
Log Gaussian Cox processes

by

Jesper Møller,
Anne Randi Syversveen,

and Rasmus Plenge Waagepetersen.





Log Gaussian Cox processes

JESPER MØLLER
Aalborg University
ANNE RANDI SYVERSVEEN
The Norwegian University of Science and Technology

RASMUS PLENGE WAAGEPETERSEN
University of Aarhus

ABSTRACT. Planar Cox processes directed by a log Gaussian intensity process
are investigated in the univariate and multivariate cases. The appealing properties
of such models are demonstrated theoretically as well as through data examples
and simulations. In particular, the first, second and third-order properties are
studied and utilized in the statistical analysis of clustered point patterns. Also
empirical Bayesian inference for the underlying intensity surface is considered.

Key words: empirical Bayesian inference; ergodicity; Markov chain Monte Carlo;
Metropolis-adjusted Langevin algorithm; multivariate Cox processes; Neyman-Scott
processes; pair correlation function; parameter estimation; spatial point processes; third-
order properties.

AMS 1991 subject classification: Primary 60G55, 62M30. Secondary 60D05.

1 Introduction

Cox processes provide useful and frequently applied models for aggregated spatial
point patterns where the aggregation is due to a stochastic environmental heterogeneity,
see e.g. Diggle (1983), Cressie (1993), Stoyanet al. (1995), and the references therein.
A Cox process is ’doubly stochastic’ as it arises as an inhomogeneous Poisson process
with a random intensity measure. The random intensity measure is often specified by a
random intensity function or as we prefer to call it an intensity process or surface.

There may indeed be other sources of aggregation in a spatial point pattern than
spatial heterogeneity. Cluster processes is a well-known class of models where clusters
are generated by an unseen point process, cf. the references mentioned above. The class
of nearest-neighbour Markov point processes (Baddeley and Møller, 1989) include many
specific models of cluster processes (Baddeleyet al., 1996) as well as other types of
processes with clustering modelled by ‘interaction functions’ (Møller, 1994) such as the
penetrable sphere model (Widom and Rowlinson, 1970; Baddeley and Van Lieshout,
1995) and the continuum random cluster model (Møller, 1994; Häggströmet al., 1996).

In this paper we consider log Gaussian Cox processes, i.e. Cox processes where
the logarithm of the intensity surface is a Gaussian process. We show that the class of
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stationary log Gaussian Cox processes possesses various appealing properties: (i) The
distribution is completely characterized by the intensity and the pair correlation function
of the Cox process. This makes parametric models easy to interpret and simple methods
are available for parameter estimation and model checking. (ii) Theoretical properties
are easily derived. Higher-order properties are for instance simply expressed by the
intensity and the pair correlation function of the log Gaussian Cox process. Thereby
summary statistics based on e.g. the third-order properties can be constructed and
estimated. (iii) The underlying Gaussian process and intensity surface can be predicted
from a realization of a log Gaussian Cox process observed within a bounded window
using Bayesian methods. (vi) There is no problem with edge effects as the distribution
of a log Gaussian Cox process restricted to a bounded subset is known.

The properties (i)-(vi) are rather characteristic for Log Gaussian Cox processes. We
shall further note that log Gaussian Cox processes are flexible models for clustering,
easy to simulate, and that the definition of univariate log Gaussian Cox processes can
be extended in a natural way to multivariate log Gaussian Cox processes.

Other transformations than the exponential of the Gaussian process may be con-
sidered as well, and in particular�2 Cox processes (as defined in Section 3) may be
of interest.

During the final preparation of this paper we realized that a definition of Log
Gaussian Cox processes has previously been given in Rathbun and Cressie (1994), but
they restrict attention to the case where the intensity is constant within square quadrats
and modelled by a conditional autoregression (Besag, 1974). The advantage of these
discretized models is mainly that they can easily be explored using Gibbs sampling, but
as noticed by Rathbun and Cressie (1994) such models does not converge to anything
reasonable as the sides of the quadrats tend to zero. Consequently, it is difficult to
investigate the correlation structure of these Gaussian random field models through
those summary statistics which are usually estimated for a point pattern such as the
pair correlation function. The log Gaussian Cox processes studied in the present paper
are in contrast to this specified by such characteristics, and discretized versions of our
log Gaussian Cox processes can be simulated exactly without any problem with edge
effects. Also the Metropolis-adjusted Langevin algorithm (Besag, 1994; Roberts and
Tweedie, 1997) for simulating from the posterior of the intensity surface as studied in
Section 8 is both easy to specify and implement. In contrast and even if we ignore the
problem with edge effects, Gibbs sampling from the posterior becomes straightforward
only if one uses conditional autoregression priors.

The paper is organized as follows. In Section 2 we give a formal definition
of univariate log Gaussian Cox processes and inspect some of their properties by
simulations. Theoretical results are established in Section 3. In Section 4 we compare
log Gaussian Cox processes with the class of Neyman-Scott processes with a Poisson
distributed number of offspring. Extensions of log Gaussian Cox processes to the
multivariate case are studied in Section 5. In Section 6 we describe different simulation
procedures. Section 7 is concerned with parameter estimation and model checking of
parametric models for log Gaussian Cox processes. We illustrate this by considering
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some data sets of univariate and bivariate point patterns. Finally, in Section 8 we
discuss how empirical Bayesian methods may be used for the purpose of predicting the
unobserved Gaussian process and intensity surface.

2 Univariate log Gaussian Cox processes

For specificity and since all the examples presented later on are planar we specify
the model in 2, but our model can be completely similar defined ind, d = 1; 2; . . ..

Briefly, by a planar spatial point process we shall understand a locally finite random
subsetX of the plane 2. This is said to be a Cox process directed by a random intensity
process� = f�(s) : s 2 2g if the conditional distribution ofX given � is a Poisson
process with intensity function�(�), i.e. when for bounded Borel setsB � 2 we have
conditional on� thatcard(X \B) is Poisson distributed with a mean

R
B �(s)ds which

is assumed to be nonnegative and finite. We restrict attention to the case where� and
henceX is stationary and sometimes also isotropic, i.e. when the distribution of� is
invariant under translations and possibly also rotations in2. The intensity

� = E�(s)

is henceforth assumed to be strictly positive and finite.

Throughout this paper we model the intensity process by a log Gaussian process:

�(s) = exp fY (s)g (1)

whereY = fY (s) : s 2 2g is a real-valued Gaussian process (i.e., the joint distribution
of any finite vector(Y (s1); . . . ; Y (sn)) is Gaussian). It is necessary to impose conditions
onY so that the random mean measure� given by�(B) =

R
B

�(s)ds for bounded Borel

setsB � 2, becomes well-defined. First it is of course required that the realizations
of � are integrable almost surely. But further conditions are required in order that� is
uniquely determined by the distribution ofY . Here we impose the natural condition that
� is given in terms of a continuous modification ofY . Then� is uniquely determined,
since all the continuous modifications are indistinguishable (i.e. their realizations are
identical with probability one), and it also follows that�(B) <1 for boundedB.

By stationarity, the distribution ofY and henceX is specified by the mean
� = EY (s), the variance�2 = V ar(Y (s)), and the correlation functionr(s1 � s2) =
Cov(Y (s1); Y (s2))=�

2 of Y . The model is only well-defined for positive semi-definite
correlation functions, i.e. when

P
i;j aiajr(si � sj) � 0 for all a1; . . . ; an 2 ,

s1; . . . ; sn 2 2, n = 1; 2; . . .. Whether a given function is positive semi-definite may
best be answered through a spectral analysis, see e.g. Christakos (1984), Wackernagel
(1995), and the references therein. Furthermore, if there exist� > 0 andK > 0 such
that 1 � r(s) < (� log ksk)�(1+�) for all s with ksk < 1, then the existence of an
almost surely continuous modification is quaranteed (Adler, 1981, page 60). A stronger
condition, which in our experience is easier to check, is given by that1�r(s) < ~Kksk�
for some ~K > 0 and � > 0.
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The parameterse� > 0 and � > 0 have a clear interpretation as a scale and

shape parameter, respectively, since we can write��;�
D
= e���

0;1, where ln��;� is a
stationary Gaussian process with mean�, variance�2, and correlation functionr(�).
The homogeneous Poisson process may be considered as the limit of a log Gaussian
Cox process as� tends to 0. Another extreme case isr(�) = 1, whereby we obtain
a mixed Poisson process with a randomized intensity�(�) = � which is log Gaussian
distributed.

If the distribution ofY is invariant under rotations,r(s) = r(jjsjj) depends only
on s through its lengthjjsjj, so the correlation function is invariant under reflections
too. Consequently, invariance under translations and rotations implies that the joint

distribution of (X; Y ) is invariant under rigid motions� in 2: (�(X); Y (�(�))) D
=

(X; Y ):

Examples of isotropic correlation models are listed in Table 1. The condition for
existence of an almost surely continuous modification holds for all of these correlation
functions which furthermore all tend to 0 at infinity. Notice that the correlation models
are parametrized by a scale parameter� so that the three types of processes (Gaussian,
intensity, and Cox) are all parametrized by(�; �; �) 2 (�1;+1)�(0;+1)�(0;+1).
The “scale” of the parameter� is with respect to locations: with obvious notation,

��;�;�
D
=
�
e��0;1;1(s=�)

� : s 2 2
	

.

The first four models in Table 1 represent well the correlation structures which can
be achieved by using the correlation models in this table, so we have restricted attention
to these four models in the following Fig.’s 1–3. In Theorem 1, Section 3, it is shown
that the corresponding pair correlation functions are given by the exponential to the
covariance function�2r(�). These pair correlation functions are plotted in Fig. 1 a)-d)
for various values of� when� = 1. If one ’standardizes’ the pair correlation function
g(�) to g(0) = e or equivalently takes� = 1, plots of corresponding pair correlation
and covariance functions look very similar, cf. Fig. 1, a)-b) and g)-h).

