
Topic 14: Maximum Likelihood Estimation

November, 2009

As before, we begin with a sample X = (X1, . . . , Xn) of random variables chosen according to one of a family
of probabilities Pθ.

In addition, f(x|θ), x = (x1, . . . , xn) will be used to denote the density function for the data when θ is the true
state of nature.

Definition 1. The likelihood function is the density function regarded as a function of θ.

L(θ|x) = f(x|θ), θ ∈ Θ. (1)

The maximum likelihood estimator (MLE),

θ̂(x) = arg max
θ

L(θ|x). (2)

Note that if θ̂(x) is a maximum likelihood estimator for θ, then g(θ̂(x)) is a maximum likelihood estimator for

g(θ). For example, if θ is a parameter for the variance and θ̂ is the maximum likelihood estimator, then
√
θ̂ is the

maximum likelihood estimator for the standard deviation. This flexibility in estimation criterion seen here is not
available in the case of unbiased estimators.

Typically, maximizing the score function ln L(θ|x) will be easier.

1 Examples
Example 2 (Bernoulli trials). If the experiment consists of n Bernoulli trial with success probability θ, then

L(θ|x) = θx1(1− θ)(1−x1) · · · θxn(1− θ)(1−xn) = θ(x1+···+xn)(1− θ)n−(x1+···+xn).

ln L(θ|x) = ln θ(
n∑
i=1

xi) + ln(1− θ)(n−
n∑
i=1

xi) = nx̄ ln θ + n(1− x̄) ln(1− θ).

∂

∂θ
ln L(θ|x) = n

(
x̄

θ
− 1− x̄

1− θ

)
.

This equals zero when θ = x̄. Check that this is a maximum. Thus,

θ̂(x) = x̄.

Example 3 (Normal data). Maximum likelihood estimation can be applied to a vector valued parameter. For a simple
random sample of n normal random variables,

L(µ, σ2|x) =
(

1√
2πσ2

exp
−(x1 − µ)2

2σ2

)
· · ·
(

1√
2πσ2

exp
−(xn − µ)2

2σ2

)
=

1√
(2πσ2)n

exp− 1
2σ2

n∑
i=1

(xi − µ)2.
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Figure 1: Likelihood function (top row) and its logarithm, the score function, (bottom row) for Bernouli trials. The left column is based on 20 trials
having 8 and 11 successes. The right column is based on 40 trials having 16 and 22 successes. Notice that the maximum likelihood is approximately
10−6 for 20 trials and 10−12 for 40. Note that the peaks are more narrow for 40 trials rather than 20.
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ln L(µ, σ2|x) = −n
2

ln 2πσ2 − 1
2σ2

n∑
i=1

(xi − µ)2.

∂

∂µ
ln L(µ, σ2|x) =

1
σ2

n∑
i=1

(xi − µ) = .
1
σ2
n(x̄− µ)

Because the second partial derivative with respect to µ is negative,

µ̂(x) = x̄

is the maximum likelihood estimator.

∂

∂σ2
ln L(µ, σ2|x) = − n

σ2
+

1
(σ2)2

n∑
i=1

(xi − µ)2 =
n

(σ2)2

(
σ2 − 1

n

n∑
i=1

(xi − µ)2
)
.

Recalling that µ̂(x) = x̄, we obtain

σ̂2(x) =
1
n

n∑
i=1

(xi − x̂)2.

Note that the maximum likelihood estimator is a biased estimator.

Example 4 (Linear regression). Our data is n observations with one explanatory variable and one response variable.
The model is that

yi = α+ βxi + εi

where the εi are independent mean 0 normal random variable. The (unknown) variance is σ2. The likelihood function

L(α, β, σ2|y,x) =
1√

(2πσ2)n
exp− 1

2σ2

n∑
i=1

(yi − (α+ βxi))2.

ln L(α, β, σ2|y,x) = −n
2

ln 2πσ2 − 1
2σ2

n∑
i=1

(yi − (α+ βxi))2.

This, the maximum likelihood estimators α̂ and β̂ also the least square estimator. The predicted value for the response
variable

ŷi = α̂+ β̂xi.

The maximum likelihood estimator for σ2 is

σ̂2
MLE =

1
n

n∑
k=1

(yi − ŷi)2.

The unbiased estimator is

σ̂2
U =

1
n− 2

n∑
k=1

(yi − ŷi)2.

For the measurements on the lengths in centimeters of the femur and humerus for the five specimens of Archeopteryx,
we have the following R output for linear regression.

> femur<-c(38,56,59,64,74)
> humerus<-c(41,63,70,72,84)
> summary(lm(humerus˜femur))

Call:
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lm(formula = humerus ˜ femur)

Residuals:
1 2 3 4 5

-0.8226 -0.3668 3.0425 -0.9420 -0.9110

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.65959 4.45896 -0.821 0.471944
femur 1.19690 0.07509 15.941 0.000537 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.982 on 3 degrees of freedom
Multiple R-squared: 0.9883,Adjusted R-squared: 0.9844
F-statistic: 254.1 on 1 and 3 DF, p-value: 0.0005368

The residual standard error of 1.982 centimeters is obtained by squaring the 5 residuals, dividing by 3 = 5 − 2
and taking a square root.

