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Here, we shall assume that the random variables under consideration have positive and finite variance.

One simple way to assess the relationship between two random variables X and Y is to compute their
covariance.

Cov(X,Y ) = E[(X − µx)(Y − µy)].

Exercise 1. Cov(aX + b, cY + d) = acCov(X,Y ). and

Var(aX + cY ) = a2Var(X) + 2acCov(X,Y ) + c2Var(Y ). (1)

As with the variance, we have an alternative definition of covariance.

Cov(X,Y ) = EXY − µY EX − µXEY + µXµY = EXY − µXmuY .

Example 2. For the joint density example,
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The correlation is the covariance of the standardized version of the random variables.

ρX,Y = E

[(
X − µX

σX

)(
Y − µY

σY

)]
=

Cov(X,Y )
σXσY

In the example,
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and

ρX,Y =
−1/225
11/150

= − 2
33

= −0.06.

We can write equation (1) with a = 1 as

σ2
X+cY = σ2

X + 2ρX,Y σXσY c+ σ2
Y c

2.

This must be nonnegative for all values of c. Thus, by considering the quadratic formula, we have that
the discriminate

0 ≥ (2ρX,Y σXσY )2 − 4σ2
Xσ

2
Y = (ρ2

X,Y − 1)4σ2
Xσ

2
Y or ρ2

X,Y ≤ 1.

Consequently,
−1 ≤ ρX,Y ≤ 1.

When we have |ρX,Y | = 1, we also have for some value of c that

σ2
X+cY = 0.

In this case, X + cY is a constant random variable and X and Y are linearly related. In this case, the sign
of ρX,Y depends on the sign of the linear relationship.

Exercise 3. Var (
∑n

i=1 aiXi) =
∑n

i=1

∑n
j=1 aiajCov(Xi, Xj).

Example 4 (variance of a hypergeometric). Consider an urn with B blue balls and G green balls. Remove
K and let the random variable X denote the number of blue balls. Let

Xi =
{

0 if the i-th ball is green,
1 if the i-th ball is blue.

Then, X = X1 +X2 + · · ·+XK . First, note that Xi is a Bernoulli random variable. EXi = B/(B+G) and
Var(Xi) = BG/(B +G)2. Next, for the K(K − 1) terms with i 6= j,

E[XiXj ] = P{Xi = 1, Xj = 1} = P{Xi = 1|Xj = 1}P{Xj = 1} =
B − 1

B +G− 1
· B

B +G
.

Thus,
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=
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)
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and using the formula in the previous exercise with the ai = 1,

Var(X) = K
BG

(B +G)2
+K(K − 1)

(
−BG

(B +G)2(B +G− 1)

)
= K

BG

(B +G)2

(
1− K − 1

B +G− 1

)
.

To simplify the appearance of this expression, let N = K+G be the total number of balls and p = B/(B+G)
be the proportion of the total number of balls that are blue. Then,

Var(X) = Kp(1− p)N −K
N − 1

.

Note that if K << N , then the variance is essentially the same as that of the corresponding binomial random
variable. At the other extreme, if K = N , then all the balls have been removed from the urn and Var(X) = 0.
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