Simulated realizations of Gaussian processes on the unit square with correlation
structure given by the four different types of correlation functions are shown in Fig.
2. Fig. 3 shows simulations of the corresponding log Gaussian Cox processes. The
parameters in the first row in Fig. 3 are the same as in Fig. 2. In order to facilitate
comparison of the four different Cox processes the�-values in Fig. 3 are chosen so
that the mean and variance of the number of points are equal for all Cox processes
in the same row. By Theorem 1, Section 3, the mean is� = exp(� + �2=2) and the
variance is given by

V ar
�
card

�
X \ [0; 1]2

��
= �+ �2

0B@ Z
[0;1]2

Z
[0;1]2

e�
2r(s�t)dsdt� 1

1CA:

The variance thus increases when� and hence the correlation increases. It is difficult to
compare unconditional simulations when the variance of the number of points is large
and the simulations in Fig.’s 2 and 3 are therefore performed conditional on that the
numbern of points equals the mean number of points (n = � = 148).
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In the upper row in Fig. 3 a moderate value of� but large values of� give rise
to large but not dense clusters of points. In the lower row moderate values of� but a
higher value of� lead to many but small clusters. In the middle row a high value of�
and intermediate values of� are used, and compared to the lowest row fewer but larger
clusters appear. The realizations of the ‘Gaussian’ and ‘cardinal sine’ log Gaussian Cox
processes are visually quite similar. The ‘stable’ log Gaussian Cox process is in general
less clustered than the other processes. This is not surprising because the Gaussian
random field with the stable correlation function is not very peaked except at the small
scale, c.f. Fig. 2.

Finally, it should be noted that Cox processes may be extended to models on
bounded regionsW � 2, where the conditional distribution ofXW = X \W given
�W = f�(s) : s 2 Wg is of a Gibbsian type. For instance, consider a conditional
distribution ofXW given �W = �W with density

f(xW j�W ) = c(�W )

(
nY
i=1

�(xi)

)8<: Y
1�i<j�n

�(jjxi � xj jj)
9=;

with respect to a unit rate Poisson point process and forxW = fx1; . . . ; xng � W ,
where e.g.�W models the large scale properties and the function�(�) � 0 specifies
pairwise interactions terms at the small scale. Although the marginal distribution ofX
restricted toW becomes analytically intractable, such models may at least be simulated
and statistical inference may be performed by Markov chain Monte Carlo methods.

3 Theoretical results

Theoretical properties of Cox processes have been extensively studied, see e.g.
Grandell (1976), Daley and Vere-Jones (1988), and Karr (1991). In this section we
establish further results for log Gaussian Cox processes. In particular, we discuss the
first, second and third-order properties of a univariate log Gaussian Cox process. As
in the previous section we consider the planar case, but many of the presented results
hold as well in d, d = 1; 2 . . . (with obvious modifications in a few places).

The most useful characteristics for our purpose are thenth order product densities
�(n); n = 1; 2; . . ., for the reduced moment measures of the Cox processX. These are
given by the moments of the intensity process as

�(n)(s1; . . . ; sn) = E
nY
1

�(si)

for pairwise differents1; . . . ; sn 2 2. Intuitively speaking�(n)(s1; . . . ; sn)ds1 � � �dsn
is the probability thatX has a point in each ofn infinitesimally small disjoint regions
of volumesds1; . . . ; dsn.
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Theorem 1. A log Gaussian Cox processX is stationary if and only if the corresponding
Gaussian fieldY is stationary. For a stationary log Gaussian Cox process we have

�(n)(s1; . . . ; sn) = exp

8<:n�+ �2

24n
2
+

X
1�i<j�n

r(si � sj)

359=;
= �n

Y
1�i<j�n

g(si � sj)

(2)

where
� = �(1)(s) = exp

�
�+ �2=2

	
(3)

and

g(s1 � s2) = �(2)(s1; s2)=�
2 = exp

�
�2r(s1 � s2)

	
(4)

are the intensity and the pair correlation function of the process, respectively.

Proof. Let c(t) = exp(� + �t2=2) be the Laplace transform of the normal dis-
tribution N(�; �) with mean � and variance�. Let � =

Pn
1 �(si) and � =Pn

1 �
2(si) + 2

P
1�i<j�n �(si)�(sj)r(si; sj) where �(s) = E(Y (s)), �2(s) =

V ar(Y (s)); and r(�; �) is the correlation function ofY . Then
Pn

1 Y (si) � N(�; �).
Hence, by (1), �(n)(s1; . . . ; sn) = EexpfPn

1 Y (si)g = exp(� + �=2). The
first order product density�(1)(s) and the pair correlation functiong(s1; s2) =
�(2)(s1; s2)=(�

(1)(s1)�
(1)(s2)) are in particular given by�(1)(s) = exp(�(s) + �2(s))

andg(s1; s2) = exp(�(s1)�(s2)r(s1; s2)); whereby (2)-(4) follow whenY is stationary.

If X is stationary then�(1)(s) = �; and we can writeg(s1; s2) = g(s1 � s2).
By letting s1 = s2 it follows that �2(s) = �2 = g(0) is constant, and further that
�(s) = � = log(�) � �2=2 and r(s1; s2) = r(s1 � s2) = log(g(s1 � s2))=�

2, whereby
Y is stationary. Finally, by definition of a log Gaussian Cox process, stationarity ofY
implies stationarity ofX.

Theorem 1 reflects the fact that the distribution of a log Gaussian Cox process is
completely determined by(�; �; r(�)) or equivalently by(�; g(�)) (sincer(0) = 1). It
follows from (4) and the definition of a log Gaussian Cox process that it is isotropic if and
only if the underlying Gaussian process is isotropic or equivalently wheng(�) = g(jj�jj).
Especially, when�(�) = � is a log Gaussian random variable we have a mixed Poisson
process withr(�) = 1 and g(�) = e�

2

> 1, whilst for a homogeneous Poisson process
r(�) = 0 and g(�) = 1.

Similar results may be established for other intensity processes being a function of
a Gaussian process. Suppose e.g. for the moment that� = 0 and�(s) = Y (s)2 is
�2�2-distributed with1 degrees of freedom. Then the intensity of the ’�2 Cox process’
is ��2 = �2 and the pair correlation function becomes

g�2(s) = 1 + 2r(s)2:
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Hence there is not a one-to-one correspondence between(�2; r(�)) and (��2 ; g�2(�))
unless the sign of the correlation function is known.

In the statistical analysis of point processes mostly first and second-order properties
are investigated (see Section 7), but we shall also explore the following correspondence
between the second and third-order properties: For any stationary simple point process
X with finite intensity� > 0 and well-defined pair correlation functiong(x1; x2) =
g(x1 � x2) > 0 and third-order density�(3)(x1; x2; x3) = �(3)(x2 � x1; x3 � x1) define

z(t) =
1

�2t4

Z
jj�jj�t

Z
jj�jj�t

�(3)(�; �)

�3g(�)g(�)g(� � �)
d�d�; t > 0: (5)

This has an interpretation as a third-order summary statistic, since

�2t4�2z(t) = E!
0

6=X
�;�2X: jj�jj�t; jj�jj�t

1=fg(�)g(�)g(� � �)g

where 6= means that the summation is over pairwise distinct points, and where the
expectation is with respect to the reduced Palm distribution at the origin (heuristically
this means that we have conditioned on that there is a point at the origin andX denotes
the collection of the remaining points, cf. e.g. Stoyanet al., 1995). By Theorem 1,

z(t) = 1 ; t > 0; for a log Gaussian Cox process. (6)

This can be used to check our model assumptions as demonstrated in Section 7.

In the case of rotation invariance we propose an unbiased estimator which uses all
triplets of observed points and which takes care of edge effects as follows. For a given
’window’ W � 2 andx1 2 W , a > 0, b > 0, 0 �  < 2�, let

Ux1;a;b; = f' 2 [0; 2�) jx1 + a(cos'; sin') 2 W;
x1 + b(cos ('+  ); sin ('+  )) 2 Wg

and define the ’edge correction’

wx1;a;b; = 2�=
�
length of Ux1;a;b; 

	
taking 2�=0 = 1. Then for givenx1; a; b and  , 1=wx1;a;b; is the proportion of
triangles which can be observed withinW with verticesx1; x2; x3 2 W such that
jjx2 � x1jj = a, jjx3 � x1jj = b, and is the angle (anticlockwise) between the vectors
x2 � x1 and x3 � x1.

Theorem 2. Let  (x1; x2; x3) denote the angle (anticlockwise) betweenx2 � x1 and
x3� x1. For any stationary simple point processX as considered above, assuming that
the distribution ofX is invariant under rotations about the origin,

2
X

x12X\W

6=X
fx2;x3g�X\Wnfx1g:

jjx1�x2jj�t; jjx1�x3jj�t

wx1;jjx1�x2jj;jjx1�x3jj; (x1;x2;x3)
g(jjx1 � x2jj)g(jjx1 � x3jj)g(jjx2 � x3jj) (7)
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is an unbiased estimator ofA(W )�2t4�3z(t) for all t < t�, whereA(W ) is the area
of W and

t� = inf

8><>:t > 0j
Z

x12W

Z
a2(0;t]

Z
b2(0;t]

Z
 2[0;2�)

1
�
wx1;a;b; =1�d dadbdx1 > 0

9>=>;:
Proof. Note that factor2 in (7) appears because the second summation is over unordered
pairs of distinct points. Then�(3)(x2 � x1; x3 � x1) = �

(3)
0 (a; b;  ) for a function�(3)0

because of the rotation invariance. Moreover,jjx2 � x3jj = f(a; b;  ) is a function of
(a; b;  ) = (jjx1�x2jj; jjx1�x3jj;  (x1; x2; x3)) only. Hence, using that the correction
factorw is the same for(x1; x2; x3) as for (x1; x3; x2) together with the fact that

E

6=X
x1;x2;x32X

h(x1; x2; x3) =

Z Z Z
�(3)(x1; x2; x3)h(x1; x2; x3)dx1dx2dx3

for nonnegative measurable functionsh, we find that the mean of (7) equals

E

6=X
x1;x2;x32X\W : jjx1�x2jj�t; jjx1�x3jj�t

wx1;jjx1�x2jj;jjx1�x3jj; (x1;x2;x3)
g(jjx1 � x2jj)g(jjx1 � x3jj)g(jjx2 � x3jj)

=

Z
W

Z
W

Z
W

�
(3)
0 (a; b;  )wx1;a;b; 

g(a)g(b)g(f(a; b;  ))
1(0 < a � t; 0 < b � t)dx1dx2dx3

=

Z
x12W

Z
a2(0;t]

Z
b2(0;t]

Z
 2[0;2�)

Z
'2Ux1;a;b; 

�
(3)
0 (a; b;  )wx1;a;b; 

g(a)g(b)g(f(a; b;  ))
abd'd dadbdx1

=

Z
x12W

Z
a2(0;t]

Z
b2(0;t]

Z
 2[0;2�)

Z
'2[0;2�)

�
(3)
0 (a; b;  )

g(a)g(b)g(f(a; b;  ))
abd'd dadbdx1

= A(W )

Z
jj�jj�t

Z
jj�jj�t

�(3)(�; �)

g(�)g(�)g(� � �)
d�d�

where we have used thatt < t� to obtain the third equality. This combined with (5)
gives the result.

