1. In Exercises 1, do the following
 (a) Find \(f' \) and \(f'' \)
 (b) Find the critical points of \(f \)
 (c) Find any inflection points
 (d) Evaluate \(f \) at the critical points and the endpoints. Identify the global maxima and minima of \(f \)
 (e) Sketch \(f \). Indicate clearly where \(f \) is increasing or decreasing, and its concavity

 \(f(x) = x^3 - 3x^2 \quad (-1 \leq x \leq 3) \)

 \(f(x) = e^{-x} \sin x \quad (0 \leq x \leq 2\pi) \)

 \(f(x) = x^{2/3} + x^{1/3} \quad (1.2 \leq x \leq 3.5) \)

2. Find the exact minimum values of the function \(h(z) = \frac{1}{z} + 4z^2 \) for \(z > 0 \)

3. Find constants \(a \) and \(b \) in the function \(f(x) = a x e^{bx} \) such that \(f(\frac{1}{3}) = 1 \) and the function has a local maximum at \(x = \frac{1}{3} \).