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1 Introduction

Cox processes provide useful and frequently applied models for aggregated spatial
point patterns where the aggregation is due to a stochastic environmental heterogeneity,
see e.g. Diggle (1983), Cressie (1993), Stogaal. (1995), and the references therein.

A Cox process is 'doubly stochastic’ as it arises as an inhomogeneous Poisson process
with a random intensity measure. The random intensity measure is often specified by a
random intensity function or as we prefer to call it an intensity process or surface.

There may indeed be other sources of aggregation in a spatial point pattern than
spatial heterogeneity. Cluster processes is a well-known class of models where clusters
are generated by an unseen point process, cf. the references mentioned above. The class
of nearest-neighbour Markov point processes (Baddeley and Mgller, 1989) include many
specific models of cluster processes (Baddedewl, 1996) as well as other types of
processes with clustering modelled by ‘interaction functions’ (Mgller, 1994) such as the
penetrable sphere model (Widom and Rowlinson, 1970; Baddeley and Van Lieshout,
1995) and the continuum random cluster model (Mgller, 1994; Haggst@h 1996).

In this paper we consider log Gaussian Cox processes, i.e. Cox processes where
the logarithm of the intensity surface is a Gaussian process. We show that the class of



stationary log Gaussian Cox processes possesses various appealing properties: (i) The
distribution is completely characterized by the intensity and the pair correlation function
of the Cox process. This makes parametric models easy to interpret and simple methods
are available for parameter estimation and model checking. (ii) Theoretical properties
are easily derived. Higher-order properties are for instance simply expressed by the
intensity and the pair correlation function of the log Gaussian Cox process. Thereby
summary statistics based on e.g. the third-order properties can be constructed and
estimated. (iii) The underlying Gaussian process and intensity surface can be predicted
from a realization of a log Gaussian Cox process observed within a bounded window
using Bayesian methods. (vi) There is no problem with edge effects as the distribution
of a log Gaussian Cox process restricted to a bounded subset is known.

The properties (i)-(vi) are rather characteristic for Log Gaussian Cox processes. We
shall further note that log Gaussian Cox processes are flexible models for clustering,
easy to simulate, and that the definition of univariate log Gaussian Cox processes can
be extended in a natural way to multivariate log Gaussian Cox processes.

Other transformations than the exponential of the Gaussian process may be con-
sidered as well, and in particula Cox processes (as defined in Section 3) may be
of interest.

During the final preparation of this paper we realized that a definition of Log
Gaussian Cox processes has previously been given in Rathbun and Cressie (1994), but
they restrict attention to the case where the intensity is constant within square quadrats
and modelled by a conditional autoregression (Besag, 1974). The advantage of these
discretized models is mainly that they can easily be explored using Gibbs sampling, but
as noticed by Rathbun and Cressie (1994) such models does not converge to anything
reasonable as the sides of the quadrats tend to zero. Consequently, it is difficult to
investigate the correlation structure of these Gaussian random field models through
those summary statistics which are usually estimated for a point pattern such as the
pair correlation function. The log Gaussian Cox processes studied in the present paper
are in contrast to this specified by such characteristics, and discretized versions of our
log Gaussian Cox processes can be simulated exactly without any problem with edge
effects. Also the Metropolis-adjusted Langevin algorithm (Besag, 1994; Roberts and
Tweedie, 1997) for simulating from the posterior of the intensity surface as studied in
Section 8 is both easy to specify and implement. In contrast and even if we ignore the
problem with edge effects, Gibbs sampling from the posterior becomes straightforward
only if one uses conditional autoregression priors.

The paper is organized as follows. In Section 2 we give a formal definition
of univariate log Gaussian Cox processes and inspect some of their properties by
simulations. Theoretical results are established in Section 3. In Section 4 we compare
log Gaussian Cox processes with the class of Neyman-Scott processes with a Poisson
distributed number of offspring. Extensions of log Gaussian Cox processes to the
multivariate case are studied in Section 5. In Section 6 we describe different simulation
procedures. Section 7 is concerned with parameter estimation and model checking of
parametric models for log Gaussian Cox processes. We illustrate this by considering



some data sets of univariate and bivariate point patterns. Finally, in Section 8 we
discuss how empirical Bayesian methods may be used for the purpose of predicting the
unobserved Gaussian process and intensity surface.

2 Univariate log Gaussian Cox processes

For specificity and since all the examples presented later on are planar we specify
the model inR?, but our model can be completely similar definedify d = 1,2, . . ..

Briefly, by a planar spatial point process we shall understand a locally finite random
subsetX of the planeR?. This is said to be a Cox process directed by a random intensity
processA = {A(s) : s €R?} if the conditional distribution ofX given A is a Poisson
process with intensity function(-), i.e. when for bounded Borel sefs C R? we have
conditional onA thatcard(X N B) is Poisson distributed with a megp, A(s)ds which
is assumed to be nonnegative and finite. We restrict attention to the case Avaacke
henceX is stationary and sometimes also isotropic, i.e. when the distribution isf
invariant under translations and possibly also rotation®4n The intensity

p=EA(s)

is henceforth assumed to be strictly positive and finite.
Throughout this paper we model the intensity process by a log Gaussian process:

A(s) = exp {Y(s)} (1)

whereY = {Y(s):s € RQ} is a real-valued Gaussian process (i.e., the joint distribution
of any finite vectofY (s ), ..., Y (s,)) is Gaussian). It is necessary to impose conditions
onY so that the random mean measurgiven by (B fA )ds for bounded Borel

setsB C R?, becomes well-defined. First it is of course required that the realizations
of A are integrable almost surely. But further conditions are required in ordewtisat
uniquely determined by the distribution bf. Here we impose the natural condition that

v is given in terms of a continuous modification Bbf Thenv is uniquely determined,
since all the continuous modifications are indistinguishable (i.e. their realizations are
identical with probability one), and it also follows thatB) < oo for boundedB.

By stationarity, the distribution of” and henceX is specified by the mean
1 = EY (s), the variancer? = Var(Y(s)), and the correlation function(s; — s2) =
Cov(Y (s1),Y (s2))/0? of Y. The model is only well-defined for positive semi-definite
correlation functions, i.e. wheriji,j a;ajr(s; — sj) > 0 for all a,...,a, € R,
s1,...,5, € R%, n=1,2,.... Whether a given function is positive semi-definite may
best be answered through a spectral analysis, see e.g. Christakos (1984), Wackernagel
(1995), and the references therein. Furthermore, if there exis® and X' > 0 such
that 1 — 7(s) < (—log||s|)~(**+) for all s with ||s|| < 1, then the existence of an
almost surely continuous modification is quaranteed (Adler, 1981, page 60). A stronger
condition, which in our experience is easier to check, is given bylthat(s) < K||s||*
for some X > 0 anda > 0.



The parameterg” > 0 and o > 0 have a clear interpretation as a scale and
shape parameter, respectively, since we can wkjig 2 e!A7 1, wherelnA, ; is a
stationary Gaussian process with meganvariances?, and correlation function(-).

The homogeneous Poisson process may be considered as the limit of a log Gaussian
Cox process ag tends to 0. Another extreme caseris) = 1, whereby we obtain

a mixed Poisson process with a randomized intensity = A which is log Gaussian
distributed.

If the distribution of Y™ is invariant under rotations;(s) = r(||s||) depends only
on s through its length||s||, so the correlation function is invariant under reflections
too. Consequently, invariance under translations and rotations implies that the joint
distribution of (X,Y) is invariant under rigid motion® in R?: (¢(X),Y(é(:))) L
(X,Y).

Examples of isotropic correlation models are listed in Table 1. The condition for
existence of an almost surely continuous modification holds for all of these correlation
functions which furthermore all tend to O at infinity. Notice that the correlation models
are parametrized by a scale parameteso that the three types of processes (Gaussian,
intensity, and Cox) are all parametrized gy, o, 3) € (—00, +00) X (0, +00) X (0, +00).

The “scale” of the parametes is with respect to locations: with obvious notation,
AM,U,ﬁ 2 {6“/\0,171(8/6)0 18 E R2}.

The first four models in Table 1 represent well the correlation structures which can
be achieved by using the correlation models in this table, so we have restricted attention
to these four models in the following Fig.’s 1-3. In Theorem 1, Section 3, it is shown
that the corresponding pair correlation functions are given by the exponential to the
covariance functiom?r(-). These pair correlation functions are plotted in Fig. 1 a)-d)
for various values of whenos = 1. If one 'standardizes’ the pair correlation function
g(+) to ¢g(0) = e or equivalently takesr = 1, plots of corresponding pair correlation
and covariance functions look very similar, cf. Fig. 1, a)-b) and g)-h).

Simulated realizations of Gaussian processes on the unit square with correlation
structure given by the four different types of correlation functions are shown in Fig.
2. Fig. 3 shows simulations of the corresponding log Gaussian Cox processes. The
parameters in the first row in Fig. 3 are the same as in Fig. 2. In order to facilitate
comparison of the four different Cox processes thealues in Fig. 3 are chosen so
that the mean and variance of the number of points are equal for all Cox processes
in the same row. By Theorem 1, Section 3, the meap is exp(y + 02/2) and the
variance is given by

Var (card (X N[0, 1]2>> =p+p° / / 7 T dsdt — 1
[0,1]* [0,1]?

The variance thus increases whemand hence the correlation increases. It is difficult to
compare unconditional simulations when the variance of the number of points is large
and the simulations in Fig.’s 2 and 3 are therefore performed conditional on that the
numbern of points equals the mean number of points={ p = 148).




