
Modeling using conservation laws

Let u(x, t) = density (heat, momentum, probability,...) so that∫
R

u dx = amount in region R ⊂ Ω.

A quantity is conserved if it can be gained or lost only

by flow through domain boundaries,

because of sources and sinks in the domain.

Model ingredients:

The flow or flux is a vector field J(x , t), so that J · n̂dA is flow
across infinitesimal area n̂dA.

Q(x , t) is the rate of inflow at point x
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Deriving a PDE for a conserved quantity

Conservation of u(x, t) on any region R ⊂ Ω implies

d

dt

∫
R

u dx =

∫
R

∂u

∂t
dx = −

∫
∂R

J · n̂dx +

∫
R

Q(x , t)dx.

(recall notation: ∂R is boundary of R, n̂ is outward normal vector)

Use divergence theorem to turn boundary integral into integral on
region R, ∫

R

(∂u

∂t
+∇·J− Q

)
dx = 0.

Since this is true for any subregion R, integrand is zero:

∂u

∂t
+∇·J = Q.

conservation form/continuity equation/transport equation



Deriving a PDE for a conserved quantity

Conservation of u(x, t) on any region R ⊂ Ω implies

d

dt

∫
R

u dx =

∫
R

∂u

∂t
dx = −

∫
∂R

J · n̂dx +

∫
R

Q(x , t)dx.

(recall notation: ∂R is boundary of R, n̂ is outward normal vector)

Use divergence theorem to turn boundary integral into integral on
region R, ∫

R

(∂u

∂t
+∇·J− Q

)
dx = 0.

Since this is true for any subregion R, integrand is zero:

∂u

∂t
+∇·J = Q.

conservation form/continuity equation/transport equation



Deriving a PDE for a conserved quantity

Conservation of u(x, t) on any region R ⊂ Ω implies

d

dt

∫
R

u dx =

∫
R

∂u

∂t
dx = −

∫
∂R

J · n̂dx +

∫
R

Q(x , t)dx.

(recall notation: ∂R is boundary of R, n̂ is outward normal vector)

Use divergence theorem to turn boundary integral into integral on
region R, ∫

R

(∂u

∂t
+∇·J− Q

)
dx = 0.

Since this is true for any subregion R, integrand is zero:

∂u

∂t
+∇·J = Q.

conservation form/continuity equation/transport equation



Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow F (x) : ∂Ω→ R through
physical boundary.

Flux is typically modeled as a function of u and its derivatives
J = J(u,∇u, . . .); boundary condition becomes

J(u,∇u, . . .) · n̂ = F (x), x ∈ ∂Ω.

Example: for heat diffusion, Fourier’s law says J = −D∇u. Thus

−D∇u · n̂ = F (x), x ∈ ∂Ω,

More specifically, if boundary in insulating, get “Neumann”
boundary condition

∇u · n̂ = 0.

Remark: Dirichlet boundary condition u = U(x), x ∈ ∂Ω will not
guarantee flux is zero at boundary.



Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow F (x) : ∂Ω→ R through
physical boundary.
Flux is typically modeled as a function of u and its derivatives
J = J(u,∇u, . . .); boundary condition becomes

J(u,∇u, . . .) · n̂ = F (x), x ∈ ∂Ω.

Example: for heat diffusion, Fourier’s law says J = −D∇u. Thus

−D∇u · n̂ = F (x), x ∈ ∂Ω,

More specifically, if boundary in insulating, get “Neumann”
boundary condition

∇u · n̂ = 0.

Remark: Dirichlet boundary condition u = U(x), x ∈ ∂Ω will not
guarantee flux is zero at boundary.



Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow F (x) : ∂Ω→ R through
physical boundary.
Flux is typically modeled as a function of u and its derivatives
J = J(u,∇u, . . .); boundary condition becomes

J(u,∇u, . . .) · n̂ = F (x), x ∈ ∂Ω.

Example: for heat diffusion, Fourier’s law says J = −D∇u. Thus

−D∇u · n̂ = F (x), x ∈ ∂Ω,

More specifically, if boundary in insulating, get “Neumann”
boundary condition

∇u · n̂ = 0.

Remark: Dirichlet boundary condition u = U(x), x ∈ ∂Ω will not
guarantee flux is zero at boundary.



Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow F (x) : ∂Ω→ R through
physical boundary.
Flux is typically modeled as a function of u and its derivatives
J = J(u,∇u, . . .); boundary condition becomes

J(u,∇u, . . .) · n̂ = F (x), x ∈ ∂Ω.

Example: for heat diffusion, Fourier’s law says J = −D∇u. Thus

−D∇u · n̂ = F (x), x ∈ ∂Ω,

More specifically, if boundary in insulating, get “Neumann”
boundary condition

∇u · n̂ = 0.

Remark: Dirichlet boundary condition u = U(x), x ∈ ∂Ω will not
guarantee flux is zero at boundary.



