Recall that the first order linear wave equation

$$
u_{t}+c u_{x}=0, \quad u(x, 0)=f(x)
$$

is constant on lines $x-c t=x_{0}$.

Recall that the first order linear wave equation

$$
u_{t}+c u_{x}=0, \quad u(x, 0)=f(x)
$$

is constant on lines $x-c t=x_{0}$.
To find $u(x, t)$, go backward along these lines until $t=0$, and use the initial condition:

$$
u(x, t)=u(x-c t, 0)=f(x-c t)
$$

This idea can be extended to many other transport-like equations.

Homogeneous transport equations

Consider

$$
u_{t}+c(x, t) u_{x}=0, \quad u(x, 0)=f(x), \quad-\infty<x<\infty .
$$

Homogeneous transport equations

Consider

$$
u_{t}+c(x, t) u_{x}=0, \quad u(x, 0)=f(x), \quad-\infty<x<\infty
$$

Let $X(T)$ be some curve in the (x, t) plane. How does u evolve along this curve?

$$
\frac{d}{d T} u(X(T), T)=X^{\prime}(T) u_{x}(X(T), T)+u_{t}(X(T), T)
$$

Homogeneous transport equations

Consider

$$
u_{t}+c(x, t) u_{x}=0, \quad u(x, 0)=f(x), \quad-\infty<x<\infty
$$

Let $X(T)$ be some curve in the (x, t) plane. How does u evolve along this curve?

$$
\frac{d}{d T} u(X(T), T)=X^{\prime}(T) u_{x}(X(T), T)+u_{t}(X(T), T)
$$

If we choose $X^{\prime}(T)=c(X(T), T)$, then

$$
\frac{d}{d T} u(X(T), T)=c(X(T), T) u_{x}(X(T), T)+u_{t}(X(T), T)=0
$$

i.e. u is constant along any such curve.

Homogeneous transport equations

Consider

$$
u_{t}+c(x, t) u_{x}=0, \quad u(x, 0)=f(x), \quad-\infty<x<\infty
$$

Let $X(T)$ be some curve in the (x, t) plane. How does u evolve along this curve?

$$
\frac{d}{d T} u(X(T), T)=X^{\prime}(T) u_{x}(X(T), T)+u_{t}(X(T), T)
$$

If we choose $X^{\prime}(T)=c(X(T), T)$, then

$$
\frac{d}{d T} u(X(T), T)=c(X(T), T) u_{x}(X(T), T)+u_{t}(X(T), T)=0
$$

i.e. u is constant along any such curve.

The curves $X(T)$ that solve the ODE

$$
X^{\prime}(T)=c(X, T), \quad X(t)=x
$$

are characteristics which terminate at (x, t).

Example 1.

Solve $u_{t}+x u_{x}=0$ with initial condition $u(x, 0)=\cos (x)$.

Example 1.

Solve $u_{t}+x u_{x}=0$ with initial condition $u(x, 0)=\cos (x)$.
A characteristic curve ending at (x, t) will solve

$$
X^{\prime}(T)=X(T), \quad X(t)=x
$$

whose solution is $X(T)=x \exp (T-t)$.

Example 1.

Solve $u_{t}+x u_{x}=0$ with initial condition $u(x, 0)=\cos (x)$.
A characteristic curve ending at (x, t) will solve

$$
X^{\prime}(T)=X(T), \quad X(t)=x
$$

whose solution is $X(T)=x \exp (T-t)$.
Since u is constant along the characteristic,

$$
u(x, t)=u(X(0), 0)=\cos \left(x e^{-t}\right)
$$

Example 2.

Solve

$$
y u_{x}=x u_{y}, \quad u(0, y)=2 y^{2} \text { for } y>0
$$

Example 2.

Solve

$$
y u_{x}=x u_{y}, \quad u(0, y)=2 y^{2} \text { for } y>0
$$

Think of x as time variable and write equation as

$$
u_{x}-\frac{x}{y} u_{y}=0
$$

Characteristic curves $Y(X)$ solve separable equation

$$
Y^{\prime}(X)=-\frac{X}{Y}, Y(x)=y
$$

Example 2.

