## Modeling using conservation laws

Let $u(\mathbf{x}, t)=$ density (heat, momentum, probability, ...) so that

$$
\int_{R} u d \mathbf{x}=\text { amount in region } R \subset \Omega .
$$

## Modeling using conservation laws

Let $u(\mathbf{x}, t)=$ density (heat, momentum, probability,...) so that

$$
\int_{R} u d \mathbf{x}=\text { amount in region } R \subset \Omega .
$$

A quantity is conserved if it can be gained or lost only
■ by flow through domain boundaries,

- because of sources and sinks in the domain.


## Modeling using conservation laws

Let $u(\mathbf{x}, t)=$ density (heat, momentum, probability, $\ldots$ ) so that

$$
\int_{R} u d \mathbf{x}=\text { amount in region } R \subset \Omega .
$$

A quantity is conserved if it can be gained or lost only
■ by flow through domain boundaries,
■ because of sources and sinks in the domain.
Model ingredients:

- The flow or flux is a vector field $\mathbf{J}(x, t)$, so that $\mathbf{J} \cdot \hat{\mathbf{n}} d A$ is flow across infinitesimal area $\hat{\mathbf{n}} d A$.
- $Q(x, t)$ is the rate of inflow at point $\mathbf{x}$


## Deriving a PDE for a conserved quantity

Conservation of $u(\mathbf{x}, t)$ on any region $R \subset \Omega$ implies

$$
\frac{d}{d t} \int_{R} u d \mathbf{x}=\int_{R} \frac{\partial u}{\partial t} d \mathbf{x}=-\int_{\partial R} \mathbf{J} \cdot \hat{\mathbf{n}} d \mathbf{x}+\int_{R} Q(x, t) d \mathbf{x}
$$

(recall notation: $\partial R$ is boundary of $R, \hat{\mathbf{n}}$ is outward normal vector)

## Deriving a PDE for a conserved quantity

Conservation of $u(\mathbf{x}, t)$ on any region $R \subset \Omega$ implies

$$
\frac{d}{d t} \int_{R} u d \mathbf{x}=\int_{R} \frac{\partial u}{\partial t} d \mathbf{x}=-\int_{\partial R} \mathbf{J} \cdot \hat{\mathbf{n}} d \mathbf{x}+\int_{R} Q(x, t) d \mathbf{x}
$$

(recall notation: $\partial R$ is boundary of $R, \hat{\mathbf{n}}$ is outward normal vector) Use divergence theorem to turn boundary integral into integral on region $R$,

$$
\int_{R}\left(\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{J}-Q\right) d \mathbf{x}=0
$$

## Deriving a PDE for a conserved quantity

Conservation of $u(\mathbf{x}, t)$ on any region $R \subset \Omega$ implies

$$
\frac{d}{d t} \int_{R} u d \mathbf{x}=\int_{R} \frac{\partial u}{\partial t} d \mathbf{x}=-\int_{\partial R} \mathbf{J} \cdot \hat{\mathbf{n}} d \mathbf{x}+\int_{R} Q(x, t) d \mathbf{x}
$$

(recall notation: $\partial R$ is boundary of $R, \hat{\mathbf{n}}$ is outward normal vector) Use divergence theorem to turn boundary integral into integral on region $R$,

$$
\int_{R}\left(\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{J}-Q\right) d \mathbf{x}=0
$$

Since this is true for any subregion $R$, integrand is zero:

$$
\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{J}=Q
$$

conservation form/continuity equation/transport equation

## Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow $F(\mathbf{x}): \partial \Omega \rightarrow \mathbb{R}$ through physical boundary.

## Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow $F(\mathbf{x}): \partial \Omega \rightarrow \mathbb{R}$ through physical boundary.
Flux is typically modeled as a function of $u$ and its derivatives $\mathbf{J}=\mathbf{J}(u, \nabla u, \ldots)$; boundary condition becomes

$$
\mathbf{J}(u, \nabla u, \ldots) \cdot \hat{\mathbf{n}}=F(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

## Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow $F(\mathbf{x}): \partial \Omega \rightarrow \mathbb{R}$ through physical boundary.
Flux is typically modeled as a function of $u$ and its derivatives $\mathbf{J}=\mathbf{J}(u, \nabla u, \ldots)$; boundary condition becomes

$$
\mathbf{J}(u, \nabla u, \ldots) \cdot \hat{\mathbf{n}}=F(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

Example: for heat diffusion, Fourier's law says $\mathbf{J}=-D \nabla u$. Thus

$$
-D \nabla u \cdot \hat{\mathbf{n}}=F(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

