For a function $f(x): [-L, L] \to \mathbb{C}$, we have the orthogonal expansion

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}, \quad c_n = \frac{1}{2L} \int_{-L}^{L} f(y) e^{-in\pi y/L} dy.$$

For a function $f(x): [-L, L] \to \mathbb{C}$, we have the orthogonal expansion

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}, \quad c_n = \frac{1}{2L} \int_{-L}^{L} f(y) e^{-in\pi y/L} dy.$$

Formal limit as $L \to \infty$: set $k_n = n\pi/L$ and $\Delta k = \pi/L$

$$f(x) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left(\int_{-L}^{L} f(y) e^{-ik_n y} dy \right) e^{ik_n x} \Delta k.$$

For a function $f(x): [-L, L] \to \mathbb{C}$, we have the orthogonal expansion

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}, \quad c_n = \frac{1}{2L} \int_{-L}^{L} f(y) e^{-in\pi y/L} dy.$$

Formal limit as $L \to \infty$: set $k_n = n\pi/L$ and $\Delta k = \pi/L$

$$f(x) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left(\int_{-L}^{L} f(y) e^{-ik_n y} dy \right) e^{ik_n x} \Delta k.$$

This is a Riemann sum: $\Delta k \rightarrow 0$ gives

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k)e^{ikx}dk,$$

where

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx.$$

For a function $f(x): [-L, L] \to \mathbb{C}$, we have the orthogonal expansion

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\pi x/L}, \quad c_n = \frac{1}{2L} \int_{-L}^{L} f(y) e^{-in\pi y/L} dy.$$

Formal limit as $L \to \infty$: set $k_n = n\pi/L$ and $\Delta k = \pi/L$

$$f(x) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \left(\int_{-L}^{L} f(y) e^{-ik_n y} dy \right) e^{ik_n x} \Delta k.$$

This is a Riemann sum: $\Delta k \rightarrow 0$ gives

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k)e^{ikx}dk,$$

where

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx.$$

F(k) is the Fourier transform of f(x); f(x) is the inverse transform of F(k).

Alternative notation: $F(k) = \hat{f}(k)$ and $f(x) = \check{F}(x)$.

A brief table of Fourier transforms

Description	Function	Transform
Delta function in x	$\delta(x)$	1
Delta function in k	1	$2\pi\delta(k)$
Exponential in x	$e^{-a x }$	$\frac{2a}{a^2+k^2}$
Exponential in k	$\frac{2a}{a^2 + x^2}$	$2\pi e^{-a k }$
Gaussian	$e^{-x^2/2}$	$\sqrt{2\pi}e^{-k^2/2}$
Derivative in x	f'(x)	ikF(k)
Derivative in <i>k</i>	xf(x)	iF'(k)
Integral in x	$\int_{-\infty}^{x} f(x') dx'$	F(k)/(ik)
Translation in x	f(x-a)	$e^{-iak}F(k)$
Translation in k	$e^{iax}f(x)$	F(k-a)
Dilation in x	af(ax)	F(k/a)
Convolution	f(x)*g(x)	F(k)G(k)

Description	Function	Transform
Delta function in x	$\delta(x)$	1
Delta function in k	1	$2\pi\delta(k)$
Exponential in x	$e^{-a x }$	$\frac{2a}{a^2+k^2}$
Exponential in k	$\frac{2a}{a^2 + x^2}$	$2\pi e^{-a k }$
Gaussian	$e^{-x^2/2}$	$\sqrt{2\pi}e^{-k^2/2}$
Derivative in x	f'(x)	ikF(k)
Derivative in <i>k</i>	xf(x)	iF'(k)
Translation in x	f(x-a)	$e^{-iak}F(k)$
Translation in k	$e^{iax}f(x)$	F(k-a)
Dilation in x	af(ax)	F(k/a)
Convolution	f(x)*g(x)	F(k)G(k)

Example 1: The transform of f''(x) is

$$\left[f''(x)\right]^{\wedge} = ik \left[f'(x)\right]^{\wedge} = (ik)^2 \hat{f}(k) = -k^2 \hat{f}(k).$$