Solve

$$
y u_{x}=x u_{y}, \quad u(0, y)=2 y^{2} \text { for } y>0
$$

Think of x as time variable and write equation as

$$
u_{x}-\frac{x}{y} u_{y}=0
$$

Characteristic curves $Y(X)$ solve separable equation

$$
Y^{\prime}(X)=-\frac{X}{Y}, Y(x)=y
$$

Implicit solution is $X^{2}+Y^{2}=x^{2}+y^{2}$ (i.e. circles)

Example 2.

Solve

$$
y u_{x}=x u_{y}, \quad u(0, y)=2 y^{2} \text { for } y>0
$$

Think of x as time variable and write equation as

$$
u_{x}-\frac{x}{y} u_{y}=0
$$

Characteristic curves $Y(X)$ solve separable equation

$$
Y^{\prime}(X)=-\frac{X}{Y}, Y(x)=y
$$

Implicit solution is $X^{2}+Y^{2}=x^{2}+y^{2}$ (i.e. circles)

Example 2.

Solve

$$
y u_{x}=x u_{y}, \quad u(0, y)=2 y^{2} \text { for } y>0
$$

Think of x as time variable and write equation as

$$
u_{x}-\frac{x}{y} u_{y}=0
$$

Characteristic curves $Y(X)$ solve separable equation

$$
Y^{\prime}(X)=-\frac{X}{Y}, Y(x)=y
$$

Implicit solution is $X^{2}+Y^{2}=x^{2}+y^{2}$ (i.e. circles)
Since the solution is constant along curves, setting $X=0$ gives

$$
u(x, y)=u(X, Y)=2 Y^{2}=2\left(x^{2}+y^{2}\right)
$$

Inhomogeneous transport equations

Consider

$$
u_{t}+c(x, t) u_{x}=g(u, x, t), \quad u(x, 0)=f(x), \quad-\infty<x<\infty
$$

Inhomogeneous transport equations

Consider

$$
u_{t}+c(x, t) u_{x}=g(u, x, t), \quad u(x, 0)=f(x), \quad-\infty<x<\infty
$$

u is not constant along characteristics; evolves as

$$
\frac{d}{d t} u(X(t), t)=g(u, X(T), T)
$$

Inhomogeneous transport equations

Consider

$$
u_{t}+c(x, t) u_{x}=g(u, x, t), \quad u(x, 0)=f(x), \quad-\infty<x<\infty
$$

u is not constant along characteristics; evolves as

$$
\frac{d}{d t} u(X(t), t)=g(u, X(T), T)
$$

Let $U(T)=u(X(T), T)$ be solution u restricted to single characteristic,

$$
U^{\prime}(T)=g(U, X(T), T), \quad U(0)=u(X(0), 0)=f(X(0))
$$

To find $u(x, t)$, go backwards along the characteristic until $T=0$, and solve this ODE going forwards to $T=t$.

The general method of characteristics

Algorithm:
1 Find the characteristic terminating at (x, t) by solving $X^{\prime}(T)=c(X, T)$ subject to $X(t)=x$.

The general method of characteristics

Algorithm:
1 Find the characteristic terminating at (x, t) by solving $X^{\prime}(T)=c(X, T)$ subject to $X(t)=x$.

2 Find the solution along a characteristic by solving $U^{\prime}(T)=g(U, X(T), T)$ subject to $U(0)=U(X(0), 0)$.

The general method of characteristics

Algorithm:
1 Find the characteristic terminating at (x, t) by solving $X^{\prime}(T)=c(X, T)$ subject to $X(t)=x$.

2 Find the solution along a characteristic by solving $U^{\prime}(T)=g(U, X(T), T)$ subject to $U(0)=U(X(0), 0)$.

3 Find the solution at the endpoint of the characteristic by setting $u(x, t)=U(t)$.

Example 1.

$$
u_{t}+(x+t) u_{x}=t, \quad u(x, 0)=f(x) .
$$

Example 1.

$$
u_{t}+(x+t) u_{x}=t, \quad u(x, 0)=f(x) .
$$

Characteristic curves solve the ODE

$$
X^{\prime}(T)=X+T, \quad X(t)=x .
$$

Example 1.

$$
u_{t}+(x+t) u_{x}=t, \quad u(x, 0)=f(x) .
$$

Characteristic curves solve the ODE

$$
X^{\prime}(T)=X+T, \quad X(t)=x .
$$

Particular solution is $X_{p}=-T-1$; general solution is $X(T)=C e^{T}-T-1$.

