Sufficient Statistics

February 21, 2008

For observations $X=\left(X_{1}, \ldots, X_{n}\right)$ and statistic $T(X)$, the conditional probability

$$
\begin{equation*}
\mathbf{f}_{X \mid T(X)}(\mathbf{x} \mid t, \theta)=P_{\theta}\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T(X)=t\right\} \tag{1}
\end{equation*}
$$

is, typically, a function of both t and θ.
However, consider the case $X=\left(X_{1}, \ldots, X_{n}\right)$, a sequence of n Bernoulli trials with success probability parameter θ and the statistic $T(X)=X_{1}+\cdots+X_{n}$ the total number of successes. Then

$$
\begin{aligned}
\mathbf{f}_{X}(\mathbf{x} \mid \theta) & =P_{\theta}\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right\}=\theta^{x_{1}}(1-\theta)^{\left(1-x_{1}\right)} \cdots \theta^{x_{n}}(1-\theta)^{\left(1-x_{n}\right)} \\
& =\theta^{x_{1}+\cdots+x_{n}}(1-\theta)^{\left(n-\left(x_{1} \cdots+x_{n}\right)\right)}
\end{aligned}
$$

and $T(X)$ is a $\operatorname{Bin}(n, \theta)$ random variable.
Referring to equation (1), if $\sum_{i=1}^{n} x_{i} \neq t$, then the value of the statistic is incompatible with the observations. In this case, equation (1) equals 0 . On the other hand, if $\sum_{i=1}^{n} x_{i}=t$, then, we have,

$$
\mathbf{f}_{X \mid T(X)}(\mathbf{x} \mid t, \theta)=\frac{\mathbf{f}_{X}(\mathbf{x} \mid \theta)}{f_{T(X)}(t \mid \theta)}=\frac{P_{\theta}\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right\}}{P_{\theta}\{T(X)=t\}}=\frac{\theta^{t}(1-\theta)^{n-t}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}}=\binom{n}{t}^{-1},
$$

an answer that does not depend on the parameter θ.
Definition 1. For observations X_{1}, \ldots, X_{n}, the statistic T, is called a sufficient statistic if equation (1) is a function of the values, t, of the statistic and does not depend on the value of the parameter θ.

Thus, by the law of total probability

$$
P_{\theta}\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right\}=P\left\{X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T(X)=T(\mathbf{x})\right\} P_{\theta}\{T(X)=T(\mathbf{x})\} .
$$

and once we know the value of the sufficient statistic, we cannot obtain any additional information about the value of θ from knowing the observed values $X_{1} \ldots, X_{n}$.

How we find sufficient statistics is given by the Neyman-Fisher factorization theorem.

1 Neyman-Fisher Factorization Theorem

Theorem 2. The statistic T is sufficient for θ if and only if functions g and \mathbf{h} can be found such that

$$
\begin{equation*}
\mathbf{f}_{X}(\mathbf{x} \mid \theta)=\mathbf{h}(\mathbf{x}) g(\theta, T(\mathbf{x})) \tag{2}
\end{equation*}
$$

The central idea in proving this theorem can be found in the case of discrete random variables.
Proof. Because T is a function of \mathbf{x},

$$
\mathbf{f}_{X}(\mathbf{x} \mid \theta)=f_{X, T(X)}(\mathbf{x}, T(\mathbf{x}) \mid \theta)=\mathbf{f}_{X \mid T(X)}(\mathbf{x} \mid T(\mathbf{x}), \theta) f_{T(X)}(T(\mathbf{x}) \mid \theta)
$$

If we assume that T is sufficient, then $\mathbf{f}_{X \mid T(X)}(\mathbf{x} \mid T(\mathbf{x}), \theta)$ is not a function of θ and we can set it to be $\mathbf{h}(\mathbf{x})$. The second term is a function of $T(\mathbf{x})$ and θ. We will write it $g(\theta, T(\mathbf{x}))$.