The estimator (7) is of the same spirit as Ripley’s (1977) estimator for the second
order reduced moment measure. In factwx1;a;b; agrees with Ripley’s edge correction
factor whena = b and = 0. Our edge correction factor is of course also applicable
for other third order summary statistics thanz.

Applications of z and its estimator are discussed at the end of Section 4 and in
Section 7, Example 1. In most applicationsW will be convex in which caset� � I(W ),
the radius of the maximal inner ball contained inW . We have also considered a naive
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estimator based on ’minus sampling’ and which do not presume rotation invariance,
viz. the unbiased estimator ofA(W	t)�2t4�3z(t) given by

6=X
x1;x2;x32X: x12W	t; a�t; b�t

fg(x1 � x2)g(x1 � x3)g(x2 � x3)g�1

with
W	t =

�
s 2 W j 8u 2 2 : jjujj � t ) s+ u 2 W

	
:

Compared to (7) the variation of this estimator can be very large since not all triplets
of points inX \W are used. Another problem may be caused by a clustering of points
so that no points are observed withinW	t for even moderate values oft.

Finally, we establish some simple results about ergodicity. Ergodicity may for
instance become useful for establishing consistency of nonparametric estimators of�
andg(�). The log Gaussian Cox processes corresponding to the correlation models in
Table 1 are all ergodic as shown in part (b) of Theorem 3 below.

Theorem 3. (a) Let Z = fZ(s) : s 2 2g be a stationary real-valued stochastic
process, leth : ! [0;1) be measurable, and suppose that with probability oneR
B

h(Z(s))ds < 1 for bounded Borel setsB � 2. Then a Cox process with random

intensity functionfh(Z(s)) : s 2 2g is ergodic ifZ is ergodic. Conversely, assuming
that the realizations ofZ are continuous with probability one and thath is strictly
monotone, ergodicity of the Cox process implies thatZ is ergodic.

(b) If Z is a stationary Gaussian process where the correlations decay to zero, i.e.
when

r(s)! 0 as jjsjj ! 1 (8)

then the corresponding log Gaussian Cox process is ergodic. Especially, a stationary
log Gaussian Cox process is ergodic if

g(s)! 1 as jjsjj ! 1: (9)

Proof. We first need some measure theoretical details. LetF =
2

denote the space
of functionsf : 2 ! equipped with the�-field �F generated by the projections
ps : F ! ; s 2 2; whereps(f) = f(s). Further, let(M;M) be the measure space
of locally finite measures defined on the Borel�-field B2 in 2 where the�-field M
is generated by the projections~pA : M ! , A 2 B2, given by ~pA(m) = m(A).
Furthermore, letH : F ! M be defined by

H(f)(A) =

Z
A

h(f(s))ds; A 2 B2:

It is not difficult to show that for any fixedA 2 B2, the functionHA : F ! given
by HA(f) = ~pA(H(f)) is measurable. HenceH is measurable and so� = H(Z) is
a random measure.
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Now, consider a stationary Cox process as in (a). This is ergodic if and only if the
random measure� is ergodic, cf. e.g. Proposition 10.3.VII in Daley and Vere-Jones
(1988). Ergodicity of� means thatP (� 2 I) 2 f0; 1g for all eventsI 2 M which
are invariant under translations in the plane (I is invariant if m 2 I)mt 2 I for all
t 2 2 wheremt(A) = m(fs : s + t 2 Ag)). Similarly, ergodicity ofZ means that
P (Z 2 J) 2 f0; 1g for all eventsJ 2 �F which are invariant under translations in the
plane (i.e. J is invariant if f 2 J) ft 2 J for all t 2 2 whereft(s) = f(s + t)).
Using these definitions it is straightforward to show the first implication in (a).

Assuming thath is strictly monotone, thenH restricted toFc = ff 2 F :
f continuousg becomes injective. Assume further thatJ 2 �F is invariant and�
is ergodic. Then it follows thatH(J) is invariant so thatP (Z 2 H�1(H(J))) 2 f0; 1g.
Under the additional assumption that realizations ofZ are continuous a.s., it is no
restriction to assume thatJ � Fc. Then, sinceH is injective onFc, H�1(H(J)) n J �
F n Fc wherebyP (Z 2 J) 2 f0; 1g, and the second implication in (a) is proved.

According to (a) a stationary log Gaussian Cox process is ergodic if the underlying
Gaussian process is ergodic. But ergodicity of the Gaussian process is in fact implied
by (8), cf. Theorem 6.5.4 in Adler (1981). Using (4) we get the equivalence between
(8) and (9). This completes the proof.

Conditions for continuity of random fields may be found in Adler (1981) or Ledoux
& Talagrand (1991). Notice that (8) and (9) are equivalent and that (9) implies ergodicity
also for a�2 Cox process.

4 Comparison with Neyman-Scott processes

We shall now compare our log Gaussian Cox processes with a popular and frequently
used class of models which are simultaneously Poisson cluster and Cox processes,
namely those Neyman-Scott processes where the number of points per cluster is Poisson
distributed (see e.g. Bartlett, 1964; Diggle, 1983; Stoyan and Stoyan, 1994; Stoyanet
al., 1995).

Imagine a point processfpig� 2 of (unobserved) parents which form a homoge-
neous Poisson point process of intensity! > 0, and which generate clusters of offspring
[ni

j=1fpi + xijg. The countsni are assumed to beiid Poisson distributed with mean
� > 0 and the relative positionsxij of offspring areiid with densityf . Further, the
fpig, fnig, andfxijg are mutually independent. The Poisson cluster process of offspring
[i [ni

j=1 fpi+ xijg is then stochastic equivalent to a Cox process with intensity process

�(s) = �
X

i

f(s� pi): (10)

The product densities of such Neyman-Scott processes are known: We have that
� = �!,

g(s) = 1 +
1

!

Z
f(p)f(p+ s)dp

10



�(3)(s1; s2; s3) = g(s1 � s2) + g(s1 � s3) + g(s2 � s3)� 2

+
1

!2

Z
f(p+ s1)f(p+ s2)f(p+ s3)dp

and with similar but longer expressions for�(n); n � 4. The higher-order product
densities of a log Gaussian Cox process as given by Theorem 1 are in general of a
different and much simpler form than for Neyman-Scott processes.

In the following we consider some particular but widely used models of Neyman-
Scott processes, viz. a Matérn (1960) cluster process and a (modified) Thomas (1949)
process (Bartlett, 1964). For the Thomas process,f is the density of a radially symmetric
Normal distribution with variance� > 0, and the pair correlation function becomes

gT(a) = 1 +
1

4�!�
exp

�
� a2

4�

�
; a � 0:

For the Mat́ern cluster process,f is the density for a uniform distribution on a disc with
radiusR > 0 centered at0, and the pair correlation function becomes

gM(a) =

(
1 + 2

!�2R2

�
arccos a

2R � a
2R

q
1� a2

4R2

�
; 0 � a � 2R

1 ; a > 2R:

In Fig. 1 we have included plots of the pair correlation functions for Thomas and
Matérn cluster processes. For comparison we have takengM(0) = gT(0) = e. Then for
the Thomas process! = 1=(4��(e� 1)) is determined by the value of�, whilst for the
Matérn cluster process! is determined by the value ofR. At least for certain values
of � and� the Gaussian pair correlation function andgT(�) appear to be very similar,
whereasgM(�) looks different from the other pair correlation functions in Fig. 1. For
instance, by taking� = :001 and minimizing

R 1=2
0 (g(a)� gT(a))

2da with respect to�,
wherelogg(a) = exp(�(a=�)2), we get� = 1=13:45. The left plot in Fig. 4 shows that
the logarithm of these pair correlation functions for the Thomas and the log Gaussian
Cox process with Gaussian correlation function are nearly identical.

This may suggest thatcT(�) = loggT(�) could be considered as a covariance function.
One way to check this is through the Hankel transform ofcT(�) given by

CT(t) =
1

2�

1Z
0

J0(at)acT(a)da

where

J0(t) =
1X
k=0

(�1)k
t2k

(k!)222k

is the Bessel function of first kind and order zero. ThencT(�) is positive semi-definite if
and only ifCT(t) � 0 for all t � 0, cf. e.g. Christakos (1984). The Hankel transforms
CT andCM for the Thomas and Matérn cluster processes given in Fig. 4 show that
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neither of the two Neyman-Scott processes can be considered as log Gaussian Cox
processes. But the close agreement with respect to the pair correlation functions and
the remarks below and at the end of this section suggest that certain Thomas processes
may in practice be difficult to distinguish from log Gaussian Cox processes with a
Gaussian correlation function.

Fig. 5 shows simulated distribution functionsF andG for the distance to the nearest
point of a point processX with respect to0 and a typical point ofX, respectively
(see e.g. Diggle, 1983). Here we consider two kinds of point processes: a log
Gaussian Cox process (the solid lines in Fig. 5) with a Gaussian correlation function
and � = 3:888; � = 1, i.e. � = e5, and correspondingly a Thomas process with
! = 1=(4�(e� 1)�) and� = �=! (dotted lines); as before� = :001 and� = 1=13:45.
For each model we simulated 100 realizations and calculated the average and the
upper and lower envelopes for nonparametric estimates ofF andG. (The upper and
lower envelopes forF , G or any another summary statistic depending only on the
distance are here and elsewhere in the following given by the maximum and minimum
values obtained from the simulations at each distance; see e.g. Diggle, 1983.) The
averages are then estimates of the theoreticalF andG functions. Further simulations
confirmed that the envelopes ofF for the Thomas process lie beneath those for the log
Gaussian Cox process, while the opposite statement holds for the envelopes ofG. We
recognized further that theG function distinguishes better between the two processes
than theF function, but also that none of these summary statistics are really useful
for discriminating between the two models. Another experiment confirmed that it may
also be difficult to distinguish between the two models by means of the third-order
characteristicz in (5).