In the upper row in Fig. 3 a moderate value ofout large values of; give rise
to large but not dense clusters of points. In the lower row moderate valugésof a
higher value ofs lead to many but small clusters. In the middle row a high value of
and intermediate values gfare used, and compared to the lowest row fewer but larger
clusters appear. The realizations of the ‘Gaussian’ and ‘cardinal sine’ log Gaussian Cox
processes are visually quite similar. The ‘stable’ log Gaussian Cox process is in general
less clustered than the other processes. This is not surprising because the Gaussian
random field with the stable correlation function is not very peaked except at the small
scale, c.f. Fig. 2.

Finally, it should be noted that Cox processes may be extended to models on
bounded region$V C R?, where the conditional distribution ofy, = X N W given
Aw = {A(s) : s € W} is of a Gibbsian type. For instance, consider a conditional
distribution of Xy given Ay = Ay with density

flaw[Aw) = C()‘W){H A(%’)} [T el =51

i=1 1<i<j<n

with respect to a unit rate Poisson point process andefpr= {zy,...,x,} C W,
where e.g. \yy models the large scale properties and the functi¢n > 0 specifies
pairwise interactions terms at the small scale. Although the marginal distributigh of
restricted tolW becomes analytically intractable, such models may at least be simulated
and statistical inference may be performed by Markov chain Monte Carlo methods.

3 Theoretical results

Theoretical properties of Cox processes have been extensively studied, see e.g.
Grandell (1976), Daley and Vere-Jones (1988), and Karr (1991). In this section we
establish further results for log Gaussian Cox processes. In particular, we discuss the
first, second and third-order properties of a univariate log Gaussian Cox process. As
in the previous section we consider the planar case, but many of the presented results
hold as well inR?, d = 1,2... (with obvious modifications in a few places).

The most useful characteristics for our purpose arentheorder product densities
o\, n=1,2, ..., for the reduced moment measures of the Cox prodés3hese are
given by the moments of the intensity process as

n

p(”)(sl, o 8p)=F H A(si)

1

for pairwise differentsy, ..., s, €R2. Intuitively speakingo™ (sy, ..., s,)ds; - --dsp
is the probability thatX has a point in each af infinitesimally small disjoint regions
of volumesdsy, ..., ds,.



Theorem 1. A log Gaussian Cox process is stationary if and only if the corresponding
Gaussian field” is stationary. For a stationary log Gaussian Cox process we have

p(”)(sl,...,sn)exp{nu%—a?{g%— Z r(s,sj)]}

1<i<j<n

2)
=" I osi—s5)
1<i<y<n
where
p=pW(s) =exp{u+0?/2} 3)
and
g(s1 — s2) = p'P(s1,52)/p* = exp {o%r(s51 — 52)} (4)

are the intensity and the pair correlation function of the process, respectively.

Proof. Let c(t) = exp(¢ + xt?/2) be the Laplace transform of the normal dis-
tribution N (&, %) with mean ¢ and variances. Let & = > [ u(s;) and v =
ST o%(si) + 2 i<icj<n 0(s1)o(sj)r(si,s5) where u(s) = E(Y(s)), o2(s)
Var(Y(s)), andr(-,-) is the correlation function ot”. Then> 7 Y(s;) ~ N(&, k).
Hence, by (1), p"(s1,...,50) = Eexp{3.7Y(s:)} = exp(€é + x/2). The
first order product densityp!!)(s) and the pair correlation functiom(s, s2)
p P (s1,59)/(pM(s1)pM)(s52)) are in particular given by (s) = exp(u(s) + o2(s))
andg(si, s2) = exp(o(s1)o(s2)r(s1, s2)), whereby (2)-(4) follow whert” is stationary.

If X is stationary ther)o(l)(s) = p, and we can writeg(sy, s2) = g(s1 — s2).
By letting s; = s2 it follows that 0?(s) = o2 = g(0) is constant, and further that
u(s) = p = log(p) — 0?/2 andr(sy, s2) = 7(s1 — s2) = log(g(s1 — s2))/c%, whereby
Y is stationary. Finally, by definition of a log Gaussian Cox process, stationarity of
implies stationarity ofX. O

= N

Theorem 1 reflects the fact that the distribution of a log Gaussian Cox process is
completely determined byu, o,7(-)) or equivalently by(p, g(-)) (sincer(0) = 1). It
follows from (4) and the definition of a log Gaussian Cox process that it is isotropic if and
only if the underlying Gaussian process is isotropic or equivalently wfien= g(||-||).
Especially, when\(-) = \ is a log Gaussian random variable we have a mixed Poisson
process withr(-) = 1 and g(-) = ¢”" > 1, whilst for a homogeneous Poisson process
r(-) = 0andg(-) = 1.

Similar results may be established for other intensity processes being a function of
a Gaussian process. Suppose e.g. for the momentuthatd and A(s) = Y (s)? is
0%y 2-distributed with1 degrees of freedom. Then the intensity of thé Cox process’

IS py2 = o2 and the pair correlation function becomes

gy2(s) =1+ 27“(3)2.



Hence there is not a one-to-one correspondence betieen(-)) and (p, 2, g,2(-))
unless the sign of the correlation function is known.

In the statistical analysis of point processes mostly first and second-order properties
are investigated (see Section 7), but we shall also explore the following correspondence
between the second and third-order properties: For any stationary simple point process
X with finite intensityp > 0 and well-defined pair correlation functiof(z,x2) =
g(z1 — z2) > 0 and third-order density® (z1, 9, 23) = p® (29 — 21, 23 — 1) define

1 PP (&)
0= || e—en 120 ©

llglI<t [[nl|<t
This has an interpretation as a third-order summary statistic, since

£
721022 (t) = E} > 1/{g()g(n)g(& — n)}

EneX:[[E]|<t, |Inl|<t

where # means that the summation is over pairwise distinct points, and where the
expectation is with respect to the reduced Palm distribution at the origin (heuristically
this means that we have conditioned on that there is a point at the origiX alehotes

the collection of the remaining points, cf. e.g. Stoyaral, 1995). By Theorem 1,

z(t)=1, t >0, for alog Gaussian Cox process. (6)

This can be used to check our model assumptions as demonstrated in Section 7.

In the case of rotation invariance we propose an unbiased estimator which uses all
triplets of observed points and which takes care of edge effects as follows. For a given
'window’ W C RZ andzy € W, a>0,b>0,0 <y < 2, let

Ui apy = {9 €10,21) |21 + alcos ¢, sinp) € W,
a1+ b(cos (g + 1), sin (¢ + 1)) € W}

and define the ’edge correction’

Wy, a b = QW/{length of Ux17a7b71/,}

taking 27/0 = oo. Then for givenzy, a, b and v, 1/w,, 45, IS the proportion of
triangles which can be observed withi with verticesx, 22,23 € W such that
||ze — 21]| = a, ||z3 — 21]] = b, andv is the angle (anticlockwise) between the vectors
o — X1 and.xg-— x.

Theorem 2. Let(x,x2,x3) denote the angle (anticlockwise) between— x; and
x3 — x1. For any stationary simple point proceas as considered above, assuming that
the distribution ofX is invariant under rotations about the origin,

#
Way ||z —ws|| |1 —ws||, ¢ (w1,22,23)
2 7
> > oy @

2 ol — wallg(lles — sl

[z —zal|<t, ||z —z3|[<t




is an unbiased estimator of (W)r?t4p3z(¢) for all ¢ < t*, where A(W) is the area
of W and

t* =inf ¢ ¢ > 0| / / / / wml’a,b,w = oo} dipdadbdzy > 0

z1EW a€(0,t] be(0,f] ¥€[0,27)

Proof. Note that factor in (7) appears because the second summation is over unordered
pairs of distinct points. Thep® (zy — 21, 23 — 1) = p{(a, b, v) for a function p*’
because of the rotation invariance. Moreovgry — x3|| = f(a,b, %) is a function of
(a,b,v) = (||x1 — 22||, ||z1 — x3]|, ¥ (21, x2, x3)) only. Hence, using that the correction

factor w is the same fofzy, x2, x3) as for(xy, x3, x2) together with the fact that

"

E > h(961,962,9€3):///p(g)(ﬂﬂl,mz,x:a)h(xbxz,$3)d9€1d9€2d9€3

T1,x2,23€X
for nonnegative measurable functiohswe find that the mean of (7) equals

£
Wy ||zt —aa||,| |21 —23|| 3 (21,22,23)

s 2 gllrr = w2[[)g((le1 — 3l (|2 = x3]])

xl,azg,azgeXﬂW ||J:1 J:2||<t [|z1—zs]| <t

b 1,4
w w W

(a b, w>>
CL b ¢)wx1 a,b,
’ abdpdiydadbdz
/ / / (F(a,b,4)) 1
21€EW a€(0,t] be(0,¢] €[0,27) ©€UL1 a,b,y

/ / / o, b(;pz ¢))abd@d¢dadbdx1

x1€W a€(0,f] b€(0,t] ¥€[0,27) 906[0 2m)

0 | ] e

llElI<t [nll<t

where we have used that< t* to obtain the third equality. This combined with (5)
gives the result. U

The estimator (7) is of the same spirit as Ripley’s (1977) estimator for the second
order reduced moment measure. In fact ., ., agrees with Ripley's edge correction
factor whena = b andvy = 0. Our edge correction factor is of course also applicable
for other third order summary statistics than

Applications of z and its estimator are discussed at the end of Section 4 and in
Section 7, Example 1. In most applicatidiswill be convex in which casé > (W),
the radius of the maximal inner ball containedin. We have also considered a naive



estimator based on 'minus sampling’ and which do not presume rotation invariance,
viz. the unbiased estimator of(W.,)x?t4p3z(t) given by

#
Z {9(z1 — a2)g(z1 — x3)g(x2 — I3)}_1

21,22,23€X: 21 EWgy, a<t, b<t

with
Wei={seW|VueR: |ju| <t = s+uecW}.