Example 1.

$$
u_{t}+(x+t) u_{x}=t, \quad u(x, 0)=f(x) .
$$

Characteristic curves solve the ODE

$$
X^{\prime}(T)=X+T, \quad X(t)=x .
$$

Particular solution is $X_{p}=-T-1$; general solution is $X(T)=C e^{T}-T-1$. Using the condition $X(t)=x$

$$
X(T)=e^{T-t}(x+t+1)-T-1 .
$$

Example 1.

$$
u_{t}+(x+t) u_{x}=t, \quad u(x, 0)=f(x) .
$$

Characteristic curves solve the ODE

$$
X^{\prime}(T)=X+T, \quad X(t)=x .
$$

Particular solution is $X_{p}=-T-1$; general solution is $X(T)=C e^{T}-T-1$. Using the condition $X(t)=x$

$$
X(T)=e^{T-t}(x+t+1)-T-1 .
$$

Determine how u evolves on characteristic:

$$
U^{\prime}(T)=T, \quad U(0)=f(X(0))=f\left(e^{-t}(x+t+1)-1\right) .
$$

Example 1.

$$
u_{t}+(x+t) u_{x}=t, \quad u(x, 0)=f(x)
$$

Characteristic curves solve the ODE

$$
X^{\prime}(T)=X+T, \quad X(t)=x
$$

Particular solution is $X_{p}=-T-1$; general solution is $X(T)=C e^{T}-T-1$. Using the condition $X(t)=X$

$$
X(T)=e^{T-t}(x+t+1)-T-1
$$

Determine how u evolves on characteristic:

$$
U^{\prime}(T)=T, \quad U(0)=f(X(0))=f\left(e^{-t}(x+t+1)-1\right)
$$

Solution:

$$
U(T)=f\left(e^{-t}(x+t+1)-1\right)+\frac{1}{2} T^{2}
$$

Example 1.

$$
u_{t}+(x+t) u_{x}=t, \quad u(x, 0)=f(x) .
$$

Characteristic curves solve the ODE

$$
X^{\prime}(T)=X+T, \quad X(t)=x .
$$

Particular solution is $X_{p}=-T-1$; general solution is $X(T)=C e^{T}-T-1$. Using the condition $X(t)=x$

$$
X(T)=e^{T-t}(x+t+1)-T-1 .
$$

Determine how u evolves on characteristic:

$$
U^{\prime}(T)=T, \quad U(0)=f(X(0))=f\left(e^{-t}(x+t+1)-1\right) .
$$

Solution:

$$
U(T)=f\left(e^{-t}(x+t+1)-1\right)+\frac{1}{2} T^{2} .
$$

Solution at (x, t) is

$$
u(x, t)=U(t)=f\left(e^{-t}(x+t+1)-1\right)+\frac{1}{2} t^{2} .
$$

Example 2.

$$
u_{t}+3 u_{x}=-u^{2}, \quad u(x, 0)=f(x) .
$$

Example 2.

$$
u_{t}+3 u_{x}=-u^{2}, \quad u(x, 0)=f(x)
$$

Characteristics solve $X^{\prime}(T)=3$ with $X(t)=x$, so that $X=3(T-t)+x$.

Example 2.

$$
u_{t}+3 u_{x}=-u^{2}, \quad u(x, 0)=f(x)
$$

Characteristics solve $X^{\prime}(T)=3$ with $X(t)=x$, so that $X=3(T-t)+x$.
Solution on characteristic evolves as $U^{\prime}(T)=-U^{2}(T)$ with $U(0)=f(X(0))=f(-3 t+x)$.