## Boundary conditions for conserved quantities

Flux-type boundary conditions specify flow $F(\mathbf{x}): \partial \Omega \rightarrow \mathbb{R}$ through physical boundary.
Flux is typically modeled as a function of $u$ and its derivatives $\mathbf{J}=\mathbf{J}(u, \nabla u, \ldots)$; boundary condition becomes

$$
\mathbf{J}(u, \nabla u, \ldots) \cdot \hat{\mathbf{n}}=F(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

Example: for heat diffusion, Fourier's law says $\mathbf{J}=-D \nabla u$. Thus

$$
-D \nabla u \cdot \hat{\mathbf{n}}=F(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega
$$

More specifically, if boundary in insulating, get "Neumann" boundary condition

$$
\nabla u \cdot \hat{\mathbf{n}}=0
$$

Remark: Dirichlet boundary condition $u=U(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega$ will not guarantee flux is zero at boundary.

Suppose that $u=u(x, t)$ is transported at velocity $c$, so that (one dimensional) scalar flux is $J=c u$.

Suppose that $u=u(x, t)$ is transported at velocity $c$, so that (one dimensional) scalar flux is $J=c u$.
Then $\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{J}=Q$ becomes (assuming $Q=0$ )

$$
u_{t}+c u_{x}=0 . \quad \text { (linear transport equation) }
$$

Suppose that $u=u(x, t)$ is transported at velocity $c$, so that (one dimensional) scalar flux is $J=c u$.
Then $\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{J}=Q$ becomes (assuming $Q=0$ )

$$
u_{t}+c u_{x}=0 . \quad \text { (linear transport equation) }
$$

Traffic flow: speed can be modeled as a decreasing function of density $c=c_{0}-m u$, so $J=u\left(c_{0}-m u\right)$; conservation law becomes

$$
u_{t}+c_{0} u_{x}-m\left(u^{2}\right)_{x}=0 . \quad \text { (nonlinear transport equation) }
$$

## Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion. Means that net flow has a direction toward regions of less density.


## Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion. Means that net flow has a direction toward regions of less density.


Simplest model: Fick/Fourier law $\mathbf{J}=-D \nabla u$.

## Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion. Means that net flow has a direction toward regions of less density.


Simplest model: Fick/Fourier law $\mathbf{J}=-D \nabla u$. Sources $Q(\mathbf{x}, t)$ created by, for example heat production or chemical reactions.

## Example: Diffusion with a source

Random motions of particles (and other things) leads to diffusion. Means that net flow has a direction toward regions of less density.


Simplest model: Fick/Fourier law $\mathbf{J}=-D \nabla u$. Sources $Q(\mathbf{x}, t)$ created by, for example heat production or chemical reactions. The conservation equation becomes

$$
u_{t}=D \nabla \cdot \nabla u+Q=D \Delta u+Q, \quad \text { (diffusion equation) }
$$

## Example: wave equation



Conserved quantity is momentum density $\rho u_{t}(\mathbf{x}, t)$, where $\rho=$ mass density

## Example: wave equation



Conserved quantity is momentum density $\rho u_{t}(\mathbf{x}, t)$, where $\rho=$ mass density

Momentum flux occurs because of force imbalance between parts of material; simplest model is $J=-\sigma \nabla u$.

## Example: wave equation



Conserved quantity is momentum density $\rho u_{t}(\mathbf{x}, t)$, where $\rho=$ mass density

Momentum flux occurs because of force imbalance between parts of material; simplest model is $J=-\sigma \nabla u$.

Momentum conservation leads to

$$
\left(u_{t}\right)_{t}=c^{2} \nabla \cdot \nabla u=c^{2} \Delta u, \quad \text { (wave equation) }
$$

where $c^{2}=\sigma / \rho$.

## Steady state equations

Often dynamical processes "settle down"; for PDEs this means the time derivative can be ignored.

## Steady state equations

Often dynamical processes "settle down"; for PDEs this means the time derivative can be ignored.
For a conservation law with flux $\mathbf{J}(u)$ and time independent source term $Q$, a steady state solution solves

$$
\nabla \cdot \mathbf{J}(u)=Q
$$

Interpretation: the amount flowing into a region in space equals the amount flowing out.

## Steady state equations

Often dynamical processes "settle down"; for PDEs this means the time derivative can be ignored.
For a conservation law with flux $\mathbf{J}(u)$ and time independent source term $Q$, a steady state solution solves

$$
\nabla \cdot \mathbf{J}(u)=Q
$$

Interpretation: the amount flowing into a region in space equals the amount flowing out.

Example (diffusion with a source): Flux is given by Fick's law $\mathbf{J}=-D \nabla u$, and $Q(x, y)$ is a prescribed source term.

