n} X_i$. To see how quickly M_n grows, we simulate.

```r
> simexp<-matrix(rexp(100000),ncol=100)
> cmax<-matrix(numeric(100000),ncol=100)
> medmax<-numeric(100)
> for (i in 1:1000){cmax[i,]<-cummax(simexp[i,])}
> for (j in 1:100){medmax[j]<-median(cmax[,j])}
> plot(1:100,medmax,xlim=c(1,100),ylim=c(0,5),
      xlab="number of exponentials",ylab="median of maximum")
> par(new=TRUE)
```
Convergence in Distribution

> curve(log(x),1,100,ylim=c(0,5),col="aquamarine3",xlab="",ylab="")
Thus, define $Y_n = \max_{1 \leq i \leq n} X_i - \ln n$. Then,

\[P\{Y_n \leq y\} = P\{X_1 \leq y + \ln n, \ldots, X_n \leq y + \ln n\} = P\{X_1 \leq y + \ln n\}^n \]
\[= (1 - e^{-(y+\ln n)})^n = (1 - \frac{e^{-y}}{n})^n \]
\[\rightarrow \exp(e^{-y}) \quad \text{as} \quad n \rightarrow \infty \]

This is called a Gumbel distribution and is an example of an extreme value distribution.
Separating and Convergence Determining

1. A collection \mathcal{H} of continuous and bound functions is called **separating** if for any two distribution functions F, G,

\[
\int h \, dF = \int h \, dG \text{ for all } h \in \mathcal{H}
\]

implies $F = G$.

2. A collection \mathcal{H} of continuous and bound functions is called **convergence determining** if for any sequence distribution functions $\{F_n; n \geq 1\}$ and a distribution F,

\[
\lim_{n \to \infty} \int h \, dF_n = \int h \, dF \text{ for all } h \in \mathcal{H}
\]

implies $F_n \to^D F$.

Convergence determining sets are separating.
Basic Properties

Separating and Convergence Determining

Example. For integer-valued random variables, then by the uniqueness of power series, the collection $\mathcal{H} = \{z^x; 0 \leq z \leq 1\}$ is separating. Take the mass functions $f_{X_k} = I_{\{k\}}$ to see that it is not convergence determining.

If we want to use a separating collection for convergence in distribution, we will need an additional requirement on the distribution functions to ensure that “mass does not run off to infinity.”

Definition. A collection \mathcal{F} of distribution functions is called tight if for each $\epsilon > 0$, then exists $M > 0$ such that

$$F(M) - F(-M) \geq 1 - \epsilon, \text{ for all } F \in \mathcal{F}.$$

Exercise. Any finite collection of distribution functions is tight.
Separating and Convergence Determining

Theorem. Let \(\{F_n; n \geq 1\} \) be a tight family of distribution functions and let \(\mathcal{H} \) be separating. Then \(F_n \xrightarrow{D} F \) if and only if

\[
\lim_{n \to \infty} \int h \, dF_n
\]

exists for all \(h \in \mathcal{H} \). In this case, the limit is \(\int h \, dF \).

Proof. Cantor diagonalization argument.

The goal, for any given separating class, is to find a sufficient condition to ensure that the distributions in the approximating sequence of distributions are tight. For example,

Theorem. Let \(\{X_n; n \geq 1\} \) be \(\mathbb{N} \)-valued random variables having respective probability generating functions \(\rho_n(z) = E z^{X_n} \). If

\[
\lim_{n \to \infty} \rho_n(z) = \rho(z),
\]

and \(\rho \) is continuous at \(z = 1 \), then \(X_n \) converges in distribution to a random variable \(X \) with generating function \(\rho \).
Discrete Random Variables

Let X_n be a $Bin(n, p)$ random variable. Then

$$
\rho_{X_n}(z) = Ez^{X_n} = ((1 - p) + pz)^n = ((1 + p(z - 1)))^n.
$$

Set $\lambda = np$, then

$$
\lim_{n \to \infty} Ez^{X_n} = \lim_{n \to \infty} (1 + \frac{\lambda}{n}(z - 1))^n = \exp \lambda(z - 1),
$$

the generating function of a Poisson random variable. The convergence of the distributions of $\{X_n; n \geq 1\}$ follows from the fact that the limiting probability generating function is continuous at $z = 1$.