In Section 7 plots ofF , G, andz raise doubt of the appropiateness of the Matérn
cluster process as a model for the data in Example 1, but give no reason to question
the use of a log Gaussian Cox process with an exponential correlation function.

5 Multivariate log Gaussian Cox processes

Our model can immediately be extended to the case of multivariate Cox processes
as follows.

Let us for simplicity just consider the bivariate case of a Cox processX =
(X1; X2) directed by random intensity processes�j = f�j(s) = exp(Yj(s)) : s 2
2g; j = 1; 2, where Y = f(Y1(s); Y2(s)) : s 2 2g is a bivariate stationary

and possibly isotropic Gaussian process with mean(�1; �2) and covariance functions
cij(a) = Cov(Yi(s1); Yj(s2)) for a = jjs1 � s2jj; i; j = 1; 2 (in the isotropic case we
have thatc12(�) = c21(�)). Then conditional onY , X1 andX2 are independent Poisson
processes with intensity functions�1 and �2, respectively. The covariance function
matrix of the multivariate Gaussian process must be positive semi-definite. Restricting
attention to absolutely integrable and isotropic covariance functions, this is equivalent
to that

C11(t) � 0; C22(t) � 0; and jC12(t)j2 � C11(t)C22(t) ; t � 0 (11)
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where

Cij(t) =
1

2�

1Z
0

J0(at)cij(a)ada

is the spectral density or Hankel transform ofcij (Yaglom, 1986; Christakos, 1992;
Wackernagel, 1995). Moreover, many of the results presented in Section 3 may easily
be extended to the multivariate case. For example, by Theorem 1 the intensity and pair
correlation function ofXj become

�j = exp f�j + cjj(0)=2g ; gjj(a) = exp fcjj(a)g (12)

and the mixed pair correlation function is given by

g12(a) = E[�1(s1)�2(s2)]=(�1�2) = exp fc12(a)g ; a = jjs1 � s2jj: (13)

Especially, if we consider affine transformationsYj(s) = �k
1�ijZi(s) + �j of k

independent one-dimensional Gaussian processesZi = fZi(s) : s 2 2g; i = 1; . . . ; k,
each with mean 0, variance 1, and a positive semi-definite correlation functionri, then
of courseY is well-defined and

cjj(s) =
kX

i=1

�2
ijri(s) ; j = 1; 2 ; c12(s) =

kX
i=1

�i1�i2ri(s) ; s 2 2 (14)

(in this casec12(�) = c21(�) no matter if isotropy is required or not). For example,
if Yj = �jZ + �j; j = 1; 2, whereZ is a stationary Gaussian process with mean 0,
variance 1, and correlation functionr(�), then the sign of�1�2r(�) determines whether
there is a positive or negative dependence structure between the two types of patterns
X1 andX2. In the special case�1 = �2 we have a linked Cox process (Diggle and
Milne, 1983) as�2�1(�) = �1�2(�). Fig. 6 shows realizations on the square under the
exponential modelr(a) = exp(�10a) with �1 = �2 = 2:5 and for each of�1 = �2 = 2
and �1 = ��2 = 2. The different dependence structures are clearly expressed in the
simulations.

6 Simulation algorithms

Some properties of Cox processes are hard to evaluate analytically. Fortunately,
log Gaussian Cox processes are easy to simulate so that Monte Carlo methods can be
applied. An advantage of log Gaussian Cox processes is that there are no boundary
effects since all marginal distributions of a Gaussian field are known.

In practice we represent the finite domain of simulation by a grid and approximate
the Gaussian process by the values of the corresponding finite dimensional Gaussian
distribution on the grid. If we for example wish to simulate a log Gaussian Cox process
on the unit square, we approximate the Gaussian process

�
Y (s)

	
s2[0;1[2 on each cell

Dij = [i�1=(2M); i+1=(2M)[�[j�1=(2M); j+1=(2M)[ by its value~Yij = Y ((i; j)) at
the center(i; j) of Dij where(i; j) 2 I = f1=(2M); 1=M+1=(2M); . . . ; (M�1)=M+
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1=(2M)g2; andM is a suitable value for the discretization. Thus, simulations of the
field ~Y = (~Yij)(i;j)2I are required. For ease of presentation we shall here mainly focus
on univariate log Gaussian Cox processes where the discretization is given by a square
lattice I; at the end of Subsection 6.1 we consider briefly the case of a multivariate log
Gaussian Cox process and a rectangular lattice.

If the Cox process is moderately clustered and the intensity moderate, the very fine
scale properties of the Gaussian field are probably not so important and a rather coarse
discretization can be used. The choice of discretization also depends on the smoothness
of the realizations of the Gaussian field, see Fig. 2. The error due to discretization is e.g.
likely to be small when the Gaussian correlation function is used. For the simulations
presented in this paper we found it sufficient to use either65� 65 or 129� 129 grids.

Simulation of a log Gaussian Cox process involves two steps. First the Gaussian
field is simulated and secondly, given the Gaussian field~Y = (~yij)(i;j)2I , the inhomoge-
neous Poisson process can be simulated: either within each cellDij where the Poisson
process is homogeneous with intensity~�ij = exp(~yij), or by thinning a homogeneous
Poisson process with intensity~�max = maxij~�ij so that a Poisson point situated in the
ijth cell is retained with probability~�ij=~�max.

There are several methods available for simulation of a Gaussian random field, see
e.g. Lantúejoul (1994). The simulation method based on Cholesky decomposition of
the covariance matrix is too slow even for moderate grid sizes. We used another method
based on decomposition of the covariance matrix (see Subsection 6.1) or alternatively the
turning bands method (Matheron, 1973). In Subsection 6.2 we describe how simulations
conditional on the number of points can be obtained. Finally, in Subsection 6.3 we
briefly discuss how the Thomas and Matérn cluster processes studied in Section 4 are
simulated.

6.1 Simulation using diagonalization by the two-dimensional discrete Fourier
transform: A detailed description of this method in the univariate case and any lattice
dimensiond = 1; 2; . . . assuming only stationarity can be found in Wood and Chan
(1994). Below we summarize this for the two-dimensional case (the notation and the
results are also used in Sections 7 and 8). For simplicity we assume isotropy.

Suppose that an isotropic covariance functionc : 2 ! is given and we
wish to simulate a Gaussian field~Y = (~Yij)(i;j)2I with covariance matrix� =
(�ij;kl)(i;j);(k;l)2I = (c(jj(i; j)�(k; l)jj))(i;j);(k;l)2I (here we use a lexicographic ordering
of the indicesij). Note that� is block Toeplitz and block symmetric. Extend the lattice
I to Iext = f1=(2M); 1=M+1=(2M); . . . ; (2(M�1)�1)=M+1=(2M)g2 wrapped on a
torus. Letdik = min(ji�kj; 2(M�1)=M�ji�kj), (i; k) 2 Iext; and letd((i; j); (k; l)) =q
d2ik + d2jl denote the shortest distance on the torus between(i; j) and (k; l). The

symmetric matrixK = (�ij;kl)(i;j);(k;l)2Iext defined by�ij;kl = c(d((i; j); (k; l))) is
block circulant with2(M � 1) circulant blocks of dimension2(M � 1) � 2(M � 1).
Hence, by Theorem 5.8.1 in Davis (1979),

K =
�
�F2(M�1) 
 �F2(M�1)

�
E
�
F2(M�1) 
 F2(M�1)

�
(15)
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whereF2(M�1) 
 F2(M�1) is unitary andE = diag(eij ; (i; j) 2 Iext) is a diagonal
matrix of the eigenvalues forK. HereF2(M�1) = (

p
2(M � 1) exp(�i2�kl=(2(M �

1))))(k;l)2Iext is the (normalized)2(M�1)�2(M�1) discrete Fourier transform matrix,
‘�’ denotes complex conjugate, and
 is the Kronecker product.

Now, suppose thatK is positive semi-definite (i.e.K has nonnegative eigenvalues).
Then we can extend~Y to a Gaussian field~Yext = (~Yij)(i;j)2Iext with covariance matrix
K. Using the above decomposition ofK we find that

~Yext
D
= �D1=2A

�
�F2(M�1) 
 �F2(M�1)

�
where� � Nd(0; I) follows a d-dimensional standard normal distribution withd equal
to the rank ofK, D is a diagonal matrix given by the non-zero eigenvalues ofK, and
A is a certaind� (2(M � 1))2 complex matrix of rankd. If M � 1 is a power of two
(or three or five), the calculation of~Yext is only aO((2(M � 1))2log2((2(M � 1))2))
operation as the two-dimensional fast Fourier transform (see e.g. Press et al., 1988) can
be applied. Thereby a fast simulation algorithm is obtained.

Notice that the extension of the latticef1=(2M); 1=M+1=(2M); . . . ; (M�1)=M+
1=(2M)g2 to f1=(2M); 1=M + 1=(2M); . . . ; (2(M � 1) � 1)=M + 1=(2M)g2 is the
minimal extension which gives a block circulant matrixK. If K turns out not to be
positive semi-definite, it may help to use a larger extension (see Wood and Chan, 1994).
Also, if M�1 is not a power of two (or three or five), a larger extension can be applied
in order to use the two-dimensional fast Fourier transform.

The algorithm can straightforwardly be generalized to the case of a multivariate
Gaussian field~Y = ((Yij1; . . . ; Yijn))(i;j)2I , whereI is a M � N rectangular lattice
andn � 1. In this caseK becomes a4(M � 1)(N � 1)n� 4(M � 1)(N � 1)n block
circulant matrix given by2(M � 1) blocks, which in turn are block circulants and of
dimension2(N � 1)n� 2(N � 1)n. By combining (5.6.3), Theorem 5.6.4, and (3.2.2)
in Davis (1979) one obtains that

K =
�
�F2(M�1) 
 �F2(N�1) 
 �Fn

�
G
�
F2(M�1) 
 F2(N�1) 
 Fn

�
where G is a block diagonal matrix with4(M � 1)(N � 1) blocks of dimension
n � n. In the bivariate case, simulation of~Y thus amounts to a linear transformation
of 4(M � 1)(N � 1) independent two dimensional Gaussian vectors.