Compared to (7) the variation of this estimator can be very large since not all triplets
of points inX NW are used. Another problem may be caused by a clustering of points
so that no points are observed witHifi-; for even moderate values of

Finally, we establish some simple results about ergodicity. Ergodicity may for
instance become useful for establishing consistency of nonparametric estimajors of
and g(-). The log Gaussian Cox processes corresponding to the correlation models in
Table 1 are all ergodic as shown in part (b) of Theorem 3 below.

Theorem 3. (a) Let Z = {Z(s) : s €R?} be a stationary real-valued stochastic
process, leth : R — [0,00) be measurable, and suppose that with probability one
[ h(Z(s))ds < oo for bounded Borel set® C R?. Then a Cox process with random
B

intensity function{1(Z(s)) : s € R?} is ergodic if Z is ergodic. Conversely, assuming
that the realizations ofZ7 are continuous with probability one and thatis strictly
monotone, ergodicity of the Cox process implies thds ergodic.
(b) If Z is a stationary Gaussian process where the correlations decay to zero, i.e.
when
r(s) =0 as ||s|| = o0 (8)

then the corresponding log Gaussian Cox process is ergodic. Especially, a stationary
log Gaussian Cox process is ergodic if

g(s) = 1 as ||s|| = oo (9)

Proof. We first need some measure theoretical details. Let RR’ denote the space
of functions f : R> — R equipped with thes-field o generated by the projections
ps : ' — R, s € R?, whereps(f) = f(s). Further, let(M, M) be the measure space
of locally finite measures defined on the Borefield B, in R> where thes-field M

is generated by the projectionis; : M — R, A € By, given by js(m) = m(A).
Furthermore, leti/ : I — M be defined by

H(f)(A) = /h(f(s))ds, A € Bs.
A
It is not difficult to show that for any fixedi € B,, the functionH 4 : ' — R given

by Ha(f) = pa(H(f)) is measurable. HencH is measurable and s6 = H(7) is
a random measure.



Now, consider a stationary Cox process as in (a). This is ergodic if and only if the
random measur& is ergodic, cf. e.g. Proposition 10.3.VIl in Daley and Vere-Jones
(1988). Ergodicity of= means that?(= € I) € {0,1} for all eventsI € M which
are invariant under translations in the plareig invariant if m € I = m; € I for all
t € R? wherem(A) = m({s : s +t € A})). Similarly, ergodicity ofZ means that
P(Z e J) € {0,1} for all events.J € o which are invariant under translations in the
plane (i.e. J is invariant if f € J= f;, € J for all t € R* where f,(s) = f(s + t)).
Using these definitions it is straightforward to show the first implication in (a).

Assuming thath is strictly monotone, thend restricted toF, = {f € F :

f continuoug becomes injective. Assume further thatc o is invariant and=
is ergodic. Then it follows thakl (.J) is invariant so tha’(Z € H~1(H(J))) € {0,1}.
Under the additional assumption that realizationsZofare continuous a.s., it is no
restriction to assume that C F.. Then, sincel is injective onF,, H=Y(H(J))\ J C
F\ F. wherebyP(Z € J) € {0,1}, and the second implication in (&) is proved.

According to (a) a stationary log Gaussian Cox process is ergodic if the underlying
Gaussian process is ergodic. But ergodicity of the Gaussian process is in fact implied
by (8), cf. Theorem 6.5.4 in Adler (1981). Using (4) we get the equivalence between
(8) and (9). This completes the proof. O

Conditions for continuity of random fields may be found in Adler (1981) or Ledoux
& Talagrand (1991). Notice that (8) and (9) are equivalent and that (9) implies ergodicity
also for ay? Cox process.

4 Comparison with Neyman-Scott processes

We shall now compare our log Gaussian Cox processes with a popular and frequently
used class of models which are simultaneously Poisson cluster and Cox processes,
namely those Neyman-Scott processes where the number of points per cluster is Poisson
distributed (see e.g. Bartlett, 1964; Diggle, 1983; Stoyan and Stoyan, 1994; Stbyan
al., 1995).

Imagine a point procesfp;}c R? of (unobserved) parents which form a homoge-
neous Poisson point process of intensity 0, and which generate clusters of offspring
u;;l{p,- + z4;}. The countsn; are assumed to biéd Poisson distributed with mean
v > 0 and the relative positions;; of offspring areiid with density f. Further, the
{ps}, {ni}, and{z;; } are mutually independent. The Poisson cluster process of offspring
U; U}Zl {pi +zi;} is then stochastic equivalent to a Cox process with intensity process

A(s) = I/Zf(s — i) (20)

The product densities of such Neyman-Scott processes are known: We have that
p = rw,

g(s) = 1+%/f(p)f(p+8)dp

10



p 3 (51,59, 83) = g(s1 — s3) + g(s1 — s3) + g(s3 — s3) — 2

+ % / fp+s1)f(p+s2)f(p+s3)dp

and with similar but longer expressions fpf”), n > 4. The higher-order product
densities of a log Gaussian Cox process as given by Theorem 1 are in general of a
different and much simpler form than for Neyman-Scott processes.

In the following we consider some particular but widely used models of Neyman-
Scott processes, viz. a Matérn (1960) cluster process and a (modified) Thomas (1949)
process (Bartlett, 1964). For the Thomas procé¢ss the density of a radially symmetric
Normal distribution with variance > 0, and the pair correlation function becomes

For the Maérn cluster procesy, is the density for a uniform distribution on a disc with
radius R > 0 centered ab, and the pair correlation function becomes

gM(a):{1+W—W§R2{arccos%—% 1—%} ., 0<a<2R
1 , a>2R.

In Fig. 1 we have included plots of the pair correlation functions for Thomas and
Matérn cluster processes. For comparison we have také) = gr(0) = e. Then for
the Thomas process = 1/(4rk(e — 1)) is determined by the value af, whilst for the
Matérn cluster process is determined by the value dt. At least for certain values
of # and« the Gaussian pair correlation function angl(-) appear to be very similar,
whereasgy(-) looks different from the other pair correlation functions in Fig. 1. For
instance, by taking: = .001 and minimizingfol/Q(g(a) — gr(a))?da with respect to3,
wherelogg(a) = exp(—(a/3)?), we gets = 1/13.45. The left plot in Fig. 4 shows that
the logarithm of these pair correlation functions for the Thomas and the log Gaussian
Cox process with Gaussian correlation function are nearly identical.

This may suggest that:(-) = loggr(-) could be considered as a covariance function.
One way to check this is through the Hankel transforme-gf-) given by

xXo
1
:—/J() (at)act(a)da
27
0

where
o0 i 12k
Jo(t) = 1) —
o(t) k§:0j< ) e

is the Bessel function of first kind and order zero. Thef:) is positive semi-definite if
and only if Cp(¢t) > 0 for all ¢t > 0, cf. e.g. Christakos (1984). The Hankel transforms
Ct and Cy for the Thomas and Matn cluster processes given in Fig. 4 show that

11



neither of the two Neyman-Scott processes can be considered as log Gaussian Cox
processes. But the close agreement with respect to the pair correlation functions and
the remarks below and at the end of this section suggest that certain Thomas processes
may in practice be difficult to distinguish from log Gaussian Cox processes with a
Gaussian correlation function.

Fig. 5 shows simulated distribution functioAsand¢ for the distance to the nearest
point of a point processy with respect to0 and a typical point ofX, respectively
(see e.g. Diggle, 1983). Here we consider two kinds of point processes: a log
Gaussian Cox process (the solid lines in Fig. 5) with a Gaussian correlation function
and . = 3.888, 0 = 1, i.e. p = ¢°, and correspondingly a Thomas process with
w=1/(4n(e — 1)x) andrv = p/w (dotted lines); as before = .001 and 5 = 1/13.45.
For each model we simulated 100 realizations and calculated the average and the
upper and lower envelopes for nonparametric estimates ahd . (The upper and
lower envelopes forF', G or any another summary statistic depending only on the
distance are here and elsewhere in the following given by the maximum and minimum
values obtained from the simulations at each distance; see e.g. Diggle, 1983.) The
averages are then estimates of the theoreficaind G functions. Further simulations
confirmed that the envelopes 6f for the Thomas process lie beneath those for the log
Gaussian Cox process, while the opposite statement holds for the envelofedN
recognized further that th& function distinguishes better between the two processes
than the F" function, but also that none of these summary statistics are really useful
for discriminating between the two models. Another experiment confirmed that it may
also be difficult to distinguish between the two models by means of the third-order
characteristicz in (5).

In Section 7 plots off’, GG, andz raise doubt of the appropiateness of the &fat
cluster process as a model for the data in Example 1, but give no reason to question
the use of a log Gaussian Cox process with an exponential correlation function.

5 Multivariate log Gaussian Cox processes

Our model can immediately be extended to the case of multivariate Cox processes
as follows.

