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F (k) is the Fourier transform of f(x);
f(x) is the inverse transform of F(k).

Alternative notation: F(k) = f(k) and f(x) = F(x).



A brief table of Fourier transforms

Description Function Transform
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Fact: inverse transform of a product is not the product of
inverse transforms.

Instead, it is a binary operation between functions called
convolution
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Fourier transform of this is
(f+g)" / / f(x - y)g(y)e ™ dy dx

Change variables z=x — y

/_: /_Z f(2)g(y)e U+ dydz
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Since transform of §(x) equals one
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How does limit of f, act as a distribution?

Aol = jim 1 [ = g0 — jim 1 [ =gy 71)0y

The limit L — oo can be taken inside the integral, and
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