Chapter 8
Hypothesis Tests
Extensions on the Likelihood Ratio
One and Two Sided Tests
Outline

One-Sided Tests
 Karlin-Rubin Theorem
 Binomial Test
 Proportion Test

Two-Sided Tests

Normal Observations

Two-Sample Proportions
 Power Analysis
Introduction

For a composite hypothesis

\[H_0 : \theta \in \Theta_0 \quad \text{versus} \quad H_1 : \theta \in \Theta_1, \]

we have seen critical regions defined by taking a statistic \(T(x) \) and defining the critical region based on a critical value \(\tilde{k}_\alpha \). For a one-sided test, we have seen critical regions

\[\{ x; T(x) \geq \tilde{k}_\alpha \} \quad \text{or} \quad \{ x; T(x) \leq \tilde{k}_\alpha \}. \]

For a two-sided test, we saw

\[\{ x; |T(x)| \geq \tilde{k}_\alpha \}. \]

\(\tilde{k}_\alpha \) is determined by the level \(\alpha \). We thus use commands `qnorm`, `qbinom`, or `qhyper` when \(T(x) \) has, respectively, a normal, binomial, or hypergeometric distribution under a appropriate choice of \(\theta \in \Theta_0 \). We now examine extensions of the likelihood ratio test for simple hypotheses that have desirable properties for a critical region.
One-Sided Tests

In testing for the invasion of a mimic butterfly by a model species, we collected a simple random sample modeled as independent normal observations with unknown mean and known variance σ_0^2.

We discovered, in the case of a simple hypothesis test,

$$H_0 : \mu = \mu_0 \quad \text{versus} \quad H_1 : \mu = \mu_1$$

that the critical region as determined by the Neyman-Pearson lemma depends only on whether or not μ_1 was greater than μ_0. For example, if $\mu_1 > \mu_0$, then the critical region

$$C = \{ x; \bar{x} \geq \tilde{k}_\alpha \}$$

shows that we reject H_0 whenever the sample mean is higher than some threshold value \tilde{k}_α irrespective of the difference between μ_0 and μ_1.
One-Sided Tests

- If a test is most powerful against each possible alternative in a simple hypothesis test, when we can say that this test is in some sense best overall for a composite hypothesis?
- Does this test have the property that its power function π is greater for every value of $\theta \in \Theta_1$ than the power function of any other test? Such a test is called uniformly most powerful.
- We can hope for such a test if the procedures from simple hypotheses results in a common critical region for all values of the alternative.
- In the example above using independent normal data. In this case, the power function

$$\pi(\mu) = P_{\mu}\{\bar{X} \geq \tilde{k}_\alpha\}$$

increases as μ increases and so the test has the intuitive property of becoming more powerful with increasing μ.
Karlin-Rubin Theorem

In general, we look for a test statistic $T(x)$. Next, we check that the likelihood ratio,

$$\frac{L(\theta_2|x)}{L(\theta_1|x)}, \quad \theta_1 < \theta_2.$$

depends on the data x only through the value of statistic $T(x)$ and, in addition, this ratio is a monotone increasing function of $T(x)$.

Note that for any sufficient statistic, $T(x)$, we have by the Fisher-Neyman factorization theorem,

$$\frac{L(\theta_2|x)}{L(\theta_1|x)} = \frac{h(x)g(\theta_2, T(x))}{h(x)g(\theta_1, T(x))} = \frac{g(\theta_2, T(x))}{g(\theta_1, T(x))}.$$

and thus the likelihood ratio depends only on $T(x)$.
Karlin-Rubin Theorem

The Karlin-Rubin theorem states:

If these conditions hold, then for an appropriate value of \tilde{k}_α,

$$C = \{x; T(x) \geq \tilde{k}_\alpha\}$$

is the critical region for a uniformly most powerful α level test for the one-sided alternative hypothesis

$$H_0 : \theta \leq \theta_0 \quad \text{versus} \quad H_1 : \theta > \theta_0.$$

Proof. Let $\pi(\theta)$ be the power function for this test. We first show that $\pi(\theta)$ is an increasing function of θ.
Karlin-Rubin Theorem

We can write the **monotone increasing function** property in terms of the density function for T. For $\theta_1 < \theta_2$, $t_1 < t_2$.