Discrete Random Variables

Let \(z \in [0, 1) \) and choose \(\zeta \in (z, 1) \). Then for each \(n \) and \(k \),

\[
P\{X_n = k\} z^k < \zeta^k.
\]

Thus, by the Weierstrass \(\mathcal{M} \)-test, \(\rho_n \) converges uniformly to an analytical function \(\tilde{\rho} \) on \([0, \zeta]\) and thus \(\tilde{\rho} \) is continuous at \(z \).

\[
\lim_{n \to \infty} P\{X_n > x\} = \lim_{n \to \infty} \lim_{z \to 1} \left(\rho_n(z) - \sum_{k=1}^{x} P\{X_n = k\} z^k \right)
\]

\[
= \lim_{z \to 1} \lim_{n \to \infty} \left(\rho_n(z) - \sum_{k=1}^{x} P\{X_n = k\} z^k \right) = \lim_{z \to 1} \left(\tilde{\rho}(z) - \sum_{k=1}^{x} \tilde{\rho}^{(k)}(0) z^k \right)
\]

\[
= \tilde{\rho}(1) - \sum_{k=1}^{x} \tilde{\rho}^{(k)}(0) < \epsilon
\]

by choosing \(x \) sufficiently large. Thus, we have that \(\{X_n; n \geq 1\} \) is tight.
Basic Properties

Consider families of discrete random variables and let \(\{F_X(\cdot|\theta_n); n \geq 1\} \) be a sequence of distributions from that family. Then

\[
F_X(\cdot|\theta_n) \xrightarrow{\text{D}} F_X(\cdot|\theta) \quad \text{if and only if} \quad \theta_n \to \theta.
\]

This applies to binomial, geometric, negative binomial \((p)\), and Poisson \((\lambda)\) families of random variables.

In each case,

\[
\lim_{n \to \infty} E_{\theta_n} z^{X_n} = \lim_{n \to \infty} \rho_{\theta_n}(z) = \rho_{\theta}(z).
\]

and \(\rho_{\theta}(z) \) is continuous at \(z = 1 \).

We now move on to continuous random variables.
Characteristic Functions

The characteristic function or the Fourier transform for a probability distribution F on \mathbb{R}^d is

$$\phi(\theta) = \int e^{i\langle \theta, x \rangle} \, dF(x) = E e^{i\langle \theta, X \rangle}$$

where X is a random variable with distribution function F. Because the Fourier transform is one-to-one $\{e^{i\langle \theta, x \rangle}; \theta \in \mathbb{R}^d\}$ is a separating class of functions. Here is the main result.

Continuity Theorem. Let $\{F_n; n \geq 1\}$ be a sequence of distributions on \mathbb{R} with corresponding characteristic function $\{\phi_n; n \geq 1\}$ satisfying

1. $\lim_{n \to \infty} \phi_n(\theta)$ exists for all $\theta \in \mathbb{R}$, and
2. $\lim_{n \to \infty} \phi_n(\theta) = \phi(\theta)$ is continuous at $\theta = 0$.

Then there exists a distribution function F with characteristic function ϕ and $F_n \to F$.
Continuous Random Variables

Consider families of continuous random variables and let \(\{F_X(\cdot|\theta_n); n \geq 1\} \) be a sequence of distributions from that family. Then

\[
F_X(\cdot|\theta_n) \xrightarrow{D} F_X(\cdot|\theta) \text{ if and only if } \theta_n \to \theta.
\]

This applies to beta, gamma, Pareto \((\alpha, \beta)\), chi-square \((\nu)\), exponential \((\lambda)\), chi-square, \(t\) \((\nu)\), exponential \((\lambda)\), \(F\) \((\nu_1, \nu_2)\), normal, log-normal \((\mu, \sigma)\), logistic \((\mu, s)\) and uniform \((a, b)\) families of random variables.

In each case,

\[
\lim_{n \to \infty} \phi_{\theta_n}(z) = \phi_{\theta}(z).
\]

and \(\phi_{\theta}(\theta)\) is continuous at \(\theta = 0\).
Moment Generating Functions

In using the characteristic function to establish convergence in distribution, we must work with the issues of the logarithm on the complex plane \(\mathbb{C} \). In particular, no continuous definition for the logarithm exists whose domain is all of \(\mathbb{C} \).

A alternative is the moment generating function or the Laplace transform. For a probability distribution \(F \) on \(\mathbb{R}^d \),

\[
M(t) = \int e^{\langle t, x \rangle} \, dF(x) = E e^{\langle t, X \rangle}
\]

where \(X \) is a random variable with distribution function \(F \). Because the Laplace transform is one-to-one \(\{ e^{i \langle \theta, x \rangle}; \theta \in \mathbb{R}^d \} \) is a separating class of functions. Here is the corresponding result.
Moment Generating Functions

Theorem. Let \(\{F_n; n \geq 1\} \) be a sequence of distributions on \(\mathbb{R} \) with corresponding moment generating function \(\{M_n; n \geq 1\} \) satisfying

1. \(\lim_{n \to \infty} M_n(t) \) exists for all \(t \in (-\delta, \delta), \delta > 0 \), and
2. \(\lim_{n \to \infty} M_n(t) = M(t) \) is continuous at \(t = 0 \).

Then there exists a distribution function \(F \) with moment generating function \(M \) and \(F_n \to^D F \).

This is not as general as the theorem using characteristic functions. However, taking the logarithm \(K_n(t) = \ln M_n(t) \) is straightforward and we can replace the moment generating function with the cumulant generating function in the theorem above.