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Suppose that u(x, t) has domain —co < x < oo and solves a
linear, constant coefficient PDE (for example, the standard
diffusion and wave equations).

There are special solutions of the form
u(x,t) = exp(ikx — iwt), (waves)

or
u(x,t) = exp(cot + ikx), (diffusion/growth)
provided ¢ is not pure imaginary.

Plugging in gives dispersion relation w = w(k) or o = o(k).
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For usual wave equation
Ugt = €% Uxx,
plug in u(x,t) = exp(ikx — iwt):
—w? exp(ikx — iwt) = —c?k? exp(ikx — iwt)

which means w(k) = £ck, i.e. there are traveling wave
solutions u = exp(ik(x +£ ct)).

For the diffusion equation
Ut = Duyy,

same process gives o(k) = —Dk?, i.e. solutions decay of
k # zero.
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For a real dispersion relation w(k), there are solutions
w(k)

u(x, ) = exp (ix — iw(k)t) = exp (ik [x - kt} ).

which are waves traveling at speed w(k)/k. This is the phase velocity.
If the phase velocities w/k are different, equation is called dispersive.

But what does a superposition look like? Unless phase velocity is
constant, there is “apparent” wave motion which moves at a different
speed.

Suppose A(k) = §(k — ko) but smooth. Consider superposition

u(x,t) = / A(k)em =it g,
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Phase and group velocity of waves

For a real dispersion relation w(k), there are solutions
w(k)

u(x, ) = exp (ix — iw(k)t) = exp (ik [x - kt} ).

which are waves traveling at speed w(k)/k. This is the phase velocity.
If the phase velocities w/k are different, equation is called dispersive.

But what does a superposition look like? Unless phase velocity is
constant, there is “apparent” wave motion which moves at a different
speed.

Suppose A(k) = §(k — ko) but smooth. Consider superposition

u(x,t) = / A(k) "R gl
Idea: Taylor expand w(k) ~ w(ko) + w'(ko)(k — ko),
U(X, t) ~ e"t[w/(ko)ko—w(ko)] /OO A(k)eik(x—w’(ko)t) dk.

Integral is a traveling wave moving at speed w’(kp). This is known as
the group velocity.



Phase and group velocity, example

Consider Schrédinger equation

Iut + UXX - 0
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Phase and group velocity, example

Consider Schrédinger equation

Iut + UXX - 0
Dispersion relation of form u = exp(ikx — iwt) gives

exp(ikx — iwt)[i(—iw) — k?] = 0, therefore w = k2.

Phase velocity is w(k)/k = k.
Group velocity is w'(k) = 2k.

Animation of phase and group velocity


http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/wavepacket/wavepacket.html
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Stability

Suppose a linear equation has solutions u(x, t) = exp(ot + ikx)
where o = o(k) is the (real exponential form) dispersion
relation.

If Re o(k) < O for all k, then equation is stable.
If there exists k for which Re o(k) > 0, then unstable.

Intermediate case: if Re o(k) < 0 and o = 0 for some k, called
marginally stable.

Example: us = uxx + Aux + Bu.

Inserting u = exp(ct + ikx) gives o = —k® + iAk + B.

For B < 0, Re o < 0, therefore linearly stable.

For B > 0, Re o > 0 for small k, therefore linearly unstable.
For B = 0, marginally stable since Re ¢(0) = 0.
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Steady state solutions

Consider generic linear or nonlinear PDE of form

ur = R(u, Uy, Uxx, - . .)

A steady state solution uy(x) has dug /0t = 0; it therefore solves

R(Uo, (UO)X7 ) =0.

Remarks:
m U solves an ODE
m Up is usually subject to boundary/ far field conditions
m If u(x,0) = up(x), then u(x, t) = up(x) for all t > 0.
m Can be many solutions, esp. for nonlinear equations
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Steady state solutions, example 1

Consider diffusion equation

Ut = Uxx, U(0,t)=0, ux(1,t)=1.

Steady state solution solves a two-point boundary value
problem

(UO)XX =0, UO(O) =0, (UO)X(1) =1

Solution is easy: uy = x.
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Consider Fisher’'s equation

Ut = Uxx + U(1 —U), —o0< X< o0.

Look for constant (in both x and t ) solutions u(x, t) = up.

They solve up(1 — ug) = 0 so that up = 0, 1.
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Steady state solutions, example 3

Consider the Allen-Cahn equation

Ur = Uy +2u(1 — U?), —o0 < X < oo.
Constant solutions solve uy(1 — u3) = 0 so that ug = 0, £1.
Look for non-constant steady state solutions with

X_Im)o u(x) =-1, XI|_>moo u(x) =1.

A steady solution u(x, t) = u(x) solves
Uxx 4+ 2u(1 — U?) = 0.

Trick to solving: multiply by uyx and integrate.

1 1
/uxxux+2u(1 — UP)uy dx = Euﬁ + P - §U4 +C=0,

which uses Uy Uy = 3(u2)x and f'(u)uy = f(u)x.

Since u(+o00) = £1, C = —-1/2.
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Steady state solutions, example 3, cont.

First order equation can now be written

Uy = VU —2u2 +1=1-1°

which can be solved by separating variables

du
1—u?

