Solutions of differential equations using transforms

Process:

■ Take transform of equation and boundary/initial conditions in one variable.

- Derivatives are turned into multiplication operators.

■ Solve (hopefully easier) problem in k variable.
■ Inverse transform to recover solution, often as a convolution integral.

Ordinary differential equations: example 1

$$
-u^{\prime \prime}+u=f(x), \quad \lim _{|x| \rightarrow \infty} u(x)=0 .
$$

$$
-u^{\prime \prime}+u=f(x), \quad \lim _{|x| \rightarrow \infty} u(x)=0 .
$$

Transform using the derivative rule, giving

$$
k^{2} \hat{u}(k)+\hat{u}(k)=\hat{f}(k) .
$$

Just an algebraic equation, whose solution is

$$
\hat{u}(k)=\frac{\hat{f}(k)}{1+k^{2}}
$$

$$
-u^{\prime \prime}+u=f(x), \quad \lim _{|x| \rightarrow \infty} u(x)=0
$$

Transform using the derivative rule, giving

$$
k^{2} \hat{u}(k)+\hat{u}(k)=\hat{f}(k)
$$

Just an algebraic equation, whose solution is

$$
\hat{u}(k)=\frac{\hat{f}(k)}{1+k^{2}} .
$$

Inverse transform of product of $\hat{f}(k)$ and $1 /\left(1+k^{2}\right)$ is convolution:

$$
u(x)=f(x) *\left(\frac{1}{1+k^{2}}\right)^{\vee}=\frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} f(y) d y
$$

But where was far field condition used?

Ordinary differential equations: example 2

Example 2. The Airy equation is

$$
u^{\prime \prime}-x u=0, \quad \lim _{|x| \rightarrow \infty} u(x)=0
$$

Ordinary differential equations: example 2

Example 2. The Airy equation is

$$
u^{\prime \prime}-x u=0, \quad \lim _{|x| \rightarrow \infty} u(x)=0
$$

Transform leads to

$$
-k^{2} \hat{u}(k)-i \hat{u}^{\prime}(k)=0 .
$$

Ordinary differential equations: example 2

Example 2. The Airy equation is

$$
u^{\prime \prime}-x u=0, \quad \lim _{|x| \rightarrow \infty} u(x)=0
$$

Transform leads to

$$
-k^{2} \hat{u}(k)-i \hat{u}^{\prime}(k)=0 .
$$

Solve by separation of variables: $d \hat{u} / \hat{u}=i k^{2} d k$ integrates to

$$
\hat{u}(k)=C e^{i k^{3} / 3} .
$$

Ordinary differential equations: example 2

Example 2. The Airy equation is

$$
u^{\prime \prime}-x u=0, \quad \lim _{|x| \rightarrow \infty} u(x)=0
$$

Transform leads to

$$
-k^{2} \hat{u}(k)-i \hat{u}^{\prime}(k)=0 .
$$

Solve by separation of variables: $d \hat{u} / \hat{u}=i k^{2} d k$ integrates to

$$
\hat{u}(k)=C e^{i k^{3} / 3}
$$

Inverse transform is

$$
u(x)=\frac{C}{2 \pi} \int_{-\infty}^{\infty} \exp \left(i\left[k x+k^{3} / 3\right]\right) d k
$$

With the choice $C=1$ get the Airy function.

Laplace equation in upper half plane:

$$
\begin{aligned}
u_{x x}+u_{y y}=0, & -\infty<x<\infty, \quad y>0, \\
u(x, 0)=g(x), & \lim _{y \rightarrow \infty} u(x, y)=0 .
\end{aligned}
$$

Laplace equation in upper half plane:

$$
\begin{aligned}
u_{x x}+u_{y y}=0, \quad-\infty<x<\infty, \quad y>0, \\
u(x, 0)=g(x), \quad \lim _{y \rightarrow \infty} u(x, y)=0 .
\end{aligned}
$$

Transform in the x variable only:

$$
U(k, y)=\int_{-\infty}^{\infty} e^{-i k x} u(x, y) d x .
$$

Note y-derivatives commute with the Fourier transform in x.