Example: transport and traffic flow

Suppose that u = u(x , t) is transported at velocity c , so that (one
dimensional) scalar flux is J = cu.

Then ∂u
∂t +∇·J = Q becomes (assuming Q = 0)

ut + cux = 0. (linear transport equation)

Traffic flow: speed can be modeled as a decreasing function of
density c = c0−mu, so J = u(c0−mu); conservation law becomes

ut + c0ux −m(u2)x = 0. (nonlinear transport equation)
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Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion.
Means that net flow has a direction toward regions of less density.

Simplest model: Fick/Fourier law J = −D∇u. Sources Q(x, t)
created by, for example heat production or chemical reactions. The
conservation equation becomes

ut = D∇·∇u + Q = D∆u + Q, (diffusion equation)
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Example: wave equation

Conserved quantity is momentum density ρut(x, t), where ρ =
mass density

Momentum flux occurs because of force imbalance between parts
of material; simplest model is J = −σ∇u.

Momentum conservation leads to

(ut)t = c2∇ · ∇u = c2∆u, (wave equation)

where c2 = σ/ρ.



Example: wave equation

Conserved quantity is momentum density ρut(x, t), where ρ =
mass density

Momentum flux occurs because of force imbalance between parts
of material; simplest model is J = −σ∇u.

Momentum conservation leads to

(ut)t = c2∇ · ∇u = c2∆u, (wave equation)

where c2 = σ/ρ.



Example: wave equation

Conserved quantity is momentum density ρut(x, t), where ρ =
mass density

Momentum flux occurs because of force imbalance between parts
of material; simplest model is J = −σ∇u.

Momentum conservation leads to

(ut)t = c2∇ · ∇u = c2∆u, (wave equation)

where c2 = σ/ρ.



Steady state equations

Often dynamical processes “settle down”; for PDEs this means the
time derivative can be ignored.

For a conservation law with flux J(u) and time independent source
term Q, a steady state solution solves

∇·J(u) = Q.

Interpretation: the amount flowing into a region in space equals
the amount flowing out.

Example (diffusion with a source): Flux is given by Fick’s law
J = −D∇u, and Q(x , y) is a prescribed source term.
Steady state u = u(x , y) solves

D∇·∇u = ∆u = Q(x , y).

If Q 6= 0, get Poisson’s equation; if Q ≡ 0, get Laplace’s equation.
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Using conserved and dissipated quantities

Salient fact: solutions of PDEs have a lot of detail, but...

We can’t always know everything about them (especially
nonlinear equations)

Even if we could, often hard to see the essential aspects.

Idea: use coarse-grained quantities to study solutions qualitatively.
Some of these are inspired by physics (energy, entropy), whereas
others are completely abstract.
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Conserved and dissipated quantities

A functional F [u] maps u to the real numbers, e.g.

F [u] =

∫
Ω

u(x) dx or F [u] =

∫
Ω
|∇u|2 dx .

In our case, these are often quantities of physical interest (mass,
energy, momentum)

Let u(x , t) : Ω× [0,∞)→ R be a solution of some PDE, and
suppose F [u] has the form

F [u(t)] =

∫
Ω

f (u, ux , ...)dx .

so that F can be regarded as depending on t.
Time evolution of F [u] may be categorized as:

If dF/dt = 0 for all u, then F is called conserved,

If dF/dt ≤ 0 for all u, then F is called dissipated.
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Example: energy in the wave equation

Let u solve
utt = uxx , u(0, t) = 0 = u(L, t).

Energy functional

E (t) =

∫ L

0

1

2
u2
t +

1

2
u2
x dx

is conserved. Fist differentiate under integral sign:

dE

dt
=

∫ L

0

ututt + uxuxt dx ,

Integrate by parts

dE

dt
= uxut |x=L

x=0 +

∫ L

0

ututt − uxxut dx ,

Then use equation and boundary conditions to get dE/dt = 0.

If u(x , 0) = 0 = ut(x , 0) initially, does the solution remain zero?
Yes, since E (0) = 0, E (t) ≡ 0, thus ux ≡ 0. Using boundary conditions
gives u(x , t) ≡ 0.

Converse also true: if u(x , 0) 6= 0 initially, then solution never “dies out”.
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Example: heat equation

Suppose u solves the diffusion equation

ut = uxx , u(0, t) = 0 = u(L, t).

Then the quantity

F (t) =

∫ L

0

1

2
u2
x dx

is dissipated, since

dF

dt
=

∫ L

0
uxuxt dx = −

∫ L

0
uxxut dx = −

∫ L

0
u2
xx dx ≤ 0,

One interpretation: arclength of x-cross sections of u can be
approximated ∫ L

0

√
1 + u2

xdx ≈
∫ L

0
1 +

1

2
u2
x dx .

Since dF/dt ≤ 0, arclength diminishes and spatial oscillations die
away.
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