Let us for simplicity just consider the bivariate case of a Cox procEss=
(X1, X2) directed by random intensity processés = {A;(s) = exp(Yj(s)) : s €
R%2}, j = 1,2, whereY = {(Yi(s),Ya(s)) : s €R?} is a bivariate stationary
and possibly isotropic Gaussian process with mgan 12) and covariance functions
cij(a) = Cov(Yi(s1),Y;(s2)) for a = ||s1 — s2||, ¢,j = 1,2 (in the isotropic case we
have thate(-) = ¢21(+)). Then conditional ory”, X; and X, are independent Poisson
processes with intensity functions; and A,, respectively. The covariance function
matrix of the multivariate Gaussian process must be positive semi-definite. Restricting
attention to absolutely integrable and isotropic covariance functions, this is equivalent
to that

Cri(t) >0, Cor(t) >0, and|Ci2(t)]> < Cr1(t)Caa(t) , t >0 (11)
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where

Cij(t) = 2i / Jo(at)es;(a)ada

T
0

is the spectral density or Hankel transform @f (Yaglom, 1986; Christakos, 1992;
Wackernagel, 1995). Moreover, many of the results presented in Section 3 may easily
be extended to the multivariate case. For example, by Theorem 1 the intensity and pair
correlation function ofX; become

pj = exp {u;j +¢;;(0)/2}, gjj(a) = exp{cjj(a)} (12)
and the mixed pair correlation function is given by
g12(a) = E[A1(s1)A2(s2)]/(p1p2) = exp {c12(a)}, a = [[s1 — s2]|. (13)

Especially, if we consider affine transformatiolig(s) = S%a;;Z;(s) + p; of k
independent one-dimensional Gaussian procegses{Z;(s) : s €R%*}, i =1,...,k,
each with mean 0, variance 1, and a positive semi-definite correlation fungtitimen
of courseY is well-defined and

k k
cji(s) = Z a?jn(s) L i=1,2 c12(s) = Z i gari(s) , s € R? (14)
i=1 =1

(in this caseci2(-) = c21(-) no matter if isotropy is required or not). For example,
ifY; =o0;Z+p;, j =1,2, whereZ is a stationary Gaussian process with mean O,
variance 1, and correlation functior-), then the sign ofr;o2r(-) determines whether

there is a positive or negative dependence structure between the two types of patterns
X7 and Xs. In the special case; = 02 we have a linked Cox process (Diggle and
Milne, 1983) asp2A1(-) = p1A2(-). Fig. 6 shows realizations on the square under the
exponential modet(a) = exp(—10a) with y; = pe = 2.5 and for each ob = 09 =2

ando; = —oy = 2. The different dependence structures are clearly expressed in the
simulations.

6 Simulation algorithms

Some properties of Cox processes are hard to evaluate analytically. Fortunately,
log Gaussian Cox processes are easy to simulate so that Monte Carlo methods can be
applied. An advantage of log Gaussian Cox processes is that there are no boundary
effects since all marginal distributions of a Gaussian field are known.

In practice we represent the finite domain of simulation by a grid and approximate
the Gaussian process by the values of the corresponding finite dimensional Gaussian
distribution on the grid. If we for example wish to simulate a log Gaussian Cox process
on the unit square, we approximate the Gaussian pro{:?ia%s)}se[o’l[2 on each cell
Dy = [i—1/(2M),i+1/(2M)[x[j—1/(2M), j+1/(2M)] by its valueY;; = Y((i, j)) at
the centeré, j) of D;; where(s,j) € I = {1/(2M),1/M +1/2M),..., (M —1)/M +
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1/(2M)}?, and M is a suitable value for the discretization. Thus, simulations of the
field Y = (f/,-j)(,-,j)e] are required. For ease of presentation we shall here mainly focus
on univariate log Gaussian Cox processes where the discretization is given by a square
lattice I; at the end of Subsection 6.1 we consider briefly the case of a multivariate log
Gaussian Cox process and a rectangular lattice.

If the Cox process is moderately clustered and the intensity moderate, the very fine
scale properties of the Gaussian field are probably not so important and a rather coarse
discretization can be used. The choice of discretization also depends on the smoothness
of the realizations of the Gaussian field, see Fig. 2. The error due to discretization is e.g.
likely to be small when the Gaussian correlation function is used. For the simulations
presented in this paper we found it sufficient to use eittiex 65 or 129 x 129 grids.

Simulation of a log Gaussian Cox process involves two steps. First the Gaussian
field is simulated and secondly, given the Gaussian field (%i)(i,jyer» the inhomoge-
neous Poisson process can be simulated: either within eaclwgelVhere the Poisson
process is homogeneous with intensitly = exp(#;;), or by thinning a homogeneous
Poisson process with intensifynax = maXijj\ij so that a Poisson point situated in the
ijth cell is retained with probability;; / \max-

There are several methods available for simulation of a Gaussian random field, see
e.g. Lant@joul (1994). The simulation method based on Cholesky decomposition of
the covariance matrix is too slow even for moderate grid sizes. We used another method
based on decomposition of the covariance matrix (see Subsection 6.1) or alternatively the
turning bands method (Matheron, 1973). In Subsection 6.2 we describe how simulations
conditional on the number of points can be obtained. Finally, in Subsection 6.3 we
briefly discuss how the Thomas and Mat cluster processes studied in Section 4 are
simulated.

6.1 Simulation using diagonalization by the two-dimensional discrete Fourier
transform: A detailed description of this method in the univariate case and any lattice
dimensiond = 1,2,... assuming only stationarity can be found in Wood and Chan
(1994). Below we summarize this for the two-dimensional case (the notation and the
results are also used in Sections 7 and 8). For simplicity we assume isotropy.

Suppose that an isotropic covariance function R? — R is given and we
wish to simulate a Gaussian field = (¥i;); je; With covariance matrixt =
(Tig.e) i), (etyer = (U1 ) =R DI g, eyer (h€re we use a lexicographic ordering
of the indicesij). Note that® is block Toeplitz and block symmetric. Extend the lattice
1101y = {1/(2M),1/M+1/(2M),...,(2(M—1)—1)/M+1/(2M)}* wrapped on a
torus. Letd;; = min(|i—k|,2(M—1)/M—|i—k|), (i, k) € L.z, and letd((i, 5), (k, 1)) =
A2 +d§l denote the shortest distance on the torus betweei) and (k,7). The
symmetric matrixK = (kg k1) 5), (kb )el... defined byr;; = c(d((i,7), (k1)) is
block circulant with2(M — 1) circulant blocks of dimensiog(M — 1) x 2(M — 1).
Hence, by Theorem 5.8.1 in Davis (1979),

K = (Fyar-1) @ Fy—1y) E(Fau—1) © Faar-1)) (15)
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where Fy(pr_1y @ Fyy—1) IS unitary andE = diag(ei;, (7,j) € lext) is a diagonal
matrix of the eigenvalues fak'. Here Iy, 1) = (\/2(M — 1) exp(—i27kl/(2(M —
D))k pel.., is the (normalized)(M —1) x 2(M —1) discrete Fourier transform matrix,
‘" denotes complex conjugate, andis the Kronecker product.

Now, suppose thak’ is positive semi-definite (i.eX has nonnegative eigenvalues).
Then we can extendl to a Gaussian field..; = (Y;;); jjez.., With covariance matrix
K. Using the above decomposition &f we find that

~ ’D — —
Yoot = FDl/QA(Fz(M—n @ Fym-1y)

wherel" ~ N4(0, I') follows a d-dimensional standard normal distribution withequal

to the rank of K, D is a diagonal matrix given by the non-zero eigenvalue&ofand

A'is a certaind x (2(M — 1))? complex matrix of rankd. If M — 1 is a power of two

(or three or five), the calculation df,.; is only aO((2(M — 1))%log,((2(M — 1))?))
operation as the two-dimensional fast Fourier transform (see e.g. Press et al., 1988) can
be applied. Thereby a fast simulation algorithm is obtained.

Notice that the extension of the latti¢e/(2M ), 1/ M +1/(2M),..., (M —1)/M +
1/(2M)}? to {1/(2M), 1/M + 1/(2M),...,(2(M — 1) — 1)/M + 1/(2M)}? is the
minimal extension which gives a block circulant matdikx If /& turns out not to be
positive semi-definite, it may help to use a larger extension (see Wood and Chan, 1994).
Also, if M —1 is not a power of two (or three or five), a larger extension can be applied
in order to use the two-dimensional fast Fourier transform.

The algorithm can straightforwardly be generalized to the case of a multivariate
Gaussian field” = ((Yij1,- -+, Yijn)) i jer, Wherel is a M x N rectangular lattice
andn > 1. In this case’ becomes a&(M — 1)(N — 1)n x 4(M — 1)(N — 1)n block
circulant matrix given by2(A — 1) blocks, which in turn are block circulants and of
dimension2(N — 1)n x 2(N — 1)n. By combining (5.6.3), Theorem 5.6.4, and (3.2.2)
in Davis (1979) one obtains that

K = (FQ(M_l) & FQ(N_l) @ Fn>G(F2(M—1) @ Fyn_1) ® Fn)

where G is a block diagonal matrix withd(M — 1)(N — 1) blocks of dimension
n x n. In the bivariate case, simulation &f thus amounts to a linear transformation
of 4(M — 1)(N — 1) independent two dimensional Gaussian vectors.

The method is fast and practically applicable. Problems with nonpositive semi-
definiteness ofX’ occurred very seldom, and were then due to slowly decaying corre-
lation functions like the stable correlation function (see Figure 1).

6.2 Conditional simulation: It may sometimes be desired to simulate the conditional
distribution of X N [0, 1[% given thatN(X) = card(X N[0, 1[?) = n for n € N. Then

we need first to simulate a realizatighnfrom Y|N(X) = n and secondly simulate
from X|N(X) =n,Y = §. The last step is performed by distributingindependent
points in theM? grid cells, where a celD;; is chosen with a probability proportional
to 5\,-]- = exp(%i;), (¢,7) € 1, and the point subsequently placed at a uniformly sampled
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location in the chosen cell. Rejection sampling (see e.g. Ripley, 1987) is used for
the simulation ofY'|N(X) = n as follows. For the conditional density af given
N(X) = n we have that

n

FG ) o< F(n | D) < e f(7).