## Steady state equations

Often dynamical processes "settle down"; for PDEs this means the time derivative can be ignored.
For a conservation law with flux $\mathbf{J}(u)$ and time independent source term $Q$, a steady state solution solves

$$
\nabla \cdot \mathbf{J}(u)=Q
$$

Interpretation: the amount flowing into a region in space equals the amount flowing out.

Example (diffusion with a source): Flux is given by Fick's law $\mathbf{J}=-D \nabla u$, and $Q(x, y)$ is a prescribed source term.
Steady state $u=u(x, y)$ solves

$$
D \nabla \cdot \nabla u=\Delta u=Q(x, y)
$$

If $Q \neq 0$, get Poisson's equation; if $Q \equiv 0$, get Laplace's equation.

## Using conserved and dissipated quantities

Salient fact: solutions of PDEs have a lot of detail, but...

## Using conserved and dissipated quantities

Salient fact: solutions of PDEs have a lot of detail, but...
■ We can't always know everything about them (especially nonlinear equations)
■ Even if we could, often hard to see the essential aspects.

## Using conserved and dissipated quantities

Salient fact: solutions of PDEs have a lot of detail, but...
■ We can't always know everything about them (especially nonlinear equations)
■ Even if we could, often hard to see the essential aspects.
Idea: use coarse-grained quantities to study solutions qualitatively. Some of these are inspired by physics (energy, entropy), whereas others are completely abstract.

## Conserved and dissipated quantities

A functional $F[u]$ maps $u$ to the real numbers, e.g.

$$
F[u]=\int_{\Omega} u(x) d x \text { or } F[u]=\int_{\Omega}|\nabla u|^{2} d x .
$$

In our case, these are often quantities of physical interest (mass, energy, momentum)

## Conserved and dissipated quantities

A functional $F[u]$ maps $u$ to the real numbers, e.g.

$$
F[u]=\int_{\Omega} u(x) d x \text { or } F[u]=\int_{\Omega}|\nabla u|^{2} d x .
$$

In our case, these are often quantities of physical interest (mass, energy, momentum)
Let $u(x, t): \Omega \times[0, \infty) \rightarrow \mathbb{R}$ be a solution of some PDE, and suppose $F[u]$ has the form

$$
F[u(t)]=\int_{\Omega} f\left(u, u_{x}, \ldots\right) d x
$$

so that $F$ can be regarded as depending on $t$.

## Conserved and dissipated quantities

A functional $F[u]$ maps $u$ to the real numbers, e.g.

$$
F[u]=\int_{\Omega} u(x) d x \text { or } F[u]=\int_{\Omega}|\nabla u|^{2} d x .
$$

In our case, these are often quantities of physical interest (mass, energy, momentum)
Let $u(x, t): \Omega \times[0, \infty) \rightarrow \mathbb{R}$ be a solution of some PDE, and suppose $F[u]$ has the form

$$
F[u(t)]=\int_{\Omega} f\left(u, u_{x}, \ldots\right) d x
$$

so that $F$ can be regarded as depending on $t$.
Time evolution of $F[u]$ may be categorized as:
■ If $d F / d t=0$ for all $u$, then $F$ is called conserved,

- If $d F / d t \leq 0$ for all $u$, then $F$ is called dissipated.


## Example: energy in the wave equation

Let $u$ solve

$$
u_{t t}=u_{x x}, \quad u(0, t)=0=u(L, t) .
$$

## Example: energy in the wave equation

Let $u$ solve

$$
u_{t t}=u_{x x}, \quad u(0, t)=0=u(L, t)
$$

Energy functional

$$
E(t)=\int_{0}^{L} \frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2} d x
$$

is conserved.

## Example: energy in the wave equation

Let $u$ solve

$$
u_{t t}=u_{x x}, \quad u(0, t)=0=u(L, t)
$$

Energy functional

$$
E(t)=\int_{0}^{L} \frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2} d x
$$

is conserved. Fist differentiate under integral sign:

$$
\frac{d E}{d t}=\int_{0}^{L} u_{t} u_{t t}+u_{x} u_{x t} d x
$$

## Example: energy in the wave equation

Let $u$ solve

$$
u_{t t}=u_{x x}, \quad u(0, t)=0=u(L, t)
$$

Energy functional

$$
E(t)=\int_{0}^{L} \frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2} d x
$$

is conserved. Fist differentiate under integral sign:

$$
\frac{d E}{d t}=\int_{0}^{L} u_{t} u_{t t}+u_{x} u_{x t} d x
$$

Integrate by parts

$$
\frac{d E}{d t}=\left.u_{x} u_{t}\right|_{x=0} ^{x=L}+\int_{0}^{L} u_{t} u_{t t}-u_{x x} u_{t} d x,
$$

Then use equation and boundary conditions to get $d E / d t=0$.

