Bivariate Transformations

November 4 and 6, 2008

Let X and Y be jointly continuous random variables with density function $f_{X,Y}$ and let g be a one to one transformation. Write $(U, V) = g(X, Y)$. The goal is to find the density of (U, V).

1 Transformation of Densities

Above the rectangle from (u, v) to $(u + \Delta u, v + \Delta v)$ we have the joint density function $f_{U,V}(u, v)$ and probability

$$f_{U,V}(u, v)\Delta u\Delta v$$

Write $(x, y) = g^{-1}(u, v)$, then this probability is equal to the area of image of the rectangle from (u, v) to $(u + \Delta u, v + \Delta v)$ under the map g^{-1} times the density $f_{X,Y}(x, y)$.

The linear approximations for g^{-1} give, in vector form, two sides in the parallelogram that approximates the image of the rectangle.

$$g^{-1}(u + \Delta u, v) \approx g^{-1}(u, v) + \frac{\partial}{\partial u} g^{-1}(u, v)\Delta u = g^{-1}(u, v) + \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u} \right) \Delta u,$$

and

$$g^{-1}(u, v + \Delta v) \approx g^{-1}(u, v) + \frac{\partial}{\partial v} g^{-1}(u, v)\Delta v = g^{-1}(u, v) + \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v} \right) \Delta v.$$

The area of the rectangle is given by the norm of cross product

$$\left| \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u} \right) \times \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v} \right) \right| \Delta u \Delta v.$$

This is computed using the determinant of the Jacobian matrix

$$J(u, v) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Thus,

$$f_{U,V}(u, v)\Delta u\Delta v \approx f_{X,Y}(g^{-1}(u, v)) |J(u, v)| \Delta u \Delta v$$

with the approximation improving as $\Delta y, \Delta v \to 0$. Thus, give the formula for the transformation of bivariate densities.

$$f_{U,V}(u, v) = f_{X,Y}(g^{-1}(u, v)) |J(u, v)|.$$
Example 1. If A is a one-to-one linear transformation and $(U, V) = A(X, Y)$, then
\[f_{U,V}(u, v) = f_{X,Y}(A^{-1}(u, v)) |\det(A^{-1})| = \frac{1}{\det(A)} f_{X,Y}(A^{-1}(u, v)). \]

2 Convolution

Example 2 (convolution). Let
\[u = x + y, \quad v = x. \]
Then,
\[x = v, \quad y = u - v \]
and
\[J(u, v) = \det \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} = -1 \]
This yields
\[f_{U,V}(u, v) = f_{X,Y}(v, u - v). \]
The marginal distribution for v can be found by taking an integral
\[f_U(u) = \int_{-\infty}^{\infty} f_{X,Y}(v, u - v) \, dv. \]
If X and Y are independent, then
\[f_U(u) = \int_{-\infty}^{\infty} f_X(v) f_Y(u - v) \, dv. \]
This is called the convolution is often written $f_{X+Y} = f_X * f_Y$.

Example 3. Let X and Y be independent random variables uniformly distributed on $[0, 1]$. Then $U = X + Y$ can take values from 0 to 2.
\[f_U(u) = \int_{-\infty}^{\infty} I_{[0,1]}(v) I_{[0,1]}(u - v) \, dv = \int_0^1 I_{[0,1]}(u - v) \, dv. \]
Now
\[0 < u - v < 1 \quad \text{or} \quad u - 1 < v < u. \]
In addition, $0 < v < 1$. If $0 < u < 1$, then combining the two restrictions gives $0 < v < u$ and
\[f_U(u) = \int_0^1 I_{[0,1]}(u - v) \, dv = \int_0^u dv = u. \]
If $1 < u < 2$, then combining the two restrictions gives $u < v < 1$ and
\[f_U(u) = \int_0^1 I_{[0,1]}(u - v) \, dv = \int_u^1 dv = 1 - u. \]
Combining, we write
\[f_{X+Y}(u) = \begin{cases} u & \text{if } 0 < u < 1, \\
1 - u & \text{if } 1 < u < 2. \end{cases} \]
Example 4. For X and Y be independent standard normal random variables. Then