The method is fast and practically applicable. Problems with nonpositive semi-
definiteness ofK occurred very seldom, and were then due to slowly decaying corre-
lation functions like the stable correlation function (see Figure 1).

6.2 Conditional simulation: It may sometimes be desired to simulate the conditional
distribution ofX \ [0; 1[2 given thatN(X) = card(X \ [0; 1[2) = n for n 2 . Then
we need first to simulate a realization~y from ~Y jN(X) = n and secondly simulate
from XjN(X) = n; ~Y = ~y. The last step is performed by distributingn independent
points in theM2 grid cells, where a cellDij is chosen with a probability proportional
to ~�ij = exp(~yij); (i; j) 2 I, and the point subsequently placed at a uniformly sampled
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location in the chosen cell. Rejection sampling (see e.g. Ripley, 1987) is used for
the simulation of~Y jN(X) = n as follows. For the conditional density of~Y given
N(X) = n we have that

f(~y j n) / f(n j ~y)f(~y) � nn

n!
e�nf(~y):

The rejection sampling can thus be performed by generating realizations of~Y until a

realization~y is accepted with probability
�
��=n

�n
en���, where�� =

M�1P
i=0

M�1P
j=0

~�ij=M
2.

Considered�� as a random variable, the mean of�� approximates the intensity� of
X. Thus the acceptance rates are reasonably high ifn is close to� and the variance
of �� moderate.

6.3 Simulation of the Thomas and Matérn cluster processes: Procedures for sim-
ulation of the Thomas and Matérn cluster processes on a bounded regionA follow
straightforwardly from the definitions of these processes as Poisson cluster processes,
see Section 4. In order to avoid boundary effects the parent process is simulated on an
extended areaB containingA. The areaB is chosen so that offspring from a parent
outsideB falls intoA with a negligible probability. An approximate procedure for sim-
ulation conditional on the number of points can be obtained by using that the Thomas
and Mat́ern processes are Cox processes with intensity surface given by (10) and then
proceed as described in Subsection 6.2 above.

7 Parameter estimation and model checking

For simplicity we first restrict attention to the univariate case, but our methods for
estimation and model checking can also be used in the multivariate case, see Example
2 at the end of this section.

Suppose we have observed a point patternx = fx1; . . . ; xng within a bounded
planar windowW of areaA(W ). Under a homogeneous log Gaussian Cox model with
a correlation functionr�(�) the density ofXW = X \W with respect to a planar unit
Poisson process is

L(�; �; �) = E�;�;�

24exp
8<:
Z
W

(1� exp (Y (s)))ds

9=;
nY
1

exp (Y (xi))

35:
Except for very special models this likelihood is analytically intractable.

Considering this as a ‘missing data problem’ the likelihood can be approximated by
discretizingW as described in Section 6 and making importance sampling as follows:
The density of the Gaussian field~Y is proportional to

h�(~y) = exp

�
� 1

2�2
(~y � ~�)R(�)�1(~y � ~�)�

�
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where� = (�; �; �), R(�) is the correlation matrix (here assumed to be positive definite),
and� denotes transposition. For a given fixed parameter�0 = (�0; �0; �0) suppose that
~y(1); . . . ; ~y(M) is a sample from the distribution of~Y and ~y(1)(x); . . . ; ~y(M)(x) is a
sample from the conditional distribution of~Y givenXW = x (Section 8 describes how
the latter sample can be generated). Since the conditional distribution ofXW given ~Y
does not depend on�, it is easily seen from the results in Gelfand and Carlin (1991)
and Geyer (1994) that the Monte Carlo approximation of the log likelihood is

l(�) � const + log
1

M

MX
m=1

h�

�
~y(m)(x)

�
h�0

�
~y(m)(x)

� � log
1

M

MX
m=1

h�

�
~y(m)

�
h�0

�
~y(m)

� :

Actually we may replace~Y with the extended Gaussian field~Yext (see Section 6.1) for
which it is easier to invert the correlation matrix. We have no experience about how this
would work in practice, but we expect that multimodality of the likelihood may cause
problems for finding the (approximate) maximum likelihood estimate. Since only the
Gaussian density (up to scale) appears in the approximation of the log likelihood, there
may be some analog here to Ripley’s (1988) discussion on the difficulties associated
with likelihood analysis for spatial Gaussian processes.

Pseudo-likelihood (Besag 1977; Jensen and Møller, 1991) is not useful since a
closed expression of the density is not known even not up to multiplication with a
positive constant (so a closed expression of the socalled Papangelou conditional intensity
is not known). For the same reason we also doubt the usefulness of the more general
method of Takacs-Fiksel estimation (see e.g. Ripley, 1988, and the references therein).

Since the distribution of a log Gaussian Cox process is completely determined
by its first and second order properties we suggest instead to base the inference on
corresponding summary statistics as described in the following.

As a natural estimate of the intensity we shall use

�̂ = n=A(W ): (16)

This estimator is unbiased. Ifr�(a) ! 0 as a ! 1, then the ergodicity implies that
�̂ ! � almost surely asW extends to 2, cf. Theorem 3.

The parameters�2 > 0 and� > 0 are estimated by a minimum contrast method:
Assume henceforth that the correlation function is isotropic. Letĉ(�) denote a nonpara-
metric estimate of the covariance function. Then�̂2 and �̂ are chosen to minimize

a0Z
�

n
ĉ(a)� � �

�2r�(a)
��o2

da (17)

where0 � � < a0 and� > 0 are user specified parameters; in Examples 1 and 2 we
take� = min

i 6=j
jjxi � xj jj, while a0 and� are determined by the form of̂c(�) andr�(�).

These parameters must of course be chosen so that the terms in (17) are well-defined.
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For fixed � the minimum of (17) is obtained at

�̂2� = [B(�)=A(�)]1=� with B(�) =

a0Z
�

�
ĉ(a)r�(a)

	�
da ; A(�) =

a0Z
�

r�(a)
2�da

providedB(�) > 0; otherwise there exists no minimum. Inserting this into (17) and
using that� = exp(� + �2=2) give the estimates

�̂ = argmaxB(�)2=A(�) ; �̂2 = �̂2
�̂
; �̂ = log (�̂)� �̂2=2: (18)

Diggle (1983) describes a similar estimation procedure using theK-function

K(t) = 2�

tZ
0

ag(a)da ; t > 0

instead of the covariance function, but for the data considered later on we found that
there may be many local minima, and it may be difficult to find a global minimum.
The procedure in (18) is computationally much simpler; we need only to maximize
with respect to�, whereas Diggle’s procedure involves�2 as well. In our examples
the functionB(�)2=A(�) turned out to be unimodal.

As the nonparametric estimate of the covariance function we have usedĉ(�) =
logĝ(�) with

ĝ(a) =
1

2�a�̂2A(W )

X
i

X
j 6=i

kh(a� jjxi � xj jj)bij ; a < a� (19)

wherekh(�) is the Epanecnikov kernel

kh(a) =
3

4h

�
1� a2=h2

�
1[�h � a � h]

with bandwidthh > 0, bij is the proportion of the circumference of the circle with center
xi and radiusjjxi�xj jj lying within W , anda� is the circumradius ofW . The estimator
(19) and other estimators of the pair correlation function are discussed in Stoyan and
Stoyan (1994); in particular they discuss how to choose the bandwidth of the kernel.

To study how well our estimation procedure works we performed 20 simulations
from the model with an exponential covariance function where�2 = 2:0 and� = :05.
A scatter plot of the estimated values of� and �2 together with the true values is
shown in Fig. 7. There is a large variation in the estimate of�, but the mean values
of the 20 estimates are�� = :0513 and ��2 = 2:08, not far from the true values. The
other plot in Fig. 7 shows the mean covariance function�c (solid line) and upper and
lower envelopes for the empirically estimated covariance functions obtained from the 20
simulations. The values of�c are close to the exponential covariance function, especially
at small distances. Estimating the parameters from�c gives �̂2 = 2:145 and �̂ = :0461,
which indicates that a good estimate of the covariance function gives good parameter
estimates.
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Having estimated the parameters we may check our model assumptions by compar-
ing nonparametric estimators of various summary statistics with those obtained under
the estimated log Gaussian Cox model. We have considered the distribution functions
F andG of the distance to the nearest point inX from a fixed point in the plane and
a ’typical point’ in X, respectively. Under the log Gaussian Cox modelF = F�;�2;�

andG = G�;�2;� are given by

F�;�2;�(a) = 1� E�;�2;� exp

8><>:�
Z

jjsjj�a
eY (s)ds

9>=>;
and

G�;�2;�(a) = 1� e����
2=2E�;�2;�

264eY (0) exp

8><>:�
Z

jjsjj�a
eY (s)ds

9>=>;
375

where the mean values may be approximated by Monte Carlo.

As in Diggle (1983), Stoyan and Stoyan (1994), and Stoyan et al. (1995) we have
in Examples 1 and 2 compared nonparametric estimates ofF; G; L =

p
K=� based

on the data with those obtained by simulations under the estimated log Gaussian Cox
model. For short we call such nonparametric estimates for empiricalF , G, andL-
functions. Moreover, we have obtained a nonparametric estimate of the third-order
characteristicz in (5) by combining (7) with (16) and (19), and considered whether this
summary statistic varies around 1 in accordance with the result (6) for log Gaussian
Cox processes.

Example 1: The first data set consists of the locations of 126 Scots pine saplings in a
square plot of 10�10 m2. The pine forest has grown naturally in the Eastern Finland
and the data have previously been analyzed by Penttinenet al. (1992) and Stoyan and
Stoyan (1994), who both fitted a Matérn cluster process using theL-function both for
parameter estimation and model checking. The estimation in Penttinenet al. (1992)
was carried out by trial-and-error, while Stoyan and Stoyan (1994) used a minimum
contrast method. The fit in both cases seems quite good, see Fig. 11 in Penttinenet al.
(1992) and Fig. 131 in Stoyan and Stoyan (1994), but one may object to that the same
summary statistics have been used for both estimation and model checking.