The rejection sampling can thus be performed by generating realizatiohisunttil a
_ - . M-1M-1_
realizationy is accepted with probabilifp/n)"e"~*, whereA = X" Nij /M2,
i=0 =0
Considered\ as a random variable, the mean ofipproximates the intensity of
X. Thus the acceptance rates are reasonably highisf close top and the variance

of A moderate.

6.3 Simulation of the Thomas and Matérn cluster processes: Procedures for sim-
ulation of the Thomas and Man cluster processes on a bounded regibriollow
straightforwardly from the definitions of these processes as Poisson cluster processes,
see Section 4. In order to avoid boundary effects the parent process is simulated on an
extended ared? containingA. The areaB is chosen so that offspring from a parent
outsideRB falls into A with a negligible probability. An approximate procedure for sim-
ulation conditional on the number of points can be obtained by using that the Thomas
and Magérn processes are Cox processes with intensity surface given by (10) and then
proceed as described in Subsection 6.2 above.

7 Parameter estimation and model checking

For simplicity we first restrict attention to the univariate case, but our methods for
estimation and model checking can also be used in the multivariate case, see Example
2 at the end of this section.

Suppose we have observed a point patters= {z1,...,z,} within a bounded
planar windowiV" of areaA(1V). Under a homogeneous log Gaussian Cox model with
a correlation functionrz(-) the density ofXy = X N W with respect to a planar unit
Poisson process is

L(p,0,3) = Epop | exp /(1—eXp(Y(8)))dS [Tew (V@) |
1

W

Except for very special models this likelihood is analytically intractable.

Considering this as a ‘missing data problem’ the likelihood can be approximated by
discretizinglV" as described in Section 6 and making importance sampling as follows:
The density of the Gaussian field is proportional to

1

he@) = exp <_ﬁ

<@—@Rwr%g—mﬁ

16



whered = (i, 0, 3), R(/3) is the correlation matrix (here assumed to be positive definite),
andx denotes transposition. For a given fixed paramétet (1.0, 0o, o) suppose that
g, .. 5™ is a sample from the distribution of and j(V(z),...,5(™)(z) is a
sample from the conditional distribution &f given Xy = « (Section 8 describes how
the latter sample can be generated). Since the conditional distributihofiven Y
does not depend of, it is easily seen from the results in Gelfand and Carlin (1991)
and Geyer (1994) that the Monte Carlo approximation of the log likelihood is

M p <~< >(x>) M p <~< >>
1 o\Y 1 olY
(0 %cost—l—lo—g —10—5
) conston = hg, (5 () M g, (5]

Actually we may replac@” with the extended Gaussian field,; (see Section 6.1) for
which it is easier to invert the correlation matrix. We have no experience about how this
would work in practice, but we expect that multimodality of the likelihood may cause
problems for finding the (approximate) maximum likelihood estimate. Since only the
Gaussian density (up to scale) appears in the approximation of the log likelihood, there
may be some analog here to Ripley’s (1988) discussion on the difficulties associated
with likelihood analysis for spatial Gaussian processes.

Pseudo-likelihood (Besag 1977; Jensen and Mgller, 1991) is not useful since a
closed expression of the density is not known even not up to multiplication with a
positive constant (so a closed expression of the socalled Papangelou conditional intensity
is not known). For the same reason we also doubt the usefulness of the more general
method of Takacs-Fiksel estimation (see e.g. Ripley, 1988, and the references therein).

Since the distribution of a log Gaussian Cox process is completely determined
by its first and second order properties we suggest instead to base the inference on
corresponding summary statistics as described in the following.

As a natural estimate of the intensity we shall use
p=n/AW). (16)

This estimator is unbiased. H3;(a) — 0 asa — oo, then the ergodicity implies that
p — p almost surely agV extends toR?, cf. Theorem 3.

The parameters? > 0 and 3 > 0 are estimated by a minimum contrast method:
Assume henceforth that the correlation function is isotropic. d.etdenote a nonpara-
metric estimate of the covariance function. Thie?nandfi are chosen to minimize

/{é(a)a - [JQTg(a)}a}Qda a7)

€

where0 < ¢ < qp anda > 0 are user specified parameters; in Examples 1 and 2 we
takee = Irin ||z; — «;]|, while g and o are determined by the form @f-) andrg(-).
1]

These parameters must of course be chosen so that the terms in (17) are well-defined.
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For fixed § the minimum of (17) is obtained at

ag

65 = [B(3)/AB)]* with B(3) = / {ela)rp(a)} da, A(B) = / ra(a)*"da

€

provided B(3) > 0; otherwise there exists no minimum. Inserting this into (17) and
using thatp = exp(u + 02/2) give the estimates

gﬁm@mmbfmm%zﬂ:%,ﬂ:bym—ﬁp. (18)

Diggle (1983) describes a similar estimation procedure usingitiHfenction

t

K(t)= ZW/ag(a)da, t>0

0

instead of the covariance function, but for the data considered later on we found that
there may be many local minima, and it may be difficult to find a global minimum.
The procedure in (18) is computationally much simpler; we need only to maximize
with respect to3, whereas Diggle’s procedure involved as well. In our examples

the functionB(3)?/A(3) turned out to be unimodal.

As the nonparametric estimate of the covariance function we have t{sepe=
logg(-) with

i(a) = mpzA Zgw—\m zlbi - (19)
v JF

where k() is the Epanecnikov kernel

kn(a) = E(

with bandwidth’ > 0, b;; is the proportion of the circumference of the circle with center

x; and radiug|z; — ;|| lying within W, anda™ is the circumradius ofV’. The estimator

(19) and other estimators of the pair correlation function are discussed in Stoyan and
Stoyan (1994); in particular they discuss how to choose the bandwidth of the kernel.

To study how well our estimation procedure works we performed 20 simulations
from the model with an exponential covariance function whete= 2.0 and 3 = .05.
A scatter plot of the estimated values 6fand o2 together with the true values is
shown in Fig. 7. There is a large variation in the estimateipobut the mean values
of the 20 estimates arg = .0513 and 62 = 2.08, not far from the true values. The
other plot in Fig. 7 shows the mean covariance functigisolid line) and upper and
lower envelopes for the empirically estimated covariance functions obtained from the 20
simulations. The values @fare close to the exponential covariance function, especially
at small distances. Estimating the parameters frforgirveSU2 = 2.145 and 3 = .0461,
which indicates that a good estimate of the covariance function gives good parameter
estimates.

1—a*/h*)1[—h < a < h]
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Having estimated the parameters we may check our model assumptions by compar-
ing nonparametric estimators of various summary statistics with those obtained under
the estimated log Gaussian Cox model. We have considered the distribution functions
I and G of the distance to the nearest pointihfrom a fixed point in the plane and
a 'typical point’ in X, respectively. Under the log Gaussian Cox moflek F), ;> 3
andG = G, ,» 3 are given by

Fuopla) =1—FE,; gexpq — / eV ) ds
|[s]|<a

and

GM,UZﬁ(a) =1- e_N_UQ/QEmcr?,ﬂ eV (©) exp § — / e¥ () ds
I[s]|<a

where the mean values may be approximated by Monte Carlo.

As in Diggle (1983), Stoyan and Stoyan (1994), and Stoyan et al. (1995) we have
in Examples 1 and 2 compared nonparametric estimatds af, . = /K /x based
on the data with those obtained by simulations under the estimated log Gaussian Cox
model. For short we call such nonparametric estimates for empificalr, and L-
functions. Moreover, we have obtained a nonparametric estimate of the third-order
characteristic: in (5) by combining (7) with (16) and (19), and considered whether this
summary statistic varies around 1 in accordance with the result (6) for log Gaussian
Cox processes.

Example 1. The first data set consists of the locations of 126 Scots pine saplings in a
square plot of 10<10 2. The pine forest has grown naturally in the Eastern Finland
and the data have previously been analyzed by Pentghah (1992) and Stoyan and
Stoyan (1994), who both fitted a Mah cluster process using thHefunction both for
parameter estimation and model checking. The estimation in Pentinah (1992)

was carried out by trial-and-error, while Stoyan and Stoyan (1994) used a minimum
contrast method. The fit in both cases seems quite good, see Fig. 11 in Peettaden
(1992) and Fig. 131 in Stoyan and Stoyan (1994), but one may object to that the same
summary statistics have been used for both estimation and model checking.

Fig. 8 shows several characteristics for the pine data: The data normalized to a
unit square are shown in a). The logarithm of the estimated pair correlation function
is plotted in b) (solid line), and the shape of the curve suggests to use the exponential
covariance function. We estimated the parameters by minimizing (17) ayite 0.1
and« = 0.5, which are chosen to give more weight to values:aflose to zero. The
estimates arg) = 1/33 and 6% = 1.91. The dotted line in b) shows the covariance
function for the estimated model. The plot in ¢) shows the empiricilinction for
the data (solid line) and upper and lower envelopes of iHenction for the fitted
model based on 19 simulations. This is the same as Stoyan and Stoyan (1994), Fig.
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131, and our model shows a better fit with respect to Ahinction than the Marn
cluster model. The empiricdl-function falls within the envelopes from the simulations
except for very small values of. The plots in d) and e) show the nonparametric
estimated” and (' based on the data against the mean of these estimates obtained from
99 simulations under the estimated model. The plots show a reasonable good fit to the
chosen model and and G fall within the upper and lower envelopes based on the 99
simulations. For the M&tn cluster model fitted by Stoyan and Stoyan (1994) we have
also created plots similar to d) and e) which indicate that our model fits the data better.
Finally, f) shows a realization under the estimated log Gaussian Cox process.