$$f_{X,Y}(x, y) = \frac{1}{\sqrt{2\pi}} \exp^{-\frac{x^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} \exp^{-\frac{y^2}{2}} = \frac{1}{2\pi} \exp^{-\frac{x^2 + y^2}{2}}.$$

and change to polar coordinates. Here, we know the inverse transformation $g^{-1}(x, y)$

$$x = r \cos \theta, \quad y = r \sin \theta.$$

The Jacobian matrix has determinant

$$J(u, v) = \det \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} = \det \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} = r \cos^2 \theta + r \sin^2 \theta = r.$$

Thus,

$$f_{R, \Theta}(r, \theta) = \frac{1}{2\pi} r \exp^{-\frac{r^2}{2}}.$$

As a consequence, R and Θ are independent and Θ is uniform on $[0, 2\pi)$. In addition, this transformation explains the constant $1/\sqrt{2\pi}$ in the density for the standard normal. We can use this transformation and the probability transform to simulate a pair of independent standard normal random variables.

The cumulant distribution function for R, known as the Rayleigh distribution $F_R(r) = 1 - \exp^{-\frac{r^2}{2}}$.

Thus, $F^{-1}(w) = \sqrt{-2 \log(1 - w)}$. If U and W are independent random variables uniformly distributed on $[0, 1]$, then so are U and $V = 1 - W$. We can represent the random variables R and Θ by

$$R = \sqrt{-2 \log V} \quad \text{and} \quad \Theta = 2\pi U.$$

In turn, we can represent the random variables X and Y by

$$X = \sqrt{-2 \log V} \cos(2\pi U) \quad \text{and} \quad X = \sqrt{-2 \log V} \sin(2\pi U).$$

Finally,

$$\theta = \begin{cases} \tan^{-1} \frac{y}{x}, & \text{if } x > 0, \\ \pi + \tan^{-1} \frac{y}{x}, & \text{if } x < 0. \end{cases}$$

The density of $U = \tan \Theta$.

$$f_U(u) = 2 \cdot \frac{1}{2\pi} \cdot \frac{1}{1 + u^2} = \frac{1}{\pi} \frac{1}{1 + u^2}.$$

The factor of 2 arises because the map $(x, y, \tan^{-1}(y/x))$ is 2 to 1. Thus, the Cauchy distribution arises from the ratio of independent normal random variables.

For discrete random variables, we can write the convolution

$$f_{X+Y}(u) = \sum_v f_X(v) f_Y(u - v).$$

Example 5. If X and Y are independent Poisson random variables with respective parameters λ and μ, then

$$f_{X+Y}(u) = \sum_{v=0}^{u} \frac{\lambda^v}{v!} e^{-\lambda} \frac{\mu^{u-v}}{(u-v)!} e^{-\mu} = \frac{1}{u!} e^{-(\lambda + \mu)} \sum_{v=0}^{u} \frac{u!}{v!(u-v)!} \lambda^v \mu^{u-v} = \frac{(\lambda + \mu)^u}{u!} e^{-(\lambda + \mu)}.$$
3 Tower Property

Again, if we write \(a(x) = E[g(Y)|X = x] \). Then,

\[
E[h(X)a(X)] = \int_{-\infty}^{\infty} h(x)a(x)f_X(x) dx = \int_{-\infty}^{\infty} h(x) \left(\int_{-\infty}^{\infty} g(y)f_{Y|X}(y|x) dy \right) f_X(x) dx
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x)g(y)f_{Y|X}(y|x)f_X(x) dydx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x)g(y)f_{X,Y}(x,y) dydx
\]

\[
= Eh(X)g(Y).
\]

In summary, \(E[h(X)E[g(Y)|X]] = E[h(X)g(Y)] \). A similar gives the identity for discrete random variables.