$$
-k^{2} U+U_{y y}=0, \quad U(k, 0)=\hat{g}(k), \quad \lim _{y \rightarrow \infty} U(k, y)=0 .
$$

Now solve ODEs

$$
-k^{2} U+U_{y y}=0, \quad U(k, 0)=\hat{g}(k), \quad \lim _{y \rightarrow \infty} U(k, y)=0
$$

Now solve ODEs

$$
-k^{2} U+U_{y y}=0, \quad U(k, 0)=\hat{g}(k), \quad \lim _{y \rightarrow \infty} U(k, y)=0
$$

General solution is $U=c_{1}(k) e^{+|k| y}+c_{2}(k) e^{-|k| y}$. Using boundary conditions,

$$
U(k, y)=\hat{g}(k) e^{-|k| y}
$$

Partial differential equations, example 1, cont.

Now solve ODEs

$$
-k^{2} U+U_{y y}=0, \quad U(k, 0)=\hat{g}(k), \quad \lim _{y \rightarrow \infty} U(k, y)=0
$$

General solution is $U=c_{1}(k) e^{+|k| y}+c_{2}(k) e^{-|k| y}$. Using boundary conditions,

$$
U(k, y)=\hat{g}(k) e^{-|k| y}
$$

Inverse transform using convolution and exponential formulas

$$
\begin{aligned}
u(x, y) & =g(x) *\left(e^{-|k| y}\right)^{\vee}=g(x) *\left(\frac{y}{\pi\left(x^{2}+y^{2}\right)}\right) \\
& =\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y g\left(x_{0}\right)}{\left(x-x_{0}\right)^{2}+y^{2}} d x_{0}
\end{aligned}
$$

Same formula as obtained by Green's function methods!

Partial differential equations, example 2

"Transport equation"

$$
u_{t}+c u_{x}=0, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x) .
$$

Partial differential equations, example 2

"Transport equation"

$$
u_{t}+c u_{x}=0, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x) .
$$

As before,

$$
U(k, t)=\int_{-\infty}^{\infty} e^{-i k x} u(x, t) d x
$$

therefore transform in x variables is

$$
U_{t}+i k c U=0, \quad U(k, 0)=\hat{f}(k) .
$$

Partial differential equations, example 2

"Transport equation"

$$
u_{t}+c u_{x}=0, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x) .
$$

As before,

$$
U(k, t)=\int_{-\infty}^{\infty} e^{-i k x} u(x, t) d x
$$

therefore transform in x variables is

$$
U_{t}+i k c U=0, \quad U(k, 0)=\hat{f}(k) .
$$

Simple differential equation with solution

$$
U(k, t)=e^{-i c k t} \hat{f}(k) .
$$

Partial differential equations, example 2

"Transport equation"

$$
u_{t}+c u_{x}=0, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x)
$$

As before,

$$
U(k, t)=\int_{-\infty}^{\infty} e^{-i k x} u(x, t) d x
$$

therefore transform in x variables is

$$
U_{t}+i k c U=0, \quad U(k, 0)=\hat{f}(k)
$$

Simple differential equation with solution

$$
U(k, t)=e^{-i c k t} \hat{f}(k)
$$

Use translation formula $f(x-a)=e^{-i a t} \hat{f}(k)$ with $a=c t$,

$$
u(x, t)=f(x-c t)
$$

Partial differential equations, example 3

Consider the wave equation on the real line

$$
u_{t t}=u_{x x}, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

Partial differential equations, example 3

Consider the wave equation on the real line

$$
u_{t t}=u_{x x}, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) .
$$

Transforming as before,

$$
U_{t t}+k^{2} U=0, \quad U(k, 0)=\hat{f}(k), \quad U_{t}(k, 0)=\hat{g}(k) .
$$

Consider the wave equation on the real line
$u_{t t}=u_{x x}, \quad-\infty<x<\infty, \quad t>0, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)$.
Transforming as before,

$$
U_{t t}+k^{2} U=0, \quad U(k, 0)=\hat{f}(k), \quad U_{t}(k, 0)=\hat{g}(k) .
$$