Fig. 8 shows several characteristics for the pine data: The data normalized to a
unit square are shown in a). The logarithm of the estimated pair correlation function
is plotted in b) (solid line), and the shape of the curve suggests to use the exponential
covariance function. We estimated the parameters by minimizing (17) witha0 = 0:1
and� = 0:5, which are chosen to give more weight to values ofa close to zero. The
estimates arê� = 1=33 and �̂2 = 1:91. The dotted line in b) shows the covariance
function for the estimated model. The plot in c) shows the empiricalL-function for
the data (solid line) and upper and lower envelopes of theL-function for the fitted
model based on 19 simulations. This is the same as Stoyan and Stoyan (1994), Fig.
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131, and our model shows a better fit with respect to theL-function than the Mat́ern
cluster model. The empiricalL-function falls within the envelopes from the simulations
except for very small values oft. The plots in d) and e) show the nonparametric
estimatesF̂ andĜ based on the data against the mean of these estimates obtained from
99 simulations under the estimated model. The plots show a reasonable good fit to the
chosen model and̂F andĜ fall within the upper and lower envelopes based on the 99
simulations. For the Matérn cluster model fitted by Stoyan and Stoyan (1994) we have
also created plots similar to d) and e) which indicate that our model fits the data better.
Finally, f) shows a realization under the estimated log Gaussian Cox process.

We also used the third-order characteristicz to check our model assumptions. The
left plot in Fig. 9 shows the estimatedz for the data and two sets of envelopes based
on 20 unconditional simulations of the estimated log Gaussian Cox process and 20
simulations where we condition on the observed number of points. The plot gives
no reason to doubt the model no matter whether the ‘unconditional’ or ‘conditional’
envelopes are considered. The two sets of envelopes are not very different in this
situation where� is rather small and the correlation therefore not very strong. To check
the discriminatory power ofz we similarly calculated envelopes for the Matérn cluster
process estimated by Stoyan and Stoyan (1994), see the right plot in Fig. 9. The
estimatedz-function based on the data crosses the envelopes in an interval oft-values
and even though the large variability of the estimator for smallt makes it difficult to
make definitive conclusions, the plot raises serious doubt concerning the appropiateness
of the Matérn cluster process as a model for the data.

Example 2: In this example we study a bivariate data set consisting of two types of
trees, 219 spruces and 114 birches in a square plot of 50�50 m2. The data has been
collected by Kari Leinonen and Markku Nygren as a part of a larger data set where
also a very few pines were present and marks consisting of tree length and diameter
were included. These data has earlier been studied by Kuuluvainenet al. (1996). They
found that small trees are clustered, while larger trees are regularly distributed.

Fig. 10 a) shows the data normalized to unit area. The plot indicates clustering
and a positive dependence between the two types of trees. In Fig. 10 b) the empirical
covariance functionŝc22, ĉ11 and ĉ12 are plotted (solid line, from top to bottom) using
the equations (12) and (13) to obtainĉij = lnĝij . Hereĝjj(a) is the estimate (19) based
on the point patternxj = fxj1; . . . ; xjnjg of type j trees. Further,

ĝ12(a) =
A(W )

2�an1n2
f n2
n1 + n2

n1X
i=1

n2X
j=1

kh(a� jjx1i � x2j jj)bij+

n1
n1 + n2

n2X
i=1

n1X
j=1

kh(a� jjx2i � x1j jj)bijg

with the correction factorbij similarly defined as in (19), and where we have combined
kernel estimation with the way Lotwick and Silverman (1982) and Diggle (1983)
recommend to estimateK12(t) = 2�

R t
0 ag12(a)da; t > 0.
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Based on the plot of the empirical covariance functions we specify a model for
a bivariate log Gaussian Cox process with exponential covariance functionscij(a) =
�2ij exp(�a=�ij) and corresponding spectral densityCij(t) = �2ij=[2��ij(t

2 + ��2ij )1:5].
Estimating the parameters from the empirical covariance functions by minimizing (17)
gives �̂211 = 2:18; 1=�̂11 = 12:0; �̂222 = 1:65; 1=�̂22 = 16:0; �̂212 = 0:86; 1=�̂12 = 9:0.
The estimated covariance functions are shown as dotted lines in Fig. 10 b). This
indicates a good fit to the empirical covariance functions. We have moreover checked
that the condition (11) is fulfilled under the estimated model so that we have a valid
covariance matrix function.

However, plots of the functionF for each of the two types of trees show a poor
fit of the estimated model to the data as there seems to be more ‘empty space’ in
realizations of the estimated model than in the pattern a). As an example Fig. 10
c) shows the nonparametric estimate ofF22 based on birch data plotted against the
mean of the estimate obtained from 99 simulations under the estimated model. We
have also tried to fit models with covariance functions as in (14) withk = 2 terms
and various combinations of Gaussian, exponential and stable correlation functions, but
again there was too much empty space under the fitted models. This may be caused
by the regularity in the pattern of the larger trees, so one suggestion may be to include
‘repulsive’ pairwise interaction terms into the model as discussed at the end of Section
2. Another possibility is to include a thinning operation, cf. Diggle and Milne (1983)
and Diggle (1983).

8 Prediction and Bayesian inference

We conclude this paper by considering prediction of the unobserved Gaussian
process and intensity process under a given model for a univariate log Gaussian Cox
process when this is observed within a bounded window. We use an empirical Bayesian
approach, where the a posteriori distribution of the intensity process is obtained by
considering the Gaussian distribution as a prior which smoothes the intensity surface,
and where the prior may be estimated as described in Section 7. The posterior is not
analytically tractable so we use a Markov chain Monte Carlo algorithm to simulate the
posterior distribution whereby various posterior characteristics can be estimated. The
results are applied on the data set in Example 1 and we compare various Bayesian
estimators of the intensity process with a parametric kernel estimator studied in Diggle
(1985), Berman and Diggle (1989), and Cressie (1993). Ogata and Katsura (1988)
developed another objective Bayesian method for estimating the intensity function of
a marked inhomogeneous Poisson point process using spline functions. Other related
research but for Poisson (and more general) cluster processes include Lawson (1993),
Baddeley and Van Lieshout (1993), and Granville and Smith (1995), who consider
Bayesian estimation of cluster centres and cluster membership. Simultaneously with
the development of the material of this section, Heikkinen and Arjas (1996) have
been working with nonparametric Bayesian estimation of the intensity function of
inhomogeneous planar Poisson processes generalizing the method of Arjas and Gasbarra
(1994).
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Suppose that a realizationx of a log Gaussian Cox process is observed within a
bounded windowW (1) and we wish to predict the Gaussian process and the intensity
surface on the bounded setW � W (1). As in Section 6 we shall without loss
of generality assume thatW is the unit square and consider a finite subdivision of
W (1) and W (2) = W n W (1) into cells Dij of areaAij > 0; (i; j) 2 I, where
I = f1=(2M); 1=M + 1=(2M); . . . ; (M � 1)=M + 1=(2M)g2. Define the sublattices,
I(a) =W (a)\I; a = 1; 2. Further, we approximate the Gaussian fieldY restricted toW
by a Gaussian field~Y = (~Yij)(i;j)2I with mean vector~� = (�)(i;j)2I and a covariance
matrix � given by the covariance function ofY . As noticed in Subsection 6.1 we

can extend~Y to ~Yext =
�
~Yij

�
(i;j)2Iext

D
= �Q + ~�ext, whereIext = f1=(2M); 1=M +

1=(2M); . . . ; (2(M�1)�1)=M+1=(2M)g2, K given by (15) is assumed to be positive
semi-definite and of rankd, � � Nd(0; I), Q is a certaind� (2(M � 1))2 real matrix
of rank d, and ~�ext = (�)(i;j)2Iext . We shall later on explain why it (apart from ease
of exposition) may be preferred to use� instead of ~Yext.

Now, if f(jx) denotes the density of the conditional distribution of� given that
X \ W (1) = x,

log f(jx) = const(x)� 1

2
jjjj2 +

X
(i;j)2Iext

�
~yijnij � e~yijAij

�
(20)

wherenij = card(x \ Dij) is the number of points ofx contained in theijth cell
if (i; j) 2 I(1), and we setnij = Aij = 0 if (i; j) =2 I(1). Though this conditional
distribution is not defined in accordance to the covariance structure of the Gaussian
process outsideW , we shall refer to this as the a posteriori distribution of� given x;
the important point is that the marginal distribution of~Y under this posterior agrees with
the conditional distribution of~Y given X \W (1) = x. In the following the gradient
of the posterior

r() := @ log f(jx)=@ = � +
�
nij � e~yijAij

�
(i;j)2IextQ

�

plays a keyrole. It is easily seen that@r()=@� is strictly negative definite. Thus the
posterior is strictly log-concave.

For simulation of the posterior we use a Metropolis-adjusted Langevin algorithm
(MALA) as suggested by Besag (1994) in the discussion of Grenander and Miller (1994)
and further studied in Roberts and Tweedie (1997). This is a Metropolis-Hastings type
Markov chain Monte Carlo (MCMC) method inspired by the definition of a Langevin
diffusion through a stochastic differential equation which in the present context is

d�(t) = (h=2)r(�(t))dt+
p
hdB(t)

whereB(�) is standard Brownian motion andh > 0 is a user specified parameter (see
Example 1 below); the posterior�jx is a stationary distribution of this Markov process
�(�).

The MALA is given by two steps: First, if(m) is the current state of the chain,
a ‘proposal’ u(m+1) is generated from a multivariate normal distribution with mean
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�((m)) = (m) + (h=2)r((m)) and independent coordinates with common variance
h. In general, the use of gradient information in the proposal kernel may lead to
much faster convergence than for e.g. a random walk Metropolis chain (Roberts and
Rosenthal, 1995). Secondly, with probability

1 ^
f
�
u(m+1)jx

�
exp

�
�
������(m) � �

�
u(m+1)

�������2=(2h)�
f
�
(m)jx� exp������u(m+1) � �

�
(m)

�����2=(2h)�
the next state becomes(m+1) = u(m+1); otherwise(m+1) = (m). This gives an
irreducible and aperiodic Markov chain with the posterior as the stationary distribution,
but it is not geometrically ergodic as the posterior has lighter tails than the Gaussian
distribution (this can formally be verified using Theorem 4.2 in Roberts and Tweedie,
1996b).