We also used the third-order characteristito check our model assumptions. The
left plot in Fig. 9 shows the estimatedfor the data and two sets of envelopes based
on 20 unconditional simulations of the estimated log Gaussian Cox process and 20
simulations where we condition on the observed number of points. The plot gives
no reason to doubt the model no matter whether the ‘unconditional’ or ‘conditional’
envelopes are considered. The two sets of envelopes are not very different in this
situation wheres is rather small and the correlation therefore not very strong. To check
the discriminatory power of we similarly calculated envelopes for the Mat cluster
process estimated by Stoyan and Stoyan (1994), see the right plot in Fig. 9. The
estimated:-function based on the data crosses the envelopes in an interialabdies
and even though the large variability of the estimator for smatiakes it difficult to
make definitive conclusions, the plot raises serious doubt concerning the appropiateness
of the Matérn cluster process as a model for the data. O

Example 2: In this example we study a bivariate data set consisting of two types of
trees, 219 spruces and 114 birches in a square plot of BDm?. The data has been
collected by Kari Leinonen and Markku Nygren as a part of a larger data set where
also a very few pines were present and marks consisting of tree length and diameter
were included. These data has earlier been studied by Kuuluveiren(1996). They
found that small trees are clustered, while larger trees are regularly distributed.

Fig. 10 a) shows the data normalized to unit area. The plot indicates clustering
and a positive dependence between the two types of trees. In Fig. 10 b) the empirical
covariance functionsss, ¢1; andé;» are plotted (solid line, from top to bottom) using
the equations (12) and (13) to obtdif = Ing;;. Hereg;;(a) is the estimate (19) based
on the point patterr; = {;1,..., 25, } of type j trees. Further,

“ AW n9 R
d12(a) = W) { +n222kh(a—qu—@jH)bz‘fr

2raning Ny .
=1 j=1

ny N1
n

knla — |Ja2 — w17]])bij
o 2 2 knla = ez = wlb

i=1 j=1

with the correction factob;; similarly defined as in (19), and where we have combined
kernel estimation with the way Lotwick and Silverman (1982) and Diggle (1983)
recommend to estimat&’»(¢) = 2« fot agiz(a)da, t > 0.
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Based on the plot of the empirical covariance functions we specify a model for
a bivariate log Gaussian Cox process with exponential covariance funciidn$ =
0% exp(—a/fi;) and corresponding spectral density; (t) = o7, /(27 3;;(t* + 5;;%)7).
Estlmatlng the parameters from the empirical covariance functlons by m|n|m|2|ng (a7)
givess?, = 2.18, 1/611 = 12.0, 62, = 1.65, 1/Bss = 16.0, 63, = 0.86, 1/312 = 9.0.
The estimated covariance functions are shown as dotted lines in Fig. 10 b). This
indicates a good fit to the empirical covariance functions. We have moreover checked
that the condition (11) is fulfilled under the estimated model so that we have a valid

covariance matrix function.

However, plots of the functiot” for each of the two types of trees show a poor
fit of the estimated model to the data as there seems to be more ‘empty space’ in
realizations of the estimated model than in the pattern a). As an example Fig. 10
c) shows the nonparametric estimate I3f, based on birch data plotted against the
mean of the estimate obtained from 99 simulations under the estimated model. We
have also tried to fit models with covariance functions as in (14) Witk 2 terms
and various combinations of Gaussian, exponential and stable correlation functions, but
again there was too much empty space under the fitted models. This may be caused
by the regularity in the pattern of the larger trees, so one suggestion may be to include
‘repulsive’ pairwise interaction terms into the model as discussed at the end of Section
2. Another possibility is to include a thinning operation, cf. Diggle and Milne (1983)
and Diggle (1983).

8 Prediction and Bayesian inference

We conclude this paper by considering prediction of the unobserved Gaussian
process and intensity process under a given model for a univariate log Gaussian Cox
process when this is observed within a bounded window. We use an empirical Bayesian
approach, where the a posteriori distribution of the intensity process is obtained by
considering the Gaussian distribution as a prior which smoothes the intensity surface,
and where the prior may be estimated as described in Section 7. The posterior is not
analytically tractable so we use a Markov chain Monte Carlo algorithm to simulate the
posterior distribution whereby various posterior characteristics can be estimated. The
results are applied on the data set in Example 1 and we compare various Bayesian
estimators of the intensity process with a parametric kernel estimator studied in Diggle
(1985), Berman and Diggle (1989), and Cressie (1993). Ogata and Katsura (1988)
developed another objective Bayesian method for estimating the intensity function of
a marked inhomogeneous Poisson point process using spline functions. Other related
research but for Poisson (and more general) cluster processes include Lawson (1993),
Baddeley and Van Lieshout (1993), and Granville and Smith (1995), who consider
Bayesian estimation of cluster centres and cluster membership. Simultaneously with
the development of the material of this section, Heikkinen and Arjas (1996) have
been working with nonparametric Bayesian estimation of the intensity function of
inhomogeneous planar Poisson processes generalizing the method of Arjas and Gasbarra
(1994).
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Suppose that a realization of a log Gaussian Cox process is observed within a
bounded windowiv(!) and we wish to predict the Gaussian process and the intensity
surface on the bounded s& > W, As in Section 6 we shall without loss
of generality assume that’ is the unit square and consider a finite subdivision of
wm and W = w\ W into cells D;; of aread;; > 0, (i,j) € I, where
I ={1/2M),1/M +1/(2M),...,(M —1)/M + 1/(2M)}?. Define the sublattices,
I = wlnI, o =1,2. Further, we approximate the Gaussian fildestricted toiV’
by a Gaussian field” = (Y;;); ;yer with mean vectofi = (11)(; je; and a covariance
matrix ¥ given by the covariance function df. As noticed in Subsection 6.1 we

can extendy” to Y,,; = (f@)(, . D IQ + jiear, Where L, = {1/(2M),1/M +
%,) )€ leat

1/(2M),...,(2(M—1)—1)/M+1/(2M)}?, K given by (15) is assumed to be positive
semi-definite and of rank, T' ~ N4(0,1), Q is a certaind x (2(M — 1))? real matrix
of rank d, and fiezt = (1t)(; j)er...- We shall later on explain why it (apart from ease
of exposition) may be preferred to u$einstead ofY,,;.

Now, if f(v|z) denotes the density of the conditional distributionlofjiven that
Xnwh = g

1 .
log f(y|x) = const(x) — 5\\7\!2 + ) (figneg — ¥ Ayp) (20)
(4,)) € leat

wheren;; = card(x N D;;) is the number of points of contained in theijth cell

if (i,5) € IV, and we setn;; = 4;; = 0 if (i,j) ¢ IV, Though this conditional
distribution is not defined in accordance to the covariance structure of the Gaussian
process outsidél’, we shall refer to this as the a posteriori distributionlogiven x;

the important point is that the marginal distributioniéfunder this posterior agrees with

the conditional distribution o™ given X N W) = 4. In the following the gradient

of the posterior

V() = 0log f(y]2)/07 = =7 + (nij — ¥ Aij) ; syep @

plays a keyrole. It is easily seen tha¥/(+)/0~* is strictly negative definite. Thus the
posterior is strictly log-concave.

For simulation of the posterior we use a Metropolis-adjusted Langevin algorithm
(MALA) as suggested by Besag (1994) in the discussion of Grenander and Miller (1994)
and further studied in Roberts and Tweedie (1997). This is a Metropolis-Hastings type
Markov chain Monte Carlo (MCMC) method inspired by the definition of a Langevin
diffusion through a stochastic differential equation which in the present context is

dD(t) = (h/2)V(L(t))dt + VhdB(t)

where B(-) is standard Brownian motion arid> 0 is a user specified parameter (see
Example 1 below); the posteridlx is a stationary distribution of this Markov process
().

The MALA is given by two steps: First, if/(™) is the current state of the chain,
a ‘proposal’ u(™*1) is generated from a multivariate normal distribution with mean
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(™) = 4™ 1 (h/2)V (4™ and independent coordinates with common variance
h. In general, the use of gradient information in the proposal kernel may lead to
much faster convergence than for e.g. a random walk Metropolis chain (Roberts and
Rosenthal, 1995). Secondly, with probability

(1) o (| e+ )

1A
F (W) exp (=] [utm) — (y0m) |2/ (21))

the next state becomeg™ ! = y(m+1): otherwise~(™t1) = ~(m)  This gives an
irreducible and aperiodic Markov chain with the posterior as the stationary distribution,
but it is not geometrically ergodic as the posterior has lighter tails than the Gaussian
distribution (this can formally be verified using Theorem 4.2 in Roberts and Tweedie,
1996b).

Briefly, the problem with the light tails is that the Markov chain may leave the
center of the posterior for a very long time, sin¢€(~)|| may become extremely large
if ~ is far away from the mode of the posterior. As suggested in Roberts and Tweedie
(1996b) more robust geometric ergodicity properties may be obtained by truncating the
gradient in the mean of the proposal kernel: In the Appendix we show that )
is replaced by

v(fwtrunc = v+ (”w _ (H A e?}ij)Aij)(iJ)E[emQ* (21)

for some constant/ > 0, then the ‘truncated MALA’ becomes geometrically ergodic
when0 < h < 2. However, if a sensible value a@fis chosen, the undesirable properties
of the (untruncated) MALA may not be a problem. In our examples the chain behaved
very nicely and a truncation of the gradient (for a suitably lafgewould not have
made a difference.