4 Law of Total Variance

\[
\text{Var}(Y) = E[Y^2] - (EY)^2
\]

\[
= E[E[Y^2|X]] - (E[E[Y|X]])^2
\]

\[
= E[\text{Var}(Y|X) + (E[Y|X]^2 - (E[E[Y|X]])^2)]
\]

\[
= E[\text{Var}(Y|X)] + \text{Var}(E[Y|X]).
\]

The second term is variance in \(Y \) due to the variation in \(X \). The first term is the variation in \(Y \) given the value of \(X \).

Example 6. For the bivariate standard normal,

\[E[Y|X] = \rho X, \text{ so } \text{Var}(E[Y|X]) = \rho^2 \]

and

\[\text{Var}(Y|X) = 1 - \rho^2, \text{ so } E[\text{Var}(Y|X)] = 1 - \rho^2 \]

giving

\[\text{Var}(Y) = (1 - \rho^2) + \rho^2 = 1. \]

5 Hierarchical Models

Because

\[f_{X,Y}(x,y) = f_{Y|X}(y|x)f_X(x). \]

we can introduce a bivariate density function by given the density for \(X \) and the conditional density for \(Y \) given the value for \(X \). We then recover the density for \(Y \) by taking an integral. A similar statement holds for discrete random variables.

Example 7. Let \(X \) be a Poisson random variable with parameter \(\lambda \) and consider \(Y \), the number of successes in \(X \) Bernoulli trials. Then,

\[f_X(x) = \frac{\lambda^x}{x!} e^{-\lambda}, \quad f_{Y|X}(y|x) = \binom{x}{y} p^y (1-p)^{x-y}. \]
In particular, the conditional mean $E[Y|X] = pX$ and $EY = E[E[Y|X]] = E[pX] = p\lambda$. The conditional variance $\text{Var}(Y|X) = p(1-p)X$. Consequently, by the law of total variance,

$$\text{Var}(Y) = E[\text{Var}(Y|X)] + \text{Var}(E[Y|X]) = E[p(1-p)X] + Var(pX) = p(1-p)\lambda + p^2\lambda = p\lambda.$$

The joint density,

$$f_{X,Y}(x, y) = \binom{x}{y} p^y (1-p)^{x-y} \frac{\lambda^x}{x!} e^{-\lambda}, \quad x \geq y$$

and

$$f_Y(y) = \sum_{x=y}^{\infty} f_{X,Y}(x, y) = \sum_{x=y}^{\infty} \binom{x}{y} p^y (1-p)^{x-y} \frac{\lambda^x}{x!} e^{-\lambda} = \frac{(p\lambda)^y}{y!} \sum_{x=y}^{\infty} \frac{((1-p)\lambda)^{x-y}}{(x-y)!} e^{-\lambda} = \frac{(p\lambda)^y}{y!} e^{(1-p)\lambda} e^{-\lambda} = \frac{(p\lambda)^y}{y!} e^{-p\lambda}.$$

Thus, we see that Y is a Poisson random variable with parameter $p\lambda$.

6 Multivariate Distributions

Many of the facts about bivariate distributions have straightforward generalizations to the general multivariate case.

- For a d-dimensional discrete random variable $X = (X_1, X_2, \ldots, X_d)$, take $\mathbf{x} \in \mathbb{R}^d$, we have the probability mass function $f_\mathbf{X}(\mathbf{x}) = P\{X = \mathbf{x}\}$.
 - For all \mathbf{x}, $f_\mathbf{X}(\mathbf{x}) \geq 0$ and $\sum_{\mathbf{x}} f_\mathbf{X}(\mathbf{x}) = 1$.
 - $P\{X \in A\} = \sum_{\mathbf{x} \in A} f_\mathbf{X}(\mathbf{x})$ and $Eg(X) = \sum_{\mathbf{x}} g(\mathbf{x}) f_\mathbf{X}(\mathbf{x})$
 - For $Y = (Y_1, Y_2, \ldots, Y_c)$ we have joint mass function $f_{X,Y}(\mathbf{x}, \mathbf{y}) = P\{X = \mathbf{x}, Y = \mathbf{y}\}$, marginal mass function $f_\mathbf{X}(\mathbf{x}) = \sum_{\mathbf{y}} f_{X,Y}(\mathbf{x}, \mathbf{y})$, and conditional mass function $f_{Y|X}(\mathbf{y}|\mathbf{x}) = P\{Y = \mathbf{y}|X = \mathbf{x}\} = f_{X,Y}(\mathbf{x}, \mathbf{y})/f_\mathbf{X}(\mathbf{x})$.
 - $E[g(Y)|X = \mathbf{x}] = \sum_{\mathbf{y}} g(\mathbf{y}) f_{Y|X}(\mathbf{y}|\mathbf{x})$.