Briefly, the problem with the light tails is that the Markov chain may leave the
center of the posterior for a very long time, sincejjr()jj may become extremely large
if  is far away from the mode of the posterior. As suggested in Roberts and Tweedie
(1996b) more robust geometric ergodicity properties may be obtained by truncating the
gradient in the mean of the proposal kernel: In the Appendix we show that ifr()
is replaced by

r()trunc = � + �
nij �

�
H ^ e~yij�Aij

�
(i;j)2IextQ

� (21)

for some constantH > 0, then the ‘truncated MALA’ becomes geometrically ergodic
when0 < h < 2. However, if a sensible value ofh is chosen, the undesirable properties
of the (untruncated) MALA may not be a problem. In our examples the chain behaved
very nicely and a truncation of the gradient (for a suitably largeH) would not have
made a difference.

Note that� andK do not need to be strictly positive definite. This is one reason for
using� instead of~Y when the posterior is considered. In the case whereK is strictly
positive definite we have compared MALA’s for simulating the conditional distribution
of � respective~Y given x, where the gradient in the latter case is given by

r(~yext) = �(~yext � ~�ext)K
�1 +

�
nij � e~yijAij

�
(i;j)2Iext :

For the data in Example 1 considered below we found that in the former case the algo-
rithm mixes much faster (Fig. 11), so this is another reason to prefer the ‘parametriza-
tion’ given by �.

By simulating the posterior we can obtain MCMC estimates of the posterior mean,
credibility intervals, etc. for the Gaussian process and intensity surface. Conditional
simulations of the unobserved partX \W (2) of the point process givenX \W (1) = x
can also be obtained. To do this one generates first a realization from the posterior
distribution of the intensity surface and given this realization,X \W (2) is simulated
along the same lines as described in the beginning of Section 6.
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Maximum a posteriori (MAP) estimation is also possible. Sincef(jx) is strictly
log-concave and its tails tend to zero at infinity, the MAP-estimateMAP is the unique
solution tor() = 0. Because of the linear relationship between~Yext and �, the
MAP-estimate of~Yext is simply given byyMAP

ext = MAPQ+ ~�ext. Note that the MAP-
estimateyMAP of ~Y agrees withyMAP

ext restricted toI. It can be shown thatyMAP
ext

restricted toI(2) is the same as the predictor of~Y (2) =
�
~Y
(2)
ij

�
(i;j)2I(2)

obtained from

‘data’ ~Y (1) =
�
~yMAP
ij

�
(i;j)2I(1)

using kriging (see e.g. Cressie, 1993).

The conditional density of the intensity surface~�ext = (exp( ~Yij))(i;j)2Iext (with
respect tod-dimensional Hausdorff measure with carrier space of dimension(2(M �
1))2) is not log-concave and(exp(yMAP

ij ))(i;j)2I is clearly not the MAP-estimate of
the intensity surface. IfK is strictly positive definite, then using an obvious notation,
f~Yext(~yextjx) is strictly log-concave, and so

h(~yext) = f~�ext
((exp(~yij))(i;j)2Iext jx) = f ~Yext(~yextjx)=

Y
(i;j)2Iext

~yij

is strictly log-concave. Consequently, in this case the MAP-estimate�MAP of the
intensity surface onW is the same as�MAP

ext = (exp (�yij))(i;j)2Iext restricted toI,
where �y is the unique solution tor(~yext) = (1; . . . ; 1). Note here that since the log
Gaussian distribution is heavy tailed and skewed,�MAP is not necessarily a sensible
estimator of the intensity surface (see also the discussion in Example 1 below).

We have used a discrete gradient ascent algorithm for findingMAP , since this
algorithm involves only the calculation of the gradient: Given an initial value(0) the

iteration is given by(m+1) = (m)+�r
�
(m)

�
; m = 0; 1; . . . , where� > 0 is a user

specified parameter. The algorithm for finding�y is similar, except that in each iteration
we replacer by r � (1; . . . ; 1). A too high value of� may cause the algorithm to
diverge – we used in Example 1 the modest value� = :1.

Example 1 (continued): We now consider estimation of the Gaussian process and the
intensity surface on a gridI = f0; . . . ; 64g2 under the log Gaussian Cox process which
was estimated in Example 1, Section 7. In this exampleW = W (1) = [0; 1)2.

After some preliminary runs of the MALA the parameterh was adjusted to be:06
in order to obtain an acceptance rate close to the optimal rate:574 given in Roberts and
Rosenthal (1995) (they formally prove their results for target distributions with i.i.d.
components, but notice that various generalizations are possible and the optimal rate
appear to be quite robust over changes in the model). Then a sample of length300:000
was generated by the MALA and we used a subsample of this (with spacing equal to
10) for obtaining Monte Carlo estimates of the various characteristics of the posterior.
These estimates are reported below.

To study the convergence properties and to compare the different implementations of
the MALA we have considered various plots of timeseries and estimated autocorrelations
for selected cells on the initial as well as the extended lattice. It appears from these
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plots that the potential problem related to geometrical ergodicity of the MALA is rather
hypothetical. As an illustration Fig. 11 shows timeseries and estimated autocorrelations
for a subsample of~Y98;98 when the invariant distribution of the MALA is either�jx or
~Yextjx. In the former case the autocorrelations die out much faster.

Monte Carlo posterior means of the Gaussian process and the intensity surface are
shown in Fig. 12. For comparison we have also included Diggle’s (1985) nonparametric
kernel estimate of the intensity surface. For the uniform kernel given by the uniform
density on a disc, the band width of the kernel can be chosen by minimization of an
estimate of the mean square error (see Diggle, 1985, and Berman and Diggle, 1989).
Instead of the uniform kernel we actually used a planar Epanecnikov kernel since the
estimate obtained with this kernel has a more suitable smooth appearance. The band
width 0:089 for the planar Epanecnikov kernel was obtained by calibration of the chosen
band width for the uniform kernel as suggested in Diggle (1985). The posterior mean of
the intensity surface is quite peaked since the minimum and maximum values are56:86
and 2724:26. This is not surprising recalling the heavytailedness of the log Gaussian
distribution. The kernel estimate is less peaked with a range0-716:37. Integration of
the Monte Carlo posterior mean of the intensity surface and the kernel estimate over the
unit square yields125:66 and 126:01, respectively, so the expected number of points
for the inhomogeneous Poisson processes with intensity surfaces given by the posterior
mean respective the kernel estimate are practically equal and very near to the observed
number of points (126). We have also in Fig. 12 included a plot of the logarithm to the
Monte Carlo posterior mean of the intensity surface as this gives a better impression of
the variability for intermediate values of the posterior mean.

The application of MCMC also facilitates assessment of posterior uncertainty. The
estimated posterior variance of the Gaussian process,V ar( ~Yij jx); (i; j) 2 I, is shown
in the left plot in Fig. 13. The largest variance is1:76 whilst the smallest is:69. By
comparing this plot with the Monte Carlo posterior mean of the intensity surface in Fig.
12, we see that the posterior variance is smallest where the posterior mean is largest
and vice versa. For the posterior distribution of the intensity surface we have further
for selected cellsDij estimated the10% and90% quantiles. These credibility intervals
are shown in Table 2 when(i; j) are given by(13a; 13b); a; b = 1; . . . ; 4, and(14; 36).
The credibility interval forD14;36 is largest as this cell is situated in a peak ofE(~�ij jx).

As an illustration of the simulation method on the extended lattice and the effect
of wrapping the extended Gaussian field on a torus, the right plot in Fig. 13 shows
the Monte Carlo posterior mean of~Yext. Notice that outside the original field and
away from the boundaries the estimated posterior mean is constant and equal to the
unconditional mean.

Finally, we have considered MAP-estimation of the Gaussian process and the
intensity process. The extended matrixK was strictly positive definite, andyMAP

ext

and�MAP
ext were obtained by iterating the discrete gradient ascent algorithm until the

gradient was practically zero (i.e. until its coordinates were numerically less than
10�5). The minimum and maximum values ofyMAP are 3:53 and 7:96, while the
corresponding values of the estimated posterior meansE( ~Yi;j jx); (i; j) 2 I, are3:24
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and7:59. Actually, yMAP is very similar to these posterior means, so we have omitted
the plot of yMAP . Since max

(i;j)2I
�MAP
ij � 10�15 the MAP-estimate is clearly a totally

unreasonable estimate of the intensity surface. This may as noted before be due to the
skewness and heavytailedness of the log Gaussian distribution combined with the fact
that the intensity surface is a random field of correlated log Gaussian random variates.

In Example 1 the posterior mean and the nonparametric kernel estimate gave very
different estimates of the intensity surface. To study these estimators under known
conditions we simulated a point pattern on the unit square from the log Gaussian Cox
process with exponential correlation function and parameters� = 4; �2 = 2; � = :1.
Using the same procedure as in Example 1, Section 7, the estimates of�; �2; � are
3:78; 2:46; :077, and the procedure for choosing the bandwidth yields:061. Plots of
the true intensity surface, the Monte Carlo posterior mean of the intensity surface under
the estimated model, and the kernel estimate are shown in Fig. 14. In this case the two
estimates look much more similar than in Example 1. The large difference between the
intensity surface estimates in Example 1 may be explained by the considerably larger
bandwidth which was used in the kernel estimate in Example 1, and which yielded an
oversmoothed estimate of the intensity surface. In Fig. 14 the range of the true intensity
surface, the Monte Carlo posterior mean, and the kernel estimate are:44-7802:62, 21:27-
7653:15, and0-4898:43, respectively. Integration of the estimates give150:06 for the
posterior mean and147:69 for the kernel estimate, while the integral of the true surface
is 158:32, and the true and estimated intensity are� = 148:41 and �̂ = 150.