Example 5 (Uniform random variables). If our data X = (X1, . . . , Xn) are a simple random sample drawn from
uniformly distributed random variable whose maximum value θ is unknown, then each random variable has density

f(x|θ) =
{

1/θ if 0 ≤ x ≤ θ,
0 otherwise.

Therefore, the likelihood

L(θ|x) =
{

1/θn if, for all i, 0 ≤ xi ≤ θ,
0 otherwise.

Consequently, to maximize L(θ|x), we should minimize the value of θn in the first alternative for the likelihood. This
is achieved by taking

θ̂(x) = max
1≤i≤n

xi.

However,
θ̂(X) = max

1≤i≤n
Xi < θ

and the maximum likelihood estimator is biased.
For 0 ≤ x ≤ θ, the distribution of X(n) = max1≤i≤nXi is

F(n)(x) = P{ max
1≤i≤n

Xi ≤ x} = P{X1 ≤ x}n = (x/θ)n.

Thus, the density

f(n)(x) =
nxn−1

θn
.

The mean
EθX(n) =

n

n+ 1
θ.

and thus

d(X) =
n+ 1
n

X(n)

is an unbiased estimator of θ.
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2 Asymptotic Properties
Much of the attraction of maximum likelihood estimators is based on their properties for large sample sizes.

1. Consistency If θ0 is the state of nature, then

L(θ0|X) > L(θ|X)

if and only if
1
n

n∑
i=1

ln
f(Xi|θ0)
f(Xi|θ)

> 0.

By the strong law of large numbers, this sum converges to

Eθ0

[
ln
f(X1|θ0)
f(X1|θ)

]
.

which is greater than 0. From this, we obtain

θ̂(X)→ θ0 as n→∞.

We call this property of the estimator consistency.

2. Asymptotic normality and efficiency Under some assumptions that is meant to insure some regularity, a central
limit theorem holds. Here we have √

n(θ̂(X)− θ0)

converges in distribution as n→∞ to a normal random variable with mean 0 and variance 1/I(θ0), the Fisher
information for one observation. Thus

Varθ0(θ̂(X)) ≈ 1
nI(θ0)

,

the lowest possible under the Crámer-Rao lower bound. This property is called asymptotic efficiency.

3. Properties of the log likelihood surface. For large sample sizes, the variance of an MLE of a single unknown
parameter is approximately the negative of the reciprocal of the the Fisher information

I(θ) = −E
[
∂2

∂θ2
lnL(θ|X)

]
.

Thus, the estimate of the variance given data x

σ̂2 = −1
/ ∂2

∂θ2
lnL(θ̂|x).

the negative reciprocal of the second derivative, also known as the curvature, of the log-likelihood function
evaluated at the MLE.

If the curvature is small, then the likelihood surface is flat around its maximum value (the MLE). If the curvature
is large and thus the variance is small, the likelihood is strongly curved at the maximum.

For a multidimensional parameter space θ = (θ1, θ2, . . . , θn), Fisher information I(θ) is a matrix, the ij-th
entry is

I(θi, θj) = Eθ

[
∂

∂θi
lnL(θ|X)

∂

∂θj
lnL(θ|X)

]
= −Eθ

[
∂2

∂θi∂θj
lnL(θ|X)

]
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Example 6. To obtain the maximum likelihood estimate for the gamma family of random variables, write

L(α, β|x) =
(
βα

Γ(α)
xα−1

1 e−βx1

)
· · ·
(
βα

Γ(α)
xα−1
n e−βxn

)
.

ln L(α, β|x) = n(α lnβ − ln Γ(α)) + (α− 1)
n∑
i=1

lnxi − β
n∑
i=1

xi.

To determine the parameters that maximize the likelihood, solve the equations

∂

∂α
ln L(α̂, β̂|x) = n(ln β̂ − d

dα
ln Γ(α̂)) +

n∑
i=1

lnxi = 0, lnx =
d

dα
ln Γ(α̂)− ln β̂

and
∂

∂β
ln L(α̂, β̂|x) = n

α̂

β̂
−

n∑
i=1

xi = 0, x̄ =
α̂

β̂
.

To compute the Fisher information matrix note that

I(α, β)11 = − ∂2

∂α2
ln L(α, β|x) = n

d2

dα2
ln Γ(α), I(α, β)22 = − ∂2

∂β2
ln L(α, β|x) = n

α

β2
,

I(α, β)12 = − ∂2

∂α∂β
ln L(α, β|x) = −n 1

β
.

This give a Fisher information matrix

I(α, β) = n

(
d2

dα2 ln Γ(α) − 1
β

− 1
β

α
β2

)
.

The inverse

I(α, β)−1 =
1

nα( d2

dα2 ln Γ(α)− 1)

(
α β

β β2 d2

dα2 ln Γ(α)

)
.

For the example for the distribution of fitness effects α = 0.23 and β = 5.35 and n = 100, and

I(0.23, 5.35)−1 =
1

100(0.23)(19.12804)

(
0.23 5.35
5.35 5.352(20.12804)

)
=
(

0.0001202 0.01216
0.01216 1.3095

)
.

Var(0.23,5.35)(α̂) ≈ 0.0001202, Var(0.23,5.35)(β̂) ≈ 1.3095.

Compare this to the empirical values of 0.0662 and 2.046 for the method of moments
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