$$\frac{f_T(t_2|\theta_2)}{f_T(t_2|\theta_1)} \geq \frac{f_T(t_1|\theta_2)}{f_T(t_1|\theta_1)}$$

$$f_T(t_1|\theta_1)f_T(t_2|\theta_2) \geq f_T(t_1|\theta_2)f_T(t_2|\theta_1)$$

Now, integrate both sides with respect to t_1 on $(-\infty, t_2)$ to obtain

$$F_T(t_2|\theta_1)f_T(t_2|\theta_2) \geq F_T(t_2|\theta_2)f_T(t_2|\theta_1)$$

$$\frac{f_T(t|\theta_2)}{f_T(t|\theta_1)} \geq \frac{F_T(t|\theta_2)}{F_T(t|\theta_1)}$$

for all t.
Karlin-Rubin Theorem

\[f_T(t_1|\theta_1)f_T(t_2|\theta_2) \geq f_T(t_1|\theta_2)f_T(t_2|\theta_1) \]

Now, integrate both sides with respect to \(t_2 \) on \((t_1, \infty) \) to obtain

\[
\frac{f_T(t_1|\theta_1)(1 - F_T(t_1|\theta_2))}{1 - F_T(t_1|\theta_1)} \geq \frac{f_T(t_1|\theta_2)(1 - F_T(t_2|\theta_1))}{f_T(t_1|\theta_1)}
\]

for all \(t \). Thus,

\[
\frac{1 - F_T(t|\theta_2)}{1 - F_T(t|\theta_1)} \geq \frac{f_T(t_2|\theta_2)F_T(t_1|\theta_1)}{f_T(t_2|\theta_1)F_T(t_1|\theta_1)} \geq \frac{F_T(t|\theta_2)}{1 - F_T(t|\theta_2)}
\]
Karlin-Rubin Theorem

Now, the mapping from probability to odds $p \mapsto p/(1 - p)$ is one-to-one and increasing. So is its inverse $o \mapsto o/(1 + o)$

$$F_T(t|\theta_1) \geq F_T(t|\theta_2) \quad \text{for all } t$$

The power

$$\pi(\theta_1) = P_{\theta_1}\{T > \tilde{k}_\alpha\} = 1 - F_T(\tilde{k}_\alpha|\theta_1) \leq 1 - F_T(\tilde{k}_\alpha|\theta_2) = P_{\theta_2}\{T > \tilde{k}_\alpha\} = \pi(\theta_2)$$

and $\pi(\theta)$ is an increasing function of θ.

If we set \tilde{k}_α so that $\pi(\theta_0) = P_{\theta_0}\{T > \tilde{k}_\alpha\} = \alpha$, then $\pi(\theta) \leq \alpha$ for $\theta \leq \theta_0$ and so the test is an α-level test.
Karlin-Rubin Theorem

Next, set $\tilde{\theta} > \theta_0$ and consider the simple hypothesis

$$H_0 : \theta = \theta_0 \text{ versus } H_1 : \theta = \tilde{\theta}_0.$$

Because the likelihood ratio is monotone in $T(X)$, the requirement that $T(X) > \tilde{k}_\alpha$, is equivalent to the the likelihood ratio exceeding some value (say k_α). Thus, the critical region determined by a threshold level for $T(X)$ is also a threshold level for the likelihood ratio. Thus, by the Neyman-Pearson lemma, this critical region is most powerful.

Because this holds for every value of $\tilde{\theta}$, the test is simultaneously most powerful for every $\tilde{\theta} > \theta_0$, thus it uniformly most powerful. QED
Karlin-Rubin Theorem

A corresponding criterion holds for the one sided test a “less than” alternative.

Exercise. Verify that the likelihood ratio is an appropriate monotone function of the given test statistic, T.

1. For mark and recapture, use the hypothesis

$$H_0 : N \geq N_0 \text{ versus } H_1 : N < N_0,$$

use the test statistic $T(x) = r(x)$, the number tagged in the second capture.

2. For $X = (X_1, \ldots, X_n)$ is a sequence of Bernoulli trials with unknown success probability p, and the one-sided test

$$H_0 : p \leq p_0 \text{ versus } H_1 : p > p_0,$$

use the test statistic $T(x) = \hat{p}(x)$, the sample proportion of successes.
Binomial Test

If 20 out of 36 bee hives survive a severe winter, for an $\alpha = 0.05$ level test for

$$H_0 : p \geq 0.7 \quad \text{versus} \quad H_1 : p < 0.7,$$

we use the binomial distribution for the number of successes using `binom.test`.

```r
> binom.test(20,36,p=0.7,alternative=c("less"))
```

Exact binomial test

data: 20 and 36
number of successes = 20, number of trials = 36, p-value = 0.04704
alternative hypothesis: true probability of success is less than 0.7

Exercise. Do we reject the hypothesis at the 5% level? the 1% level? Find the p-value using the `pbinom` command.
Proportion Test

If 250 out of 336 bee hives survive a mild winter, for an $\alpha = 0.05$ level test for

$$H_0 : p \leq 0.7 \quad \text{versus} \quad H_1 : p > 0.7,$$

we use the normal approximation for the number of successes using `prop.test`.