Description	Function	Transform
Delta function in x	$\delta(x)$	1
Delta function in k	1	$2\pi\delta(k)$
Exponential in x	$e^{-a x }$	$\frac{2a}{a^2+k^2}$
Exponential in k	$\frac{2a}{a^2+x^2}$	$2\pi e^{-a k }$
Gaussian	$e^{-x^2/2}$	$\sqrt{2\pi}e^{-k^2/2}$
Derivative in x	f'(x)	ikF(k)
Derivative in k	xf(x)	iF'(k)
Translation in x	f(x - a)	$e^{-iak}F(k)$
Translation in k	$e^{iax}f(x)$	F(k-a)
Dilation in x	af(ax)	F(k/a)
Convolution	f(x)*a(x)	F(k)G(k)

$$\begin{split} \left[\exp(-Ax^2)\right]^{\wedge} &= \left[\exp(-[\sqrt{2A}x]^2/2)\right]^{\wedge} = \frac{1}{\sqrt{2A}} \left[\exp(-x^2/2)\right]^{\wedge} (k/\sqrt{2A}x)^2/2) \\ &= \sqrt{\frac{\pi}{A}} \exp(-[k/\sqrt{2A}]^2/2) = \sqrt{\frac{\pi}{A}} \exp(-k^2/(4A)). \end{split}$$

Description	Function	Transform
Delta function in x	$\delta(x)$	1
Delta function in k	1	$2\pi\delta(k)$
Exponential in x	$e^{-a x }$	$\frac{2a}{a^2+k^2}$
Exponential in k	$\frac{2a}{a^2+x^2}$	$2\pi e^{-a k }$
Gaussian	$e^{-x^2/2}$	$\sqrt{2\pi}e^{-k^2/2}$
Derivative in x	f'(x)	ikF(k)
Derivative in <i>k</i>	xf(x)	iF'(k)
Translation in x	f(x - a)	$e^{-iak}F(k)$
Translation in k	$e^{iax}f(x)$	F(k-a)
Dilation in x	af(ax)	F(k/a)
Convolution	f(x)*g(x)	F(k)G(k)

Example 3: Inverse transform of $e^{2ik}/(k^2+1)$

$$\left(\frac{e^{2ik}}{k^2+1}\right)^{\vee} = \left(\frac{1}{k^2+1}\right)^{\vee} (x+2) = \frac{1}{2}e^{-|x+2|}.$$

Description	Function	Transform
Delta function in x	$\delta(x)$	1
Delta function in k	1	$2\pi\delta(k)$
Exponential in x	$e^{-a x }$	$\frac{2a}{a^2+k^2}$
Exponential in k	$\frac{2a}{a^2+x^2}$	$2\pi e^{-a k }$
Gaussian	$e^{-x^2/2}$	$\sqrt{2\pi}e^{-k^2/2}$
Derivative in x	f'(x)	ikF(k)
Derivative in <i>k</i>	xf(x)	iF'(k)
Translation in x	f(x-a)	$e^{-iak}F(k)$
Translation in k	$e^{iax}f(x)$	F(k-a)
Dilation in x	af(ax)	F(k/a)
Convolution	f(x)*g(x)	F(k)G(k)

Example 4: Inverse transform of $ke^{-k^2/2}$ is

$$\left(ke^{-k^2/2}\right)^{\vee} = -i\left(ike^{-k^2/2}\right)^{\vee} = -i\frac{d}{dx}\left(e^{-k^2/2}\right)^{\vee}$$

Description	Function	Transform
Delta function in x	$\delta(x)$	1
Delta function in k	1	$2\pi\delta(k)$
Exponential in x	$e^{-a x }$	$\frac{2a}{a^2+k^2}$
Exponential in k	$\frac{2a}{a^2 + x^2}$	$2\pi e^{-a k }$
Gaussian	$e^{-x^2/2}$	$\sqrt{2\pi}e^{-k^2/2}$
Derivative in x	f'(x)	ikF(k)
Derivative in k	xf(x)	iF'(k)
Translation in x	f(x-a)	$e^{-iak}F(k)$
Translation in k	$e^{iax}f(x)$	F(k-a)
Dilation in x	af(ax)	F(k/a)
Convolution	f(x)*g(x)	F(k)G(k)

Example 4: Inverse transform of $ke^{-k^2/2}$ is

$$\left(ke^{-k^2/2}\right)^{\vee} = -i\left(ike^{-k^2/2}\right)^{\vee} = -i\frac{d}{dx}\left(e^{-k^2/2}\right)^{\vee}$$

$$= \frac{-i}{\sqrt{2\pi}} \frac{d}{dx} \left(\sqrt{2\pi} e^{-k^2/2} \right)^{\vee} = \frac{-i}{\sqrt{2\pi}} \frac{d}{dx} \left(e^{-x^2/2} \right) = \frac{ix}{\sqrt{2\pi}} e^{-x^2/2}.$$

Fact: inverse transform of a product is not the product of inverse transforms.