In conclusion, at least for the particular cases of Example 1 and the simulation
study, the posterior mean seems to be the better estimate.
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Appendix: Geometrical ergodicity of the truncated MALA

Below we prove that the truncated MALA discussed in Section 8 is geometrically
ergodic when0 < h < 2. For simplicity and without loss of generality we shall assume
that� = 0. Letting ~ = Q, then by (20) the logarithm of the posterior density is

log f(jx) = const(x)� 1

2
jjjj2 + n~� �

X
(i;j)2Iext

e~ijAij

wheren = (nij)(i;j)2Iext, and by (21) the truncated gradient is

r()trunc = � + (n�R(~))Q�
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where
R(~) =

��
H ^ e~ij

�
Aij

�
(i;j)2Iext:

In the following g will denote a measurable function mappingd into . The results
concerning geometrical ergodicity are the following:

Theorem 4. When0 < h < 2 the truncated MALA isVs-uniformly ergodic for
Vs() = exp(skk) and anys � 0, i.e, there exist0 < Rs < 1 and 0 < �s < 1
such that for any 2 d,������

������P (m)(; �)�
Z
�
f(�jx)d�

������
������
Vs

� Vs()Rs�
m
s ; m � 1:

HereP (m) denotes them-step transition kernel of the truncated MALA and for a signed
measure�, k�kVs = supjgj�Vs j

R
g(�)�(d�)j.

Corollary. Suppose thatjg()j � exp(skk=2);  2 d, and that(�l)l�0 is generated
from the truncated MALA where0 < h < 2 and the initial distribution of�0 is arbitrary.

Define the Monte Carlo approximation��m =
mP
1
g(�l)=m of the mean� = Eg(�0)

calculated for the stationary chain. Assuming first that the density of�0 is f(�jx), then

�2
g := lim

m!1mV ar
�
��m
�
= V ar(g(�0)) + 2

mX
l=1

Cov(g(�0); g(�l)) <1:

Moreover, if�2g > 0, we have a central limit theorem independently of the chosen initial
distribution of �0: �

��m � �
�
=
q
�2g=m

D! N(0; 1) as m!1:

Proof. Let c() =  + (h=2)r()trunc and letq(; �) be the density ofNd(c(); hId).
Then (36) in Roberts and Tweedie (1996b) holds sincen�R(~)Q� is bounded. Since
the proof of Theorem 4.1 in Roberts and Tweedie (1996b) is also applicable in our
situation, the geometrical ergodicity then follows if we can show that the truncated
MALA ‘converges inwards’. More precisely let as in Roberts and Tweedie (1996b),
I() = f� : k�k � kkg andA() = f� : f(jx)q(; �) � f(�jx)q(�; )g: Then we
need to show that Z

A()4I()
q(; �)d� ! 0 as kk ! 1:

Here4 denotes symmetric difference, i.e.A4B = [A n B] [ [B n A].

Note that for any� > 0 we can chooseS� such that
R

dnB�()

q(; �)d� < � where

B�() = f� : k� � c()k � S�g. ThusZ
A()4I()

q(; �)d� �
Z
(A()4I())\B�()

q(; �)d� + �:
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Since

� 2 B�()) k�k � k� � c()k+ kc()k � j1� h=2jkk+ S� + constant

we have forkk sufficiently large thatB�() � I() so that(A()4I()) \ B�() =
B�() n A() . It is therefore enough to show that whenkk is sufficiently large then
� 2 B�() implies that� 2 A().

It is straightforwardly seen that the inequality which defines the setA() is
equivalent toJ1 + J2 + J3 + J4 + J5 � 0 where

J1 = (h=8)
�
jjjj2 � jj�jj2

�
; J2 = (h=8)

�
jj(n� R(~))Q�jj2 �

�������n�R
�
~�
��

Q�
������2�;

J3 =
X

(i;j)2Iext

Aij

�
e~ij � e

~�ij

�
; J4 =

�
~ � ~�

��
R(~) +R

�
~�
���

=2;

J5 = (h=4)
h
~�
�
n�R

�
~�
���

� ~(n� R(~))�
i

and ~� = �Q. If � 2 B�() andkk is sufficiently large, thenJ1 + J2 � 0 sinceJ2 is
bounded and0 < h < 2. We therefore just need to show thatJ3 + J4 + J5 � 0 for
� 2 B�() and kk sufficiently large.

If kk ! 1 then alsok~k ! 1 becauseQ is of full rank. Furthermore, if
� 2 B�(), then ~�ij = (1 � h=2)~ij + (v(�)Q)ij wherev(�) is a uniformly bounded
vector. Since0 < h < 2, we have therefore that~ij ! 1 implies that~�ij ! 1,
while ~ij ! �1 implies that~�ij ! �1, where in both casesj~ijj ! 1 at a rate
faster thanj~�ij j, since ~ij � ~�ij is of the order(h=2)~ij asymptotically. Let now
B = f(i; j) 2 Iext : k~ijk 6! 1g. ThenJ3 + J4 + J5 can be written asX

(i;j)2IextnB
fAij

�
e~ij � e

~�ij

�
+
�
~ij � ~�ij

�
[HAije

~ij=
�
H _ e~ij

�
+

HAije
~�ij=

�
H _ e

~�ij

�
]=2 + (h=4)[~�ij

�
nij �HAije

~�ij=
�
H _ e

~�ij

��
�

~ij
�
nij �HAije

~ij=
�
H _ e~ij

��
]g+H

�
B; ~; ~�

�
whereH(B; ~; ~�) is a finite sum of bounded terms. Since for each(i; j) 2 Iext nB the
corresponding termf. . .g in the sum converges to1 whenk~k ! 1, the proof of the
theorem is completed. The corollary is a direct consequence of Theorem 4.1 in Roberts
and Tweedie (1996a).
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1. Gaussian: exp(�(a=�)2) 5. Hyperbolic: (1 + a=�)�1

2. Exponential: exp(�a=�) 6. Bessel: exp(�(a=�)2)J0(a= �)

3. Cardinal sine: sin(a=�)=(a=�) 7. Spherical: 1(a=� < 1) � [(a=�)3=2+
4. Stable: exp(�pa=�) 1� (3a=(2�))]

Table 1. Correlation functions.J0 is the Bessel function of the first kind of order zero.
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i = 13 i = 26 i = 39 i = 52

7.0-181.3 26.6-546.2 7.4-190.4 28.6-541.3
j = 52

78.1 235.0 83.0 234.5

7.9-207.5 8.8-218.5 8.0-215.3 8.0-207.3
j = 39

89.9 95.7 93.0 89.0

6.5-173.3 11.5-282.0 11.6-282.9 6.7-170.4
j = 26

74.3 119.2 119.8 73.2

17.2-380.3 12.9-311.4 10.5-248.4 5.0-138.2
j = 13

163.2 130.6 105.2 60.7

363.3-3733.3(i; j) =
(36; 14) 1734.1

Table 2. Example 1. Estimated 80%-credibility intervals and posterior means of the intensity surface at selected
cellsCij organized in accordance with Figure 11, where(i; j) = (0; 0); (0; 64); (64; 0); (64; 64) correspond to the
lower left, upper left, lower right, and upper right cells.
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Fig. 1. Upper row, a)-d): Various pair correlation functions with varying values of� (solid line = smallest value
of �) when� = 1. Lower row: e), f) pair correlation functions for the Thomas and Matérn cluster processes. g),
h) Gaussian and exponential correlation functions with� as in the upper row.
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Fig. 2. Simulated realizations of Gaussian random fields with� = 1. Left to right: Gaussian� = 0:172, exponential
� = 0:143, cardinal sine� = 0:094, stable� = 0:071.
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Fig. 3. Simulations of log Gaussian Cox processes conditional on that the number of points is 148. First column:
Gaussian correlation function. Second column: Exponential. Third column: Cardinal sine. Fourth column: Stable.
First row: Same values of parameters as in Figure 2, i.e.�2 = 1 and� = 0:172; 0:143; 0:094; 0:071 (left to right).
Second row:�2 = 2:4, � = 0:110; 0:100; 0:053; 0:049. Third row: �2 = 2:4, � = 0:057; 0:050; 0:027; 0:020.
Mean and variance of the number of points are equal in each row.
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Fig. 5. Left: Dotted lines: Average and envelopes for the nonparametric estimator ofF based on 100 simulations of
the Thomas process. Solid lines: The same but for the log Gaussian Cox process with Gaussian correlation function.
Right: The same as the left plot but withF substituted byG.
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Fig. 6. Left: Gaussian random field with exponential correlation function,�2 = 2 and � = 0:1. Middle:
bivariate log Gaussian Cox process,�1 = �2 = 2:5, �1 = �2 = 2. Right: Bivariate log Gaussian Cox process,
�1 = �2 = 2:5, �1 = ��2 = 2.
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Fig. 8. Example 1. Several characteristics for the pine data (see the text for explanations).
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Fig. 9. Example 1. Estimate of z based on the data (solid line) and ‘conditional’ envelopes (— — — ) and
‘unconditional’ envelopes (- - - - -) based on 20 simulations. Left: Log Gaussian Cox process. Right: Matérn
cluster process.
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Fig. 10. Example 2. a) Plot of data, spruces marked with ‘�’ and birches marked with ‘x’. b) Empirical covariance
functions (solid line), from top̂c22, ĉ11, ĉ12, and covariance functions for the fitted model (dotted line). c) Empirical
F̂22 (solid line) together with lower and upper envelopes (dotted line) plotted against the mean of 99 simulations
from the fitted model.
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Fig. 11. Example 1. Upper plots: Timeseries (left) and estimated autocorrelations (right) for~Y98;98jx obtained by
transforming a subsample of�98;98jx (spacing = 10) generated by MALA. Lower row: Same as upper row but no
transformation is used, i.e.~Y98;98jx is generated directly by MALA.
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Fig. 12. Example 1. Upper left plot: Monte Carlo posterior mean of the Gaussian field. Upper right plot: Monte
Carlo posterior mean of the intensity surface. Lower left plot: Logarithm to the upper right plot. Lower right plot:
Diggle’s nonparametric kernel estimate of the intensity surface.
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Fig. 13. Example 1. Left: Monte Carlo posterior variance of the Gaussian field on the original lattice. Right:
Monte Carlo posterior mean of the Gaussian field on the extended lattice.

47



Fig. 14. Simulation study. Upper left plot: True Gaussian surface. Upper right plot: True intensity surface. Lower
left plot: Monte Carlo posterior mean of the intensity surface. Lower right plot: Diggle’s nonparametric kernel
estimate.
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