Solution of initial value problem

$$
U(k, t)=\hat{f}(k) \cos (k t)+\frac{\hat{g}(k)}{k} \sin (k t) .
$$

Sines and cosines can be written in terms of complex exponentials

$$
U(k, t)=\frac{1}{2} \hat{f}(k)\left(e^{i k t}+e^{-i k t}\right)+\frac{1}{2 i k} \hat{g}(k)\left(e^{i k t}-e^{-i k t}\right) .
$$

Sines and cosines can be written in terms of complex exponentials

$$
U(k, t)=\frac{1}{2} \hat{f}(k)\left(e^{i k t}+e^{-i k t}\right)+\frac{1}{2 i k} \hat{g}(k)\left(e^{i k t}-e^{-i k t}\right) .
$$

The inverse transform is now straightforward, using the exponential and integral formulas,

$$
u(x, t)=\frac{1}{2}[f(x-t)+f(x+t)]+\frac{1}{2} \int_{-\infty}^{x} g\left(x^{\prime}+t\right)-g\left(x^{\prime}-t\right) d x^{\prime} .
$$

Partial differential equations, example 3, cont.

Sines and cosines can be written in terms of complex exponentials

$$
U(k, t)=\frac{1}{2} \hat{f}(k)\left(e^{i k t}+e^{-i k t}\right)+\frac{1}{2 i k} \hat{g}(k)\left(e^{i k t}-e^{-i k t}\right) .
$$

The inverse transform is now straightforward, using the exponential and integral formulas,

$$
u(x, t)=\frac{1}{2}[f(x-t)+f(x+t)]+\frac{1}{2} \int_{-\infty}^{x} g\left(x^{\prime}+t\right)-g\left(x^{\prime}-t\right) d x^{\prime} .
$$

Simplify integral using change of variables

$$
\int_{-\infty}^{x} g\left(x^{\prime}+t\right)-g\left(x^{\prime}-t\right) d x^{\prime}=\int_{-\infty}^{x+t} g(\xi) d \xi-\int_{-\infty}^{x-t} g(\xi) d \xi=\int_{x-t}^{x+t} g(\xi) d \xi .
$$

All together get d'Alembert's formula

$$
u(x, t)=\frac{1}{2}[f(x-t)+f(x+t)]+\frac{1}{2} \int_{x-t}^{x+t} g(\xi) d \xi .
$$

Fundamental solutions

Consider generic, linear, time-dependent equation
$u_{t}(x, t)=\mathcal{L} u(x, t),-\infty<x<\infty, u(x, 0)=f(x), \lim _{|x| \rightarrow \infty} u(x, t)=0$,
where \mathcal{L} is some operator(e.g. $\mathcal{L}=\partial^{2} / \partial x^{2}$).

Consider generic, linear, time-dependent equation
$u_{t}(x, t)=\mathcal{L} u(x, t),-\infty<x<\infty, u(x, 0)=f(x), \lim _{|x| \rightarrow \infty} u(x, t)=0$,
where \mathcal{L} is some operator(e.g. $\mathcal{L}=\partial^{2} / \partial x^{2}$).
The fundamental solution $S\left(x, x_{0}, t\right)$ is a type of Green's function, solving

$$
S_{t}=\mathcal{L}_{x} S,-\infty<x<\infty, S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0 .
$$

Consider generic, linear, time-dependent equation
$u_{t}(x, t)=\mathcal{L} u(x, t),-\infty<x<\infty, u(x, 0)=f(x), \lim _{|x| \rightarrow \infty} u(x, t)=0$,
where \mathcal{L} is some operator(e.g. $\mathcal{L}=\partial^{2} / \partial x^{2}$).
The fundamental solution $S\left(x, x_{0}, t\right)$ is a type of Green's function, solving
$S_{t}=\mathcal{L}_{x} S,-\infty<x<\infty, S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0$.
Initial condition means S limits to a δ-function as $t \rightarrow 0$:

$$
\lim _{t \rightarrow 0} \int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) \phi(x) d x=\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) \phi(x) d x=\phi\left(x_{0}\right),
$$

Claim that the initial value problem has solution

$$
u(x, t)=\int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}
$$

Fundamental solutions, cont.