If we assume the factorization in equation (3), then, by the definition of conditional expectation,

$$
P_{\theta}\{X=\mathbf{x} \mid T(X)=t\}=\frac{P_{\theta}\{X=\mathbf{x}, T(X)=t\}}{P_{\theta}\{T(X)=t\}}
$$

or,

$$
\mathbf{f}_{X \mid T(X)}(\mathbf{x} \mid t, \theta)=\frac{\mathbf{f}_{X, T(X)}(\mathbf{x}, t \mid \theta)}{f_{T(X)}(t \mid \theta)}
$$

The numerator is 0 if $T(\mathbf{x}) \neq t$ and is

$$
\mathbf{f}_{X}(\mathbf{x} \mid \theta)=\mathbf{h}(\mathbf{x}) g(\theta, t)
$$

otherwise.
The denominator

$$
f_{T(X)}(t \mid \theta)=\sum_{\tilde{\mathbf{x}}: T(\tilde{\mathbf{x}})=t} \mathbf{f}_{X}(\tilde{\mathbf{x}} \mid \theta)=\sum_{\tilde{\mathbf{x}}: T(\tilde{\mathbf{x}})=t} \mathbf{h}(\tilde{\mathbf{x}}) g(\theta, t)
$$

The ratio

$$
\mathbf{f}_{X \mid T(X)}(\mathbf{x} \mid t, \theta)=\frac{\mathbf{h}(\mathbf{x}) g(\theta, t)}{\sum_{\tilde{\mathbf{x}}: T(\tilde{\mathbf{x}})=t} \mathbf{h}(\tilde{\mathbf{x}}) g(\theta, t)}=\frac{\mathbf{h}(\mathbf{x})}{\sum_{\tilde{\mathbf{x}}: T(\tilde{\mathbf{x}})=t} \mathbf{h}(\tilde{\mathbf{x}})},
$$

which is independent of θ and, therefore, T is sufficient.

2 Maximum Likelihood Estimation

Looking at the likelihood in the case of a sufficient statistic, we have that

$$
\mathbf{L}(\theta \mid \mathbf{x})=\mathbf{h}(\mathbf{x}) g(\theta, T(\mathbf{x}))
$$

Thus, maximizing the likelihood is equivalent to maximizing $g(\theta, T(\mathbf{x}))$ and the maximum likelihood estimator

$$
\hat{\theta}(T(\mathbf{x}))
$$

is a function of the sufficient statistic.

3 Unbiased Estimation

We shall learn something about the value of sufficient statistics for unbiased estimators after we review a couple of facts about conditional expectation. Write

$$
\phi(u)=E[Y \mid U=u]=\sum_{y} y f_{Y \mid U}(y \mid u)
$$

In words, $\phi(u)$ is the average of Y on the set $\{U=u\}$. Thus, by the law of total probability

$$
\begin{equation*}
E \phi(U)=\sum_{u} E[Y \mid U=u] f_{U}(u)=\sum_{u} \sum_{y} y f_{Y \mid U}(y \mid u) f_{Y}(u)=\sum_{y} y \sum_{u} f(y, u)=\sum_{y} y f_{Y}(y)=\mu_{Y} \tag{4}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\sigma_{Y}^{2}=E\left[\left(Y-\mu_{Y}\right)^{2}\right] & \left.=E\left[(Y-\phi(U))+\left(\phi(U)-\mu_{y}\right)\right)^{2}\right] \\
& =E\left[(Y-\phi(U))^{2}\right]+2 E\left[(Y-\phi(U))\left(\phi(U)-\mu_{Y}\right)\right]+E\left[\left(\phi(U)-\mu_{Y}\right)^{2}\right]
\end{aligned}
$$

The second term

$$
\begin{aligned}
E\left[(Y-\phi(U))\left(\phi(U)-\mu_{Y}\right)\right] & =\sum_{u} \sum_{y}(y-\phi(u))\left(\phi(u)-\mu_{Y}\right) f(y, u) \\
& =\sum_{u}\left(\phi(u)-\mu_{Y}\right)\left(\sum_{y}(y-\phi(u)) f_{Y \mid U}(y \mid u)\right) f_{Y}(u)=0 .
\end{aligned}
$$

The sum in parenthesis is 0 because $\phi(u)$ is the mean of the conditional density function $f_{Y \mid U}(y \mid u)$, i.e.,

$$
\sum_{y}(y-\phi(u)) f_{Y \mid U}(y \mid u)=\sum_{y} y f_{Y \mid U}(y \mid u)-\phi(u) \sum_{y} f_{Y \mid U}(y \mid u)=\sum_{y} y f_{Y \mid U}(y \mid u)-\phi(u)=0
$$

Consequently, from equation (3)

$$
\sigma_{Y}^{2}=E\left[(Y-\phi(U))^{2}\right]+\sigma_{\phi(U)}^{2}
$$

and

$$
\begin{equation*}
\sigma_{Y}^{2} \geq \sigma_{\phi(U)}^{2} \tag{5}
\end{equation*}
$$

with equality if and only if $Y=\phi(U)$.
If $d(X)$ is an estimator and $T(X)$ is a sufficient statistic, then $E_{\theta}[d(X) \mid T(X)]$ does not depend on θ and thus, it is also a statistic. Let's call it $\phi(T(X))$.