> prop.test(250,336,p=0.7,alternative=c("greater"))

1-sample proportions test with continuity correction

data: 250 out of 336, null probability 0.7
X-squared = 2.8981, df = 1, p-value = 0.04434

and we *reject* the null hypothesis.
The p-value is $P\{X \geq 250\}$ where X is $Bin(336, 0.7)$. We compute this using R.

$$P\{X \geq 250\} = 1 - P\{X \leq 249\}$$

```r
> 1-pbinom(249,336,0.7)
[1] 0.0428047
```

The command `prop.test` uses a normal approximation and a continuity correction to obtain a p-value 0.04434

The p-value $P\{X \geq x\} = \sum_{y=x}^{n} P\{X = y\}$ can be realized as the area of rectangles, height $P\{X = y\}$ and width 1.
Continuity Correction

The rectangles look like a Riemann sum for the integral of the density of a $N(np_0, \sqrt{np_0(1-p_0)})$ random variable with lower limit $x - 1/2$.

```r
> mu<-0.7*336
> sigma<-sqrt(336*0.7*0.3)
> x<-c(249,249.5,250)
> prob<-1-pnorm(x,mu,sigma)
> data.frame(x,prob)

   x  prob
1 249 0.05020625
2 249.5 0.04434199
3 250.0 0.03904269
```

The continuity correction replaces the binomial by finding the area under the normal density with lower limit $x - 1/2$.
Two-Sided Tests

- The **likelihood ratio test** is a popular choice for composite hypothesis when Θ_0 is a subspace Θ the parameter space.

- The rationale for this approach is that the null hypothesis is unlikely to be true if the maximum likelihood on Θ_0 is sufficiently smaller that the likelihood maximized over Θ. Let
 - $\hat{\theta}_0$ be the parameter value that maximizes the likelihood for $\theta \in \Theta_0$ and
 - $\hat{\theta}$ be the parameter value that maximizes the likelihood for $\theta \in \Theta$.

- The **likelihood ratio**
 \[\Lambda(x) = \frac{L(\hat{\theta}_0|x)}{L(\hat{\theta}|x)}. \]
Overview

We have two optimization problems - maximize $L(\theta | x)$ on the parameter space Θ and on the null hypothesis space Θ_0.

The critical region for an α-level likelihood ratio test is

$$\{ \Lambda(x) \leq \lambda_\alpha \}.$$

As with any α level test, λ_α is chosen so that

$$P_{\theta}\{\Lambda(X) \leq \lambda_\alpha \} \leq \alpha \text{ for all } \theta \in \Theta_0.$$

NB. This ratio is the reciprocal from the version given by the Neyman-Pearson lemma. Thus, the critical region consists of those values that are below a critical value.
Consider the two-sided hypothesis

\[H_0 : \mu = \mu_0 \quad \text{versus} \quad H_1 : \mu \neq \mu_0. \]

Here the data are \(n \) independent \(N(\mu, \sigma_0^2) \) random variables with known variance \(\sigma_0^2 \). The parameter space \(\Theta \) is one dimensional giving the value \(\mu \) for the mean. As we have seen before \(\hat{\mu} = \bar{x} \). \(\Theta_0 \) is the single point \(\{\mu_0\} \) and so \(\hat{\mu}_0 = \mu_0 \).

\[
L(\hat{\mu}_0 | x) = \left(\frac{1}{\sqrt{2\pi\sigma_0^2}} \right)^n \exp \left(-\frac{1}{2\sigma_0^2} \sum_{i=1}^{n} (x_i - \mu_0)^2 \right), \quad L(\hat{\mu} | x) = \left(\frac{1}{\sqrt{2\pi\sigma_0^2}} \right)^n \exp \left(-\frac{1}{2\sigma_0^2} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)
\]

and

\[
\Lambda(x) = \exp \left(-\frac{1}{2\sigma_0^2} \left(\sum_{i=1}^{n} ((x_i - \mu_0)^2 - (x_i - \bar{x})^2) \right) \right) = \exp \left(-\frac{n}{2\sigma_0^2} (\bar{x} - \mu_0)^2 \right).
\]