Claim that the initial value problem has solution

$$
u(x, t)=\int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0},
$$

Check:

$$
u(x, 0)=\lim _{t \rightarrow 0} \int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}=\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) f\left(x_{0}\right) d x_{0}=f(x) .
$$

Claim that the initial value problem has solution

$$
u(x, t)=\int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}
$$

Check:
$u(x, 0)=\lim _{t \rightarrow 0} \int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}=\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) f\left(x_{0}\right) d x_{0}=f(x)$.
Plugging u into the equation and moving time derivative inside the integral

$$
u_{t}=\int_{-\infty}^{\infty} S_{t}\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}=\int_{-\infty}^{\infty} \mathcal{L}_{x} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0} .
$$

Fundamental solutions, cont.

Claim that the initial value problem has solution

$$
u(x, t)=\int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}
$$

Check:

$$
u(x, 0)=\lim _{t \rightarrow 0} \int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}=\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) f\left(x_{0}\right) d x_{0}=f(x) .
$$

Plugging u into the equation and moving time derivative inside the integral

$$
u_{t}=\int_{-\infty}^{\infty} S_{t}\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}=\int_{-\infty}^{\infty} \mathcal{L}_{x} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0} .
$$

Now move operator outside integral

$$
u_{t}=\mathcal{L}_{x} \int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) f\left(x_{0}\right) d x_{0}=\mathcal{L}_{x} u .
$$

For diffusion equation on the real line, S solves

$$
S_{t}=D S_{x x},-\infty<x<\infty, S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0
$$

For diffusion equation on the real line, S solves
$S_{t}=D S_{x x},-\infty<x<\infty, S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0$.
Take Fourier transform in x by letting $\hat{S}\left(k, x_{0}, t\right)=\int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) e^{-i k x} d x$, giving

For diffusion equation on the real line, S solves
$S_{t}=D S_{x x},-\infty<x<\infty, S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0$.
Take Fourier transform in x by letting $\hat{S}\left(k, x_{0}, t\right)=\int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) e^{-i k x} d x$, giving

$$
\hat{S}_{t}=-D k^{2} \hat{S}, \quad \hat{S}(k, 0)=e^{-i x_{0} k} .
$$

For diffusion equation on the real line, S solves
$S_{t}=D S_{x x},-\infty<x<\infty, S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0$.
Take Fourier transform in x by letting $\hat{S}\left(k, x_{0}, t\right)=\int_{-\infty}^{\infty} S\left(x, x_{0}, t\right) e^{-i k x} d x$, giving

$$
\hat{S}_{t}=-D k^{2} \hat{S}, \quad \hat{S}(k, 0)=e^{-i x_{0} k} .
$$

Solution to this ODE

$$
\hat{S}=e^{-i x_{0} k-D k^{2} t} .
$$

Inverse transform of

$$
\hat{S}=e^{-i x_{0} k-D k^{2} t}
$$

uses translation, dilation, and Gaussian formulas:

$$
S\left(x, x_{0}, t\right)=\frac{1}{\sqrt{4 \pi D t}} e^{-\left(x-x_{0}\right)^{2} /(4 D t)}
$$

Inverse transform of

$$
\hat{S}=e^{-i x_{0} k-D k^{2} t}
$$

uses translation, dilation, and Gaussian formulas:

$$
S\left(x, x_{0}, t\right)=\frac{1}{\sqrt{4 \pi D t}} e^{-\left(x-x_{0}\right)^{2} /(4 D t)}
$$

It follows that the solution to $u_{t}=D u_{x x}$ and $u(x, 0)=f(x)$ is

$$
u(x, t)=\int_{-\infty}^{\infty} \frac{f\left(x_{0}\right)}{\sqrt{4 \pi D t}} e^{-\left(x-x_{0}\right)^{2} /(4 D t)} d x_{0}
$$

Linearized Korteweg - de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}, \quad u(x, 0)=f(x), \quad \lim _{|x| \rightarrow \infty} u(x, t)=0
$$

Linearized Korteweg - de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}, \quad u(x, 0)=f(x), \quad \lim _{|x| \rightarrow \infty} u(x, t)=0
$$

Fundamental solution solves

$$
S_{t}=-S_{x x x}, \quad S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0 .
$$

Linearized Korteweg - de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}, \quad u(x, 0)=f(x), \quad \lim _{|x| \rightarrow \infty} u(x, t)=0
$$

Fundamental solution solves

$$
S_{t}=-S_{x x x}, \quad S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0 .
$$

Transforming

$$
\hat{S}_{t}=i k^{3} \hat{S}, \quad \hat{S}(k, 0)=e^{-i x_{0} k}
$$

whose solution is $\hat{S}\left(k, x_{0}, t\right)=e^{-i x_{0} k} e^{i k^{3} t}$.