Fact: inverse transform of a product is not the product of inverse transforms.

Instead, it is a binary operation between functions called *convolution*

$$(f*g)(x) = \int_{-\infty}^{\infty} f(x-y)g(y)dy.$$

Fact: inverse transform of a product is not the product of inverse transforms.

Instead, it is a binary operation between functions called *convolution*

$$(f*g)(x) = \int_{-\infty}^{\infty} f(x-y)g(y)dy.$$

Fourier transform of this is

$$(f*g)^{\wedge} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-y)g(y)e^{-ikx}dy dx$$

Fact: inverse transform of a product is not the product of inverse transforms.

Instead, it is a binary operation between functions called *convolution*

$$(f*g)(x) = \int_{-\infty}^{\infty} f(x-y)g(y)dy.$$

Fourier transform of this is

$$(f*g)^{\wedge} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-y)g(y)e^{-ikx}dy dx$$

Change variables z = x - y

$$\begin{split} &\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(z)g(y)e^{-ik(y+z)}dydz \\ &= \left(\int_{-\infty}^{\infty} f(z)e^{-ikz}dz\right)\left(\int_{-\infty}^{\infty} g(y)e^{-iky}dy\right) = \hat{f}(k)\hat{g}(k). \end{split}$$

Since transform of $\delta(x)$ equals one

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk.$$

But integral does not converge! What does this mean?

Since transform of $\delta(x)$ equals one

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk.$$

But integral does not converge! What does this mean?

Idea: define the inverse transform more generally as a distribution which is the limit of nice integrals

$$f[\phi] = \lim_{L \to \infty} \int_{-\infty}^{\infty} f_L(x)\phi(x)dx, \quad f_L(x) = \frac{1}{2\pi} \int_{-L}^{L} \exp(ikx)F(k)dk$$

Since transform of $\delta(x)$ equals one

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk.$$

But integral does not converge! What does this mean?

Idea: define the inverse transform more generally as a distribution which is the limit of nice integrals

$$f[\phi] = \lim_{L \to \infty} \int_{-\infty}^{\infty} f_L(x)\phi(x)dx, \quad f_L(x) = \frac{1}{2\pi} \int_{-L}^{L} \exp(ikx)F(k)dk$$

For δ function,

$$f_L(x) = \frac{1}{2\pi} \int_{-L}^{L} \exp(ikx) dk = \frac{1}{\pi x} \sin(Lx).$$

How does limit of f_L act as a distribution?

Since transform of $\delta(x)$ equals one

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk.$$

But integral does not converge! What does this mean?

Idea: define the inverse transform more generally as a distribution which is the limit of nice integrals

$$f[\phi] = \lim_{L \to \infty} \int_{-\infty}^{\infty} f_L(x)\phi(x)dx, \quad f_L(x) = \frac{1}{2\pi} \int_{-L}^{L} \exp(ikx)F(k)dk$$

For δ function,

$$f_L(x) = \frac{1}{2\pi} \int_{-L}^{L} \exp(ikx) dk = \frac{1}{\pi x} \sin(Lx).$$

How does limit of f_L act as a distribution?

$$f[\phi] = \lim_{L \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin(Lx)}{x} \phi(x) dx = \lim_{L \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin(y)}{y} \phi(y/L) dy.$$

Since transform of $\delta(x)$ equals one

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk.$$

But integral does not converge! What does this mean?

Idea: define the inverse transform more generally as a distribution which is the limit of nice integrals

$$f[\phi] = \lim_{L \to \infty} \int_{-\infty}^{\infty} f_L(x)\phi(x)dx, \quad f_L(x) = \frac{1}{2\pi} \int_{-L}^{L} \exp(ikx)F(k)dk$$

For δ function,

$$f_L(x) = \frac{1}{2\pi} \int_{-L}^{L} \exp(ikx) dk = \frac{1}{\pi x} \sin(Lx).$$

How does limit of f_l act as a distribution?

$$f[\phi] = \lim_{L \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin(Lx)}{x} \phi(x) dx = \lim_{L \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin(y)}{y} \phi(y/L) dy.$$

The limit $L \to \infty$ can be taken inside the integral, and

$$f[\phi] = \frac{\phi(0)}{\pi} \int_{-\infty}^{\infty} \frac{\sin(y)}{y} dy = \phi(0).$$