Note that¥ and K" do not need to be strictly positive definite. This is one reason for
usingT instead ofY” when the posterior is considered. In the case whéris strictly
positive definite we have compared MALA’s for simulating the conditional distribution
of I respectivel” given z, where the gradient in the latter case is given by

V(Text) = —(Jeat — ﬂemtﬂ(—l + (nij - egiinJ')(i,j)Elem )

For the data in Example 1 considered below we found that in the former case the algo-
rithm mixes much faster (Fig. 11), so this is another reason to prefer the ‘parametriza-
tion’ given by T'.

By simulating the posterior we can obtain MCMC estimates of the posterior mean,
credibility intervals, etc. for the Gaussian process and intensity surface. Conditional
simulations of the unobserved pattn W2 of the point process giveA N W1 = ¢
can also be obtained. To do this one generates first a realization from the posterior
distribution of the intensity surface and given this realizatiahp) 1 ( is simulated
along the same lines as described in the beginning of Section 6.
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Maximum a posteriori (MAP) estimation is also possible. Siri¢e|z) is strictly
log-concave and its tails tend to zero at infinity, the MAP-estimafe'” is the unique
solution to V() = 0. Because of the linear relationship betweEn, and T, the
MAP-estimate oft;, is simply given byy /A" = vMAPQ 4 fi,... Note that the MAP-
estimatey™4” of Y agrees withy A" restricted tol. It can be shown thag?A”

ext ext

restricted to/(?) is the same as the predictor Bf?) = (fgg.?))(. o obtained from
1,7)el@

: vy(1) _ (~MAP

data’ Y’ (ym >(i,j)el(1)

The conditional density of the intensity surfade,; = (exp(Y;;)) i jer.., (With
respect tod-dimensional Hausdorff measure with carrier space of dimengioh/ —
1))?) is not log-concave an(ﬂexp(y%AP))(m)E] is clearly not the MAP-estimate of
the intensity surface. If{ is strictly positive definite, then using an obvious notation,
f}ym(gjemﬂx) is strictly log-concave, and so

using kriging (see e.g. Cressie, 1993).

(ye:rt) fA ((exp(gij»( ,7) Elezt| ) fy ye:bt|x / H yl]

( a])elﬁﬁf

is strictly log-concave. Consequently, in this case the MAP-estim&té” of the
intensity surface oV is the same asMA” = (exp (5i))(s jyer.., restricted tol,
wherey is the unique solution t& (7..:) = (1,...,1). Note here that since the log
Gaussian distribution is heavy tailed and skewgt{;*” is not necessarily a sensible

estimator of the intensity surface (see also the discussion in Example 1 below).

We have used a discrete gradient ascent algorithm for findiHd”, since this
algorithm involves only the calculation of the gradient: Given an initial vaj(fe the
iteration is given byt = ~(m) L 57 (~0m)) = 0,1,..., wheres > 0 is a user
specified parameter. The algorithm for findipgs similar, except that in each iteration
we replaceV by V — (1,...,1). A too high value of6 may cause the algorithm to
diverge — we used in Example 1 the modest value .1.

Example 1 (continued): We now consider estimation of the Gaussian process and the
intensity surface on a grid = {0, ...,64}> under the log Gaussian Cox process which
was estimated in Example 1, Section 7. In this exaniple= W) = [0,1)2.

After some preliminary runs of the MALA the parametewas adjusted to b&)6
in order to obtain an acceptance rate close to the optimal ¥ategiven in Roberts and
Rosenthal (1995) (they formally prove their results for target distributions with i.i.d.
components, but notice that various generalizations are possible and the optimal rate
appear to be quite robust over changes in the model). Then a sample of 3eagtbo
was generated by the MALA and we used a subsample of this (with spacing equal to
10) for obtaining Monte Carlo estimates of the various characteristics of the posterior.
These estimates are reported below.

To study the convergence properties and to compare the different implementations of
the MALA we have considered various plots of timeseries and estimated autocorrelations
for selected cells on the initial as well as the extended lattice. It appears from these
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plots that the potential problem related to geometrical ergodicity of the MALA is rather
hypothetical. As an illustration Fig. 11 shows timeseries and estimated autocorrelations
for a subsample 01798798 when the invariant distribution of the MALA is eithéijx or

Y..¢t|z. In the former case the autocorrelations die out much faster.

Monte Carlo posterior means of the Gaussian process and the intensity surface are
shown in Fig. 12. For comparison we have also included Diggle’s (1985) nonparametric
kernel estimate of the intensity surface. For the uniform kernel given by the uniform
density on a disc, the band width of the kernel can be chosen by minimization of an
estimate of the mean square error (see Diggle, 1985, and Berman and Diggle, 1989).
Instead of the uniform kernel we actually used a planar Epanecnikov kernel since the
estimate obtained with this kernel has a more suitable smooth appearance. The band
width 0.089 for the planar Epanecnikov kernel was obtained by calibration of the chosen
band width for the uniform kernel as suggested in Diggle (1985). The posterior mean of
the intensity surface is quite peaked since the minimum and maximum valugé.g&6e
and 2724.26. This is not surprising recalling the heavytailedness of the log Gaussian
distribution. The kernel estimate is less peaked with a ranges.37. Integration of
the Monte Carlo posterior mean of the intensity surface and the kernel estimate over the
unit square yieldd 25.66 and 126.01, respectively, so the expected number of points
for the inhomogeneous Poisson processes with intensity surfaces given by the posterior
mean respective the kernel estimate are practically equal and very near to the observed
number of points26). We have also in Fig. 12 included a plot of the logarithm to the
Monte Carlo posterior mean of the intensity surface as this gives a better impression of
the variability for intermediate values of the posterior mean.

The application of MCMC also facilitates assessment of posterior uncertainty. The
estimated posterior variance of the Gaussian prodéss(Y;;|=), (i,j) € I, is shown
in the left plot in Fig. 13. The largest variance lis’6 whilst the smallest is69. By
comparing this plot with the Monte Carlo posterior mean of the intensity surface in Fig.
12, we see that the posterior variance is smallest where the posterior mean is largest
and vice versa. For the posterior distribution of the intensity surface we have further
for selected celld);; estimated thed 0% and90% quantiles. These credibility intervals
are shown in Table 2 whefi, j) are given by(13a, 13b), a,b=1,...,4, and(14, 36).

The credibility interval forD4 36 is largest as this cell is situated in a peakif\; ).

As an illustration of the simulation method on the extended lattice and the effect
of wrapping the extended Gaussian field on a torus, the right plot in Fig. 13 shows
the Monte Carlo posterior mean af,;. Notice that outside the original field and
away from the boundaries the estimated posterior mean is constant and equal to the
unconditional mean.

Finally, we have considered MAP-estimation of the Gaussian process and the
intensity process. The extended matfix was strictly positive definite, angA?
and \MAP were obtained by iterating the discrete gradient ascent algorithm until the
gradient was practically zero (i.e. until its coordinates were numerically less than
1075). The minimum and maximum values @47 are 3.53 and 7.96, while the

corresponding values of the estimated posterior méafis ;|=), (i,7) € I, are3.24
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and7.59. Actually, y™ 47 is very similar to these posterior means, so we have omitted

the plot of yMA47, Since(m?xl AIAP ~ 1071 the MAP-estimate is clearly a totally

1,7 )€
unreasonable estimate of the intensity surface. This may as noted before be due to the
skewness and heavytailedness of the log Gaussian distribution combined with the fact

that the intensity surface is a random field of correlated log Gaussian random vaiiates.

In Example 1 the posterior mean and the nonparametric kernel estimate gave very
different estimates of the intensity surface. To study these estimators under known
conditions we simulated a point pattern on the unit square from the log Gaussian Cox
process with exponential correlation function and parametets4, o> =2, § = .1.

Using the same procedure as in Example 1, Section 7, the estimatessdt 3 are

3.78, 2.46, .077, and the procedure for choosing the bandwidth yieldd. Plots of

the true intensity surface, the Monte Carlo posterior mean of the intensity surface under
the estimated model, and the kernel estimate are shown in Fig. 14. In this case the two
estimates look much more similar than in Example 1. The large difference between the
intensity surface estimates in Example 1 may be explained by the considerably larger
bandwidth which was used in the kernel estimate in Example 1, and which yielded an
oversmoothed estimate of the intensity surface. In Fig. 14 the range of the true intensity
surface, the Monte Carlo posterior mean, and the kernel estimat¢4arg02.62, 21.27-
7653.15, and 0-4898.43, respectively. Integration of the estimates givg.06 for the
posterior mean anti7.69 for the kernel estimate, while the integral of the true surface

Is 158.32, and the true and estimated intensity are- 148.41 and p = 150.

In conclusion, at least for the particular cases of Example 1 and the simulation
study, the posterior mean seems to be the better estimate.
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Appendix: Geometrical ergodicity of the truncated MALA

Below we prove that the truncated MALA discussed in Section 8 is geometrically
ergodic wher) < i < 2. For simplicity and without loss of generality we shall assume
that . = 0. Lettingy = ~Q, then by (20) the logarithm of the posterior density is

1 . .
log f(7|z) = const(x) — §||7||2 +ny - Y @Ay
(ivj)e[ﬁl"f
cl..,» and by (21) the truncated gradient is

V()" = =y + (n— R(7))Q"

wheren = (n,‘j)(i’j)
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where 5
R(7) = ((H A ewj)Aij>(z‘7j)eIm'

In the following ¢ will denote a measurable function mappiRg into R. The results
concerning geometrical ergodicity are the following:

Theorem 4. When0 < h < 2 the truncated MALA isV;-uniformly ergodic for

Vs(y) = exp(s||v]|) and anys > 0, i.e, there exisb < R; < co and0 < ps < 1
such that for anyy € R?,

PWWJ—/ﬂWMﬁ < ViR, m > 1.
: V.