By equation (4),

$$
g(\theta)=E_{\theta} d(X)=E_{\theta} \phi(T(X))
$$

Thus, if $d(X)$ is an unbiased estimator, then so is $\phi(T(X))$. In addition, be equation (5),

$$
\begin{equation*}
\operatorname{Var}_{\theta}\left(\phi(T(X)) \leq \operatorname{Var}_{\theta}(d(X))\right. \tag{6}
\end{equation*}
$$

with equality if and only if $d(X)=\phi(T(X))$ and the estimator is a function of the sufficient statistic.
Equation (6) is called the Rao-Blackwell theorem.

4 Examples

Example 3 (Uniform random variables). Let X_{1}, \cdots, X_{n} be $U(0, \theta)$ random variables. Then, the joint density function

$$
\mathbf{f}(\mathbf{x} \mid \theta)= \begin{cases}1 / \theta^{n} & \text { if, for all } i, 0 \leq x_{i} \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

If we rewrite this using indicator function notation, then

$$
\mathbf{f}_{X}(\mathbf{x} \mid \theta)=\frac{1}{\theta^{n}} I_{[0, \theta]}\left(\max _{1 \leq i \leq n} x_{i}\right) .
$$

Thus, $T(\mathbf{x})=\max _{1 \leq i \leq n} x_{i}$ is a sufficient statistic with the factorization

$$
\mathbf{h}(\mathbf{x})=1 \text { and } g(\theta, t)=I_{[0, \theta]}(t) / \theta^{n}
$$

Example 4 (Exponential families). Recall that an exponential family of random variables has its density of the form

$$
f_{X}(x \mid \theta)=c(\theta) h(x) \exp (\nu(\theta) T(x)) .
$$

Thus by the factorization theorem, T is a sufficient statistic. ν is called the natural parameter.
Example 5 (Bernoulli observations). The density is

$$
\mathbf{f}_{X}(\mathbf{x} \mid \theta)=\theta^{x_{1}+\cdots+x_{n}}(1-\theta)^{\left(n-\left(x_{1} \cdots+x_{n}\right)\right)}=(1-\theta)^{n}\left(\frac{\theta}{1-\theta}\right)^{\left(x_{1}+\cdots+x_{n}\right)}
$$

Thus, the sufficient statistic is sum of the observations $T(\mathbf{x})=x_{1}+\cdots+x_{n}$ and the natural parameter $\nu(\theta)=\ln (\theta /(1-\theta))$, the log-odds,

Example 6 (Gamma random variables). For a multidimensional parameter space, the exponential family is defined with the product in the exponential replaced by the inner product.

$$
f_{X}(x \mid \theta)=c(\theta) h(x) \exp \langle\nu(\theta), T(x)\rangle
$$

For a gamma random variable, we have the density,

$$
f_{X}(x \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}
$$

Thus for n independent $\Gamma(\alpha, \beta)$ random variables

$$
\begin{aligned}
\mathbf{f}_{X}(\mathbf{x} \mid \alpha, \beta) & =\frac{\beta^{n \alpha}}{\Gamma(\alpha)^{n}}\left(x_{1} \cdots x_{n}\right)^{\alpha-1} \exp \left(-\beta\left(x_{1}+\cdots+x_{n}\right)\right) \\
& =\frac{\beta^{n \alpha}}{\Gamma(\alpha)^{n}}\left(x_{1} \cdots x_{n}\right)^{-1} \exp \left(\alpha\left(\ln x_{1} \cdots+\ln x_{n}\right)-\beta\left(x_{1}+\cdots+x_{n}\right)\right)
\end{aligned}
$$

Thus, the sufficient statistic

$$
T(\mathbf{x})=\left(\ln x_{1}+\cdots+\ln x_{n}, x_{1}+\cdots+x_{n}\right)
$$

and the natural parameters

$$
\nu(\alpha, \beta)=(\alpha,-\beta)
$$