1+u
1—-u

= dx, therefore % In =X+cC

so that
u(x) = tanh(x + c).
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Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves
Ur — WUy + 6uly + Uy = 0.
Steady solutions u(x, t) = u(x) solve
—Vuy + 6uuy + Uyx =0
Suppose limy_, 1+ U(x) = 0; integrate once
— WU+ 302 + Uy = 0.

Solve by previous trick

1 4
éu)‘%— §U2+U3:0.

Solve by separation of variables:

u(x) = %sech2 (?(x + c)) ,
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Linearization

Really important idea: approximate a nonlinear equation with a
linear one.

Look for solutions near steady state solution uy(x)

u(x, t) = up(x) + ew(x, t)

Plugging into equation and keeping terms of order ¢ always
gives a linear equation, called the linearization about ug(x).

m Nonlinear functions in equation must be (Taylor) expanded
as series to identify order e terms.

m One can study stability and dispersion of the linearization.

m This approximation becomes invalid when w(x, t) becomes
large enough.



Example 1

Fisher’s equation
U = U + U(1 —Uu), —oo< X< o0.

has equilibrium solutions u(x,t) = up =0, 1.



Example 1

Fisher’s equation
U = U + U(1 —Uu), —oo< X< o0.

has equilibrium solutions u(x,t) = up =0, 1.
Linearize about up = 0 by plugging in u(x, t) = 0 + ew(x, t),

EWr = eWyy + eW — €2W2.



Example 1

Fisher’s equation
U = U + U(1 —Uu), —oo< X< o0.
has equilibrium solutions u(x,t) = up =0, 1.
Linearize about up = 0 by plugging in u(x, t) = 0 + ew(x, t),
62 2.

EWr = eWyy + eW — "W

Keeping only terms of order e

Wi = Wy + W.



Example 1

Fisher’s equation
U = U + U(1 —Uu), —oo< X< o0.

has equilibrium solutions u(x,t) = up =0, 1.
Linearize about up = 0 by plugging in u(x, t) = 0 + ew(x, t),
62 2.

EWr = eWyy + eW — "W

Keeping only terms of order e
W = Wiy + W.

Dispersion relation o = —k? + 1 > 0 if |k| < 1, so linearly unstable.



Fisher’s equation
U = U + U(1 —Uu), —oo< X< o0.

has equilibrium solutions u(x,t) = up =0, 1.
Linearize about up = 0 by plugging in u(x, t) = 0 + ew(x, t),
EWr = eWyy + eW — €2W2.
Keeping only terms of order e
Wi = Wxx + W.
Dispersion relation o = —k? + 1 > 0 if |k| < 1, so linearly unstable.
Now linearize about vy = 1 by plugging in u(x, t) = 1 + ew(x, t):

EW = EWyy — €W — W2,



Fisher’s equation
U = U + U(1 —Uu), —oo< X< o0.

has equilibrium solutions u(x,t) = up =0, 1.
Linearize about up = 0 by plugging in u(x, t) = 0 + ew(x, t),
EWr = eWyy + eW — €2W2.
Keeping only terms of order e
Wi = Wxx + W.
Dispersion relation o = —k? + 1 > 0 if |k| < 1, so linearly unstable.
Now linearize about vy = 1 by plugging in u(x, t) = 1 + ew(x, t):
EWp = eWyy — €W — €2 W2,
so that the linearization is now
Wi = Wy — W.

Dispersion relation is ¢ = —k? — 1 < 0, so linearly stable.
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Flame-front propagation modeled by Kuramoto-Sivashinsky
equation

1 2
Ut = Uxxxx — Uxx + EUX-

Linearize about vy = 0 by setting u = 0 + ew,

1
GW[ = GWXXXX — GWXX + 62§W§

so that linearization is
Wi = —Wxxxx — Wxx-

Dispersion relation of the form w = exp(ct + ikx) gives
o(k) = —k* + k2.

Since o > 0 for |k| < 1, u= 0 is unstable.



Example: Kuramoto-Sivashinsky simulation
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he = (P*[—hx + Ah3])

where A describes intermolecular forces.
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h(x,t) = ho + ew and Taylor expand
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A thin liquid film of height h(x, t) evolves according to the equation
he = (P*[—hx + Ah3])

where A describes intermolecular forces.
Linearize about a constant solution h(x, t) = hy by setting
h(x,t) = ho + ew and Taylor expand

ho+ew)® = W3 +e3MRaw+0O(?), (ho+ew) 3 = hy3—e3h *w+0O().
0 0 0 0

Inserting into equation,

X7

ewy = ((hg + eBMW)[—eWyx + hy 3 — 63Ah64W]X) + O(é%),
X
so that retaining the e size terms,
Wt = B3 (—Winor — 3ARG * Wix).

The corresponding dispersion relation is found from
w = exp(at + ikx), giving

o(k) = h3(—k* + 3Ahy *Kk?),
Band of unstable wavenumbers |k| < hy,2v/3Aif A > 0.
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Example 4

Sine-Gordon equation is
Ut = CP Uy — sin(U).
Linearize about u = 0 by using sin(ew) ~ ew, gives

Wi = CPWyy — W.

For wave type equation, find dispersion relation
w(x,t) = exp(ikx — iwt), giving

—w?=—cPk? -1, w(k) ==+V1+ c2k2.



