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Modeling using conservation laws

Let u(x, t) = density (heat, momentum, probability,...) so that

/ u dx = amount in region R C Q.
R

A quantity is conserved if it can be gained or lost only
m by flow through domain boundaries,
m because of sources and sinks in the domain.
Model ingredients:

m The flow or flux is a vector field J(x, t), so that J-idA is flow
across infinitesimal area fdA.

m Q(x, t) is the rate of inflow at point x
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Deriving a PDE for a conserved quantity

Conservation of u(x, t) on any region R C Q implies

ou / . /
— [ udx= [ —dx=-— J-fAdx+ [ Q(x,t)dx.
dt Jr r Ot OR R b t)

(recall notation: OR is boundary of R, fi is outward normal vector)
Use divergence theorem to turn boundary integral into integral on

region R,
ou
/R<at+V-J—Q) dx = 0,

Since this is true for any subregion R, integrand is zero:

ou
9 +VJd=Q.

conservation form/continuity equation/transport equation
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Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow F(x) : 9Q — R through
physical boundary.

Flux is typically modeled as a function of u and its derivatives

J =J(u,Vu,...); boundary condition becomes

J(u,Vu,...)-fi=F(x), xec0Q.

Example: for heat diffusion, Fourier's law says J = —DVu. Thus
—DVu-i = F(x), xe€0Q,

More specifically, if boundary in insulating, get “Neumann”
boundary condition
Vu-fn=0.

Remark: Dirichlet boundary condition u = U(x), x € 9Q will not
guarantee flux is zero at boundary.
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Example: transport and traffic flow

Suppose that u = u(x, t) is transported at velocity ¢, so that (one
dimensional) scalar flux is J = cu.

Then % + V-J = Q becomes (assuming Q@ = 0)

ut + cuy = 0. (linear transport equation)

Traffic flow: speed can be modeled as a decreasing function of
density ¢ = ¢g — mu, so J = u(cy — mu); conservation law becomes

us + cotx — m(u?)x = 0. (nonlinear transport equation)
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Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion.
Means that net flow has a direction toward regions of less density.

Net flux

Simplest model: Fick/Fourier law J = —DVu. Sources Q(x, t)
created by, for example heat production or chemical reactions. The
conservation equation becomes

ur=DV-Vu+ Q =DAu+ Q, (diffusion equation)



Example: wave equation

ux 1 = displacement of the
string from equilibrium

1 |

0 L %

Conserved quantity is momentum density pu:(x, t), where p =
mass density



Example: wave equation

ufx1 = displacement of the
string from equilibrium

1 |

0 L

Conserved quantity is momentum density pu:(x, t), where p =
mass density

Momentum flux occurs because of force imbalance between parts
of material; simplest model is J = —oVu.



Example: wave equation

ufx1 = displacement of the
string from equilibrium

1 |

0 ] L %

Conserved quantity is momentum density pu:(x, t), where p =
mass density

Momentum flux occurs because of force imbalance between parts
of material; simplest model is J = —oVu.

Momentum conservation leads to

(ut); = >V -Vu = c2Au, (wave equation)

2

where ¢* = o/p.
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Steady state equations

Often dynamical processes “settle down"; for PDEs this means the
time derivative can be ignored.

For a conservation law with flux J(u) and time independent source
term @, a steady state solution solves

V-I(u) = Q.

Interpretation: the amount flowing into a region in space equals
the amount flowing out.

Example (diffusion with a source): Flux is given by Fick's law
J=—DVu, and Q(x, y) is a prescribed source term.
Steady state u = u(x, y) solves

DV-Vu=Au= Q(x,y).

If Q # 0, get Poisson’s equation; if @ =0, get Laplace’s equation.
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Using conserved and dissipated quantities

Salient fact: solutions of PDEs have a lot of detail, but...

m We can't always know everything about them (especially
nonlinear equations)

m Even if we could, often hard to see the essential aspects.
Idea: use coarse-grained quantities to study solutions qualitatively.

Some of these are inspired by physics (energy, entropy), whereas
others are completely abstract.
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Conserved and dissipated quantities

A functional F[u] maps u to the real numbers, e.g.

F[u]:/ﬂu(x)dx or F[u]:/Q|Vu|2dx.

In our case, these are often quantities of physical interest (mass,

energy, momentum)
Let u(x,t) : Q2 x [0,00) — R be a solution of some PDE, and

suppose F[u] has the form

Flu(t)] :/Qf(u, s, ).

so that F can be regarded as depending on t.
Time evolution of F[u] may be categorized as:

m If dF /dt =0 for all u, then F is called conserved,
m If dF /dt <0 for all u, then F is called dissipated.
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f1 2, 15
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Example: energy in the wave equation

Let u solve
Uy = Uy, u(0,t) =0=u(L,t).

Energy functional
E(t) /Ll 2, Lpy
= —ui + —ugdx
0 28 2%
is conserved. Fist differentiate under integral sign:

E " vt v
— = ugu usxu X
dt 0 tHtt x Uxt ’

Integrate by parts
dE
dt

Then use equation and boundary conditions to get dE/dt = 0.

L
x=L
= Uxut|x= +/ Upler — Usy Up dX,
0

If u(x,0) =0 = u(x,0) initially, does the solution remain zero?

Yes, since E(0) =0, E(t) =0, thus u, = 0. Using boundary conditions
gives u(x, t) = 0.

Converse also true: if u(x,0) # 0 initially, then solution never “dies out”.
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Example: heat equation

Suppose u solves the diffusion equation
Up = Uxy, u(0,t) =0=u(L,t).

Then the quantity
L
1
F(t) —/ ~u?dx
0 2

is dissipated, since

dF L L L
:/ uxuxth:—/ uxxutdx:—/ U)%XdXSO,
dt 0 0 0

One interpretation: arclength of x-cross sections of u can be

approximated
/ \/l—l—uzde/ 1—i— u dx.

Since dF /dt < 0, arclength diminishes and spatial oscillations die
away.