## Example: energy in the wave equation

Let $u$ solve

$$
u_{t t}=u_{x x}, \quad u(0, t)=0=u(L, t) .
$$

Energy functional

$$
E(t)=\int_{0}^{L} \frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2} d x
$$

is conserved. Fist differentiate under integral sign:

$$
\frac{d E}{d t}=\int_{0}^{L} u_{t} u_{t t}+u_{x} u_{x t} d x
$$

Integrate by parts

$$
\frac{d E}{d t}=\left.u_{x} u_{t}\right|_{x=0} ^{x=L}+\int_{0}^{L} u_{t} u_{t t}-u_{x x} u_{t} d x,
$$

Then use equation and boundary conditions to get $d E / d t=0$.

If $u(x, 0)=0=u_{t}(x, 0)$ initially, does the solution remain zero?

## Example: energy in the wave equation

Let $u$ solve

$$
u_{t t}=u_{x x}, \quad u(0, t)=0=u(L, t)
$$

Energy functional

$$
E(t)=\int_{0}^{L} \frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2} d x
$$

is conserved. Fist differentiate under integral sign:

$$
\frac{d E}{d t}=\int_{0}^{L} u_{t} u_{t t}+u_{x} u_{x t} d x
$$

Integrate by parts

$$
\frac{d E}{d t}=\left.u_{x} u_{t}\right|_{x=0} ^{x=L}+\int_{0}^{L} u_{t} u_{t t}-u_{x x} u_{t} d x,
$$

Then use equation and boundary conditions to get $d E / d t=0$.

If $u(x, 0)=0=u_{t}(x, 0)$ initially, does the solution remain zero?
Yes, since $E(0)=0, E(t) \equiv 0$, thus $u_{x} \equiv 0$. Using boundary conditions gives $u(x, t) \equiv 0$.

Let $u$ solve

$$
u_{t t}=u_{x x}, \quad u(0, t)=0=u(L, t) .
$$

Energy functional

$$
E(t)=\int_{0}^{L} \frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2} d x
$$

is conserved. Fist differentiate under integral sign:

$$
\frac{d E}{d t}=\int_{0}^{L} u_{t} u_{t t}+u_{x} u_{x t} d x
$$

Integrate by parts

$$
\frac{d E}{d t}=\left.u_{x} u_{t}\right|_{x=0} ^{x=L}+\int_{0}^{L} u_{t} u_{t t}-u_{x x} u_{t} d x,
$$

Then use equation and boundary conditions to get $d E / d t=0$.

If $u(x, 0)=0=u_{t}(x, 0)$ initially, does the solution remain zero?
Yes, since $E(0)=0, E(t) \equiv 0$, thus $u_{x} \equiv 0$. Using boundary conditions gives $u(x, t) \equiv 0$.
Converse also true: if $u(x, 0) \neq 0$ initially, then solution never "dies out".

## Example: heat equation

Suppose $u$ solves the diffusion equation

$$
u_{t}=u_{x x}, \quad u(0, t)=0=u(L, t)
$$

## Example: heat equation

Suppose $u$ solves the diffusion equation

$$
u_{t}=u_{x x}, \quad u(0, t)=0=u(L, t)
$$

Then the quantity

$$
F(t)=\int_{0}^{L} \frac{1}{2} u_{x}^{2} d x
$$

is dissipated,

## Example: heat equation

Suppose $u$ solves the diffusion equation

$$
u_{t}=u_{x x}, \quad u(0, t)=0=u(L, t)
$$

Then the quantity

$$
F(t)=\int_{0}^{L} \frac{1}{2} u_{x}^{2} d x
$$

is dissipated, since

$$
\frac{d F}{d t}=\int_{0}^{L} u_{x} u_{x t} d x=-\int_{0}^{L} u_{x x} u_{t} d x=-\int_{0}^{L} u_{x x}^{2} d x \leq 0
$$

## Example: heat equation

Suppose $u$ solves the diffusion equation

$$
u_{t}=u_{x x}, \quad u(0, t)=0=u(L, t)
$$

Then the quantity

$$
F(t)=\int_{0}^{L} \frac{1}{2} u_{x}^{2} d x
$$

is dissipated, since

$$
\frac{d F}{d t}=\int_{0}^{L} u_{x} u_{x t} d x=-\int_{0}^{L} u_{x x} u_{t} d x=-\int_{0}^{L} u_{x x}^{2} d x \leq 0
$$

One interpretation: arclength of $x$-cross sections of $u$ can be approximated

$$
\int_{0}^{L} \sqrt{1+u_{x}^{2}} d x \approx \int_{0}^{L} 1+\frac{1}{2} u_{x}^{2} d x
$$

Since $d F / d t \leq 0$, arclength diminishes and spatial oscillations die away.