Here P{™) denotes then-step transition kernel of the truncated MALA and for a signed
measurey, ||ullv, = supjg<y, | [ 9(5)n(dF)].

Corollary. Suppose thaly(v)| < exp(s||v]|/2), v €R?, and that(I';);>o is generated
from the truncated MALA whefe< h < 2 and the initial distribution of is arbitrary.

Define the Monte Carlo approximatiaf), = > ¢(I';)/m of the meant = Eg¢(Tg)
1

calculated for the stationary chain. Assuming first that the densityya$ f(-|z), then

03 = lim mVar(&,) = Var(g(To)) + 2 ZCOU(g(Fo),g(Fl)) < 00.

M—00
=1

Moreover, ifag > 0, we have a central limit theorem independently of the chosen initial
distribution of I'y:

(gm_g)/ Ug/m = N(0,1) as m — oc.

Proof. Letc(y) = v+ (h/2)V(y)"“"c and letg(v,-) be the density ofVy(c(v), hily).

Then (36) in Roberts and Tweedie (1996b) holds simee R(7)Q* is bounded. Since

the proof of Theorem 4.1 in Roberts and Tweedie (1996b) is also applicable in our
situation, the geometrical ergodicity then follows if we can show that the truncated
MALA ‘converges inwards’. More precisely let as in Roberts and Tweedie (1996b),

I(v) = {3 Wl < vl and A(y) = {7 : f(vlx)al(v,7) < f(9lx)q(F,7)}. Then we
need to show that

/ {1 )5 — 0 as ]| — oo
A()AI(y)

Here A denotes symmetric difference, i.elAB = [A\ B] U [B\ A].
Note that for anye > 0 we can choosé&, such that [ ¢(v,%)d¥ < ¢ where

. RU\B. (1)
Be(y) = {3+ [I[4 = ()l < S} Thus

/ q(,9)dy < / q(v, )y + €.
A(y)AI(y) (A(W)AI(y)NBe(7y)
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Since
Y€ Be(y) = |7l < 17 = eI + llel < [1 = R/2[||7]] + Se + constant

we have forl||y|| sufficiently large thatB.(v) C I(v) so that(A(v)AI(y)) N Be(vy) =
Be(y) \ A(~) . Itis therefore enough to show that whemn|| is sufficiently large then
4 € Be(vy) implies thaty € A(y).
It is straightforwardly seen that the inequality which defines the 4gt) is
equivalent toJ; + Jo + J3 + J4s + J5 > 0 where
)

7= g3 (11 = 1112). 2o = i) (1= RGN = | (- R (5) )@
fe X ()= (s 3) (e m() 1

(i7j)615$t

Js = (/93 (n = R(3)) =3 - RG]

ands = 4Q. If ¥ € B.(v) and ||| is sufficiently large, then/; + J, > 0 since.J; is
bounded and) < h < 2. We therefore just need to show thaf+ J; + J; > 0 for
4 € Be(vy) and||y|| sufficiently large.

If ||v|| — oo then alsol||7|| — oo because® is of full rank. Furthermore, if
4 € Be(v), then%ij = (1 —1n/2)%; + (v(9)Q)i; whereuv() is a uniformly bounded
vector. Sinced < i < 2, we have therefore tha;; — oo implies that4,;; — oo,
while 4;; — —oo implies that9;; — —oco, where in both casepy;;| — oo at a rate
faster than|¥,;;[, since¥;; — ¥;; is of the order(%/2)7;; asymptotically. Let now
B ={(i,j) € Iyt : ||9i;]] # oo}. ThenJs + Jy + J5 can be written as

S (a7 =)+ (3 — Gy ) [H AT /(v )+
(i) Elai\B

HAije%"/<H v fﬂii)]/Z + (/41 <nij - HAije%i7/<H % e%ii>> —

Fij(nij — HAze [(H v e))]} + H<B, 7, ’~7>

where H (B, #,%) is a finite sum of bounded terms. Since for edtly) € I..; \ B the
corresponding terrd. . .} in the sum converges tso when||¥|| — oo, the proof of the
theorem is completed. The corollary is a direct consequence of Theorem 4.1 in Roberts

and Tweedie (1996a). O
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1. Gaussian: exp(—(a/B)?) 5. Hyperbolic: (1 4 a/p)~!

2. Exponential:  exp(—a/f3) 6. Bessel: exp(—(a/B)*)Jo(a/ B)
3. Cardinal sine: sin(a/3)/(a/3) 7. Spherical:  1(a/p < 1) [(a/5)?/2+
4. Stable: exp(—+/a/B) 1= (3a/(29))]

Table 1. Correlation functions.Jy is the Bessel function of the first kind of order zero.
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Table 2. Example 1. Estimated 80%-credibility intervals and posterior means of the intensity surface at selected
cells C;; organized in accordance with Figure 11, whéigj) = (0,0), (0,64), (64,0), (64,64) correspond to the

lower left, upper left, lower right, and upper right cells.
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i=13 i=26 i =39 i =52
- 7.0-181.3 26.6-546.2 7.4-190.4 28.6-541.3
78.1 235.0 83.0 234.5
- 7.9-207.5 8.8-218.5 8.0-215.3 8.0-207.3
89.9 95.7 93.0 89.0
o 6.5-173.3 11.5-282.0 11.6-282.9 6.7-170.4
74.3 119.2 119.8 73.2
1 17.2-380.3 | 12.9-311.4 10.5-248.4 5.0-138.2
163.2 130.6 105.2 60.7
(i, j) = 363.3-3733.3
(36,14) 1734.1
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Fig. 1. Upper row, a)-d): Various pair correlation functions with varying valueg ¢éolid line = smallest value
of 3) wheno = 1. Lower row: e), f) pair correlation functions for the Thomas and Matérn cluster processes. g),
h) Gaussian and exponential correlation functions witas in the upper row.
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Fig. 2. Simulated realizations of Gaussian random fields with 1. Left to right: Gaussia = 0.172, exponential
[ = 0.143, cardinal sine3 = 0.094, stableg = 0.071.
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Fig. 3. Simulations of log Gaussian Cox processes conditional on that the number of points is 148. First column:
Gaussian correlation function. Second column: Exponential. Third column: Cardinal sine. Fourth column: Stable.
First row: Same values of parameters as in Figure 2d%= 1 andj3 = 0.172, 0.143, 0.094, 0.071 (left to right).
Second row:e? = 2.4, § = 0.110, 0.100, 0.053, 0.049. Third row: ¢? = 2.4, 8 = 0.057, 0.050, 0.027, 0.020.

Mean and variance of the number of points are equal in each row.
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Fig. 4. Left: Plot of Gaussian correlation function (solid) dndyr(-) (dotted line) fors = 0.001. Middle: Hankel
transform ofln gr(-) for x = 0.001. Right: Hankel transform ofn gam () for R = 0.1.
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Fig. 5. Left: Dotted lines: Average and envelopes for the nonparametric estimakbba$ed on 100 simulations of

the Thomas process. Solid lines: The same but for the log Gaussian Cox process with Gaussian correlation function.
Right: The same as the left plot but with substituted byG.
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Fig. 6. Left: Gaussian random field with exponential correlation functioh,= 2 and 3 = 0.1. Middle:

bivariate log Gaussian Cox procegs, = u2 = 2.5, 01 = o2 = 2. Right: Bivariate log Gaussian Cox process,

p1 = p2

2.5, gl = —02 = 2.
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Fig. 7. Left: Estimated parameters and o> from 20 simulations under the log Gaussian Cox process with
exponential covariance functiof(t) = 2.0 exp(—20¢). The true parameter value is marked with a square. Right:

The true covariance function (dotted line), the mean and upper and lower envelopes for the estimated covariance
functions (solid lines).
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Fig. 8. Example 1. Several characteristics for the pine data (see the text for explanations).
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Fig. 9. Example 1. Estimate of z based on the data (solid line) and ‘conditional’ envelopes (— — — ) and
‘unconditional’ envelopes (- - - - - ) based on 20 simulations. Left: Log Gaussian Cox process. Right: Matérn
cluster process.
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Fig. 10. Example 2. a) Plot of data, spruces marked witarid birches marked with ‘x’. b) Empirical covariance
functions (solid line), from tog22, é11, ¢12, and covariance functions for the fitted model (dotted line). c) Empirical
Fyy (solid line) together with lower and upper envelopes (dotted line) plotted against the mean of 99 simulations
from the fitted model.
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Fig. 11. Example 1. Upper plots: Timeseries (left) and estimated autocorrelations (righ}@gfmx obtained by
transforming a subsample &%s,0s|> (spacing = 10) generated by MALA. Lower row: Same as upper row but no
transformation is used, i.eYos os|x is generated directly by MALA.
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Fig. 12. Example 1. Upper left plot: Monte Carlo posterior mean of the Gaussian field. Upper right plot: Monte
Carlo posterior mean of the intensity surface. Lower left plot: Logarithm to the upper right plot. Lower right plot:
Diggle’s nonparametric kernel estimate of the intensity surface.
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Fig. 13. Example 1. Left: Monte Carlo posterior variance of the Gaussian field on the original lattice. Right:
Monte Carlo posterior mean of the Gaussian field on the extended lattice.
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Fig. 14. Simulation study. Upper left plot: True Gaussian surface. Upper right plot: True intensity surface. Lower
left plot: Monte Carlo posterior mean of the intensity surface. Lower right plot: Diggle’s nonparametric kernel
estimate.
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