Example 2.

$$
u_{t}+3 u_{x}=-u^{2}, \quad u(x, 0)=f(x)
$$

Characteristics solve $X^{\prime}(T)=3$ with $X(t)=x$, so that $X=3(T-t)+x$.

Solution on characteristic evolves as $U^{\prime}(T)=-U^{2}(T)$ with $U(0)=f(X(0))=f(-3 t+x)$.
Separating $d U / U^{2}=-d T$ leads to

$$
U(T)=\frac{1}{T+1 / f(x-3 t)}
$$

Solution is obtained by setting

$$
u(x, t)=U(t)=1 /[t+1 / f(x-3 t)] .
$$

Example 3.

Consider water flow on landscape of elevation $h(x)$.
Simple model: flow is downhill with magnitude $h^{\prime}(x)$, which leads to flux $J=-h^{\prime}(x) u$ and conservation equation

$$
u_{t}+\left(-h^{\prime}(x) u\right)_{x}=0 .
$$

Example 3.

Consider water flow on landscape of elevation $h(x)$.
Simple model: flow is downhill with magnitude $h^{\prime}(x)$, which leads to flux $J=-h^{\prime}(x) u$ and conservation equation

$$
u_{t}+\left(-h^{\prime}(x) u\right)_{x}=0 .
$$

Put in form of transport equation:

$$
u_{t}-h^{\prime}(x) u_{x}=h^{\prime \prime}(x) u .
$$

Example 3,cont.

Valley described by $h(x)=x^{2}$, and initial depth is

$$
u(x, 0)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

so that equation is now

$$
u_{t}-2 x u_{x}=2 u .
$$

Example 3,cont.

Valley described by $h(x)=x^{2}$, and initial depth is

$$
u(x, 0)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

so that equation is now

$$
u_{t}-2 x u_{x}=2 u
$$

Characteristics solve $X^{\prime}(T)=-2 X$ with terminal condition $X(t)=x$.

Example 3,cont.

Valley described by $h(x)=x^{2}$, and initial depth is

$$
u(x, 0)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

so that equation is now

$$
u_{t}-2 x u_{x}=2 u
$$

Characteristics solve $X^{\prime}(T)=-2 X$ with terminal condition $X(t)=x$. Solution:

$$
X(T)=x e^{2(t-T)}
$$

On characteristics, find u evolves according to $U^{\prime}=2 U$ and

$$
U(0)= \begin{cases}1 & |X(0)| \leq 1 \\ 0 & |X(0)|>1\end{cases}
$$

Example 3,cont.

Valley described by $h(x)=x^{2}$, and initial depth is

$$
u(x, 0)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

so that equation is now

$$
u_{t}-2 x u_{x}=2 u
$$

Characteristics solve $X^{\prime}(T)=-2 X$ with terminal condition $X(t)=x$. Solution:

$$
X(T)=x e^{2(t-T)}
$$

On characteristics, find u evolves according to $U^{\prime}=2 U$ and

$$
U(0)= \begin{cases}1 & |X(0)| \leq 1 \\ 0 & |X(0)|>1\end{cases}
$$

Therefore $U(T)=e^{2 T}$ if $|X(0)|=\left|x e^{2 t}\right|<1$, or zero otherwise.

Example 3,cont.

Valley described by $h(x)=x^{2}$, and initial depth is

$$
u(x, 0)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

so that equation is now

$$
u_{t}-2 x u_{x}=2 u
$$

Characteristics solve $X^{\prime}(T)=-2 X$ with terminal condition $X(t)=x$. Solution:

$$
X(T)=x e^{2(t-T)}
$$

On characteristics, find u evolves according to $U^{\prime}=2 U$ and

$$
U(0)= \begin{cases}1 & |X(0)| \leq 1 \\ 0 & |X(0)|>1\end{cases}
$$

Therefore $U(T)=e^{2 T}$ if $|X(0)|=\left|x e^{2 t}\right|<1$, or zero otherwise. When $t=T$,

$$
u(x, t)=U(t)= \begin{cases}e^{2 t} & |x| \leq e^{-2 t} \\ 0 & |x|>e^{-2 t}\end{cases}
$$