Notice that

\[
-2 \ln \Lambda(x) = \frac{n}{\sigma_0^2} (\bar{x} - \mu_0)^2 = \left(\frac{\bar{x} - \mu_0}{\sigma_0/\sqrt{n}} \right)^2.
\]
Normal Observations

Then, critical region,

\[\{ \Lambda(x) \leq \lambda_\alpha \} = \left\{ \left(\frac{\bar{x} - \mu_0}{\sigma_0/\sqrt{n}} \right)^2 \geq -2 \ln \lambda_\alpha \right\}. \]

Under the null hypothesis, \((\bar{X} - \mu_0)/(\sigma_0/\sqrt{n}) \) is a standard normal random variable, and thus \(-2 \ln \Lambda(X)\) is the square of a single standard normal. This is the defining property of a \(\chi^2\)-square random variable with 1 degree of freedom.

Naturally we can use both

\[\left(\frac{\bar{x} - \mu_0}{\sigma_0/\sqrt{n}} \right)^2 \quad \text{and} \quad \left| \frac{\bar{x} - \mu_0}{\sigma_0/\sqrt{n}} \right|. \]

as a test statistic. We have seen the second choice in the example of a possible invasion of a model butterfly by a mimic.
Two-Sample Proportions

For the two-sided two-sample \(\alpha \)-level likelihood ratio test for population proportions \(p_1 \) and \(p_2 \), based on the hypothesis

\[
H_0 : p_1 = p_2 \quad \text{versus} \quad H_1 : p_1 \neq p_2,
\]

- we maximize the likelihood over the subspace \(\Theta_0 = \{(p_1, p_2); p_1 = p_2\} \) (the blue line) and
- over the entire parameter space, \(\Theta = [0, 1] \times [0, 1] \), shown as the square, and
- then take the ratio, simplify and make appropriate approximations.

The data are observations on \(n_1 \) Bernoulli trials, \(x_{1,1}, x_{1,2}, \ldots, x_{1,n_1} \) from the first population and, independently, \(n_2 \) Bernoulli trials, \(x_{2,1}, x_{2,2}, \ldots, x_{2,n_2} \) from the second.
Two-Sample Proportions

The likelihood ratio test is approximately equivalent to the critical region

$$|z| \geq z_{\alpha/2}$$

where

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_0(1 - \hat{p}_0) \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}}$$

with \hat{p}_i, the sample proportion of successes from the observations from population i and \hat{p}_0, the pooled proportion

$$\hat{p}_0 = \frac{1}{n_1 + n_2} \left((x_{1,1} + \cdots + x_{1,n_1}) + (x_{2,1} + \cdots + x_{2,n_2}) \right) = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}.$$
Two-Sample Proportions

The subsequent winter had 167 out of 250 hives surviving. To test if the two survival probabilities are significantly different:

\[> \text{prop.test}(c(250,167),c(332,250))\]

2-sample test for equality of proportions with continuity correction

data: c(250, 167) out of c(332, 250)
X-squared = 4.664, df = 1, p-value = 0.0308
alternative hypothesis: two.sided
95 percent confidence interval:
 0.006942351 0.163081746
sample estimates:
 prop 1 prop 2
 0.753012 0.668000
Two-Sample Proportions

Power analyses can be executed in R using the `power.prop.test` command. If we want to be able to detect a difference between two proportions $p_1 = 0.7$ and $p_2 = 0.6$ in a one-sided test with a significance level of $\alpha = 0.05$ and power $1 - \beta = 0.8$.

```r
> power.prop.test(p1=0.70,p2=0.6,sig.level=0.05,power=0.8,
alternative = c("one.sided"))

Two-sample comparison of proportions power calculation

  n = 280.2581
  p1 = 0.7
  p2 = 0.6
  sig.level = 0.05
  power = 0.8
  alternative = one.sided

NOTE: n is number in *each* group
```

We will need a sample of $n = 281$ from each group.
Two-Sample Proportions

If we vary p_2 and determine the power.

```r
> power.prop.test(n=250,p1=0.70,p2=c(0.6,0.65),sig.level=0.05,
    alternative = c("one.sided"))
  p2 = 0.60, 0.65
  power = 0.7589896, 0.3256442
```

Now, let’s vary sample size.

```r
> power.prop.test(n=c(250,350,450,550),p1=0.70,p2=0.60,sig.level=0.05,
    alternative = c("one.sided"))
  n = 250, 350, 450, 550
  power = 0.7589896, 0.8717915, 0.9342626, 0.9672670
```

Exercise. Determine the reduction in power when the significance level $\alpha = 0.02$ for the sample sizes above. Why is the power reduced?