- For a d-dimensional continuous random variable $X = (X_1, X_2, \ldots, X_d)$, take $\mathbf{x} \in \mathbb{R}^d$, we have the probability density function $f_\mathbf{X}(\mathbf{x})$.
 - For all \mathbf{x}, $f_\mathbf{X}(\mathbf{x}) \geq 0$ and $\int_{\mathbb{R}^d} f_\mathbf{X}(\mathbf{x}) \, d\mathbf{x} = 1$.
 - $P\{X \in A\} = \int_A f_\mathbf{X}(\mathbf{x}) \, d\mathbf{x}$ and $Eg(X) = \int_{\mathbb{R}^d} g(\mathbf{x}) f_\mathbf{X}(\mathbf{x}) \, d\mathbf{x}$
 - For $Y = (Y_1, Y_2, \ldots, Y_c)$ we have joint density function $f_{X,Y}(\mathbf{x}, \mathbf{y})$, marginal density function $f_\mathbf{X}(\mathbf{x}) = \int_{\mathbb{R}^c} f_{X,Y}(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}$, and conditional density function $f_{Y|X}(\mathbf{y}|\mathbf{x}) = f_{X,Y}(\mathbf{x}, \mathbf{y})/f_\mathbf{X}(\mathbf{x})$.
 - $E[g(Y)|X = \mathbf{x}] = \int_{\mathbb{R}^c} g(\mathbf{y}) f_{Y|X}(\mathbf{y}|\mathbf{x}) \, d\mathbf{y}$.

5
Random variables X_1, X_2, \ldots, X_d are independent provided that for any choice of sets A_1, A_2, \ldots, A_d,

$$P\{X_1 \in A_1, X_2 \in A_2, \ldots, X_d \in A_d\} = P\{X_1 \in A_1\} P\{X_2 \in A_2\} \cdots P\{X_d \in A_d\}.$$

- For either mass functions or density functions, the joint mass or density function is the product of the 1-dimensional marginals.

$$f_X(x) = f_{X_1}(x_1)f_{X_2}(x_2) \cdots f_{X_d}(x_d).$$

- $E[g_1(X_1)g_2(X_2) \cdots g_d(X_d)] = E[g_1(X_1)]E[g_2(X_2)] \cdots E[g_d(X_d)].$

- For discrete random variables, the probability generating function of the sum is the product of 1-dimensional probability generating functions.

$$\rho_{X_1+X_2+\cdots+X_d}(z) = \rho_{X_1}(z)\rho_{X_2}(z) \cdots \rho_{X_d}(z).$$

- For continuous random variables, the moment generating function of the sum is the product of 1-dimensional probability generating functions.

$$M_{X_1+X_2+\cdots+X_d}(t) = M_{X_1}(t)M_{X_2}(t) \cdots M_{X_d}(t).$$

- For $g : B \to \mathbb{R}^d$ is one-to-one, write $U = g(X)$ and let $J(u)$ denote the Jacobian matrix for g^{-1}. Then the ij-th entry in matrix

$$J_{ij}(u) = \frac{\partial x_i}{\partial u_j}$$

The density

$$f_U(u) = f_X(g^{-1}(u))|\det(J(u))|.$$