Linearized Korteweg - de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}, \quad u(x, 0)=f(x), \quad \lim _{|x| \rightarrow \infty} u(x, t)=0
$$

Fundamental solution solves

$$
S_{t}=-S_{x x x}, \quad S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0 .
$$

Transforming

$$
\hat{S}_{t}=i k^{3} \hat{S}, \quad \hat{S}(k, 0)=e^{-i x_{0} k}
$$

whose solution is $\hat{S}\left(k, x_{0}, t\right)=e^{-i x_{0} k} e^{i k^{3} t}$.
Recall transform of Airy function $\mathrm{Ai}(x)$ is $e^{i k^{3} / 3}$, therefore

$$
\begin{aligned}
S\left(x, x_{0}, t\right) & =\left[e^{-i x_{0} k} e^{i k^{3} t}\right]^{\vee}=\left[e^{i(k / a)^{3} / 3}\right]^{\vee}\left(x-x_{0}\right) \\
& =a \operatorname{Ai}\left(a\left(x-x_{0}\right)\right), \quad a \equiv(3 t)^{-1 / 3}
\end{aligned}
$$

Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:

$$
u_{t}=-u_{x x x}, \quad u(x, 0)=f(x), \quad \lim _{|x| \rightarrow \infty} u(x, t)=0
$$

Fundamental solution solves

$$
S_{t}=-S_{x x x}, \quad S\left(x, x_{0}, 0\right)=\delta\left(x-x_{0}\right), \lim _{|x| \rightarrow \infty} S\left(x, x_{0}, t\right)=0 .
$$

Transforming

$$
\hat{S}_{t}=i k^{3} \hat{S}, \quad \hat{S}(k, 0)=e^{-i x_{0} k},
$$

whose solution is $\hat{S}\left(k, x_{0}, t\right)=e^{-i x_{0} k} e^{i k^{3} t}$.
Recall transform of Airy function $\operatorname{Ai}(x)$ is $e^{i k^{3} / 3}$, therefore

$$
\begin{aligned}
S\left(x, x_{0}, t\right) & =\left[e^{-i x_{0} k} e^{i k^{3} t}\right]^{\vee}=\left[e^{i(k / a)^{3} / 3}\right]^{\vee}\left(x-x_{0}\right) \\
& =a \operatorname{Ai}\left(a\left(x-x_{0}\right)\right), \quad a \equiv(3 t)^{-1 / 3} .
\end{aligned}
$$

Solution to original equation:

$$
u(x, t)=\frac{1}{(3 t)^{1 / 3}} \int_{-\infty}^{\infty} \mathrm{Ai}\left(\frac{x-x_{0}}{(3 t)^{1 / 3}}\right) f\left(x_{0}\right) d x_{0}
$$

The method of images for fundamental solutions

■ For solutions on half-line $x>0$, can't use Fourier transform directly.

The method of images for fundamental solutions

■ For solutions on half-line $x>0$, can't use Fourier transform directly.
■ Fundamental solution must satisfy boundary condition at $x=0$

The method of images for fundamental solutions

■ For solutions on half-line $x>0$, can't use Fourier transform directly.
■ Fundamental solution must satisfy boundary condition at $x=0$
\square Inspiration: method of images. If $S_{\infty}\left(x ; x_{0}, t\right)$ is the fundamental solution for the whole line, then:

■ Odd reflection $S=S_{\infty}\left(x ; x_{0}, t\right)-S_{\infty}\left(x ;-x_{0}, t\right)$ gives $S\left(0, \mathbf{x}_{0}, t\right)=0$.

- Even reflection $S=S_{\infty}\left(x ; x_{0}, t\right)+S_{\infty}\left(x ;-x_{0}, t\right)$ gives $S_{x}\left(0, \mathbf{x}_{0}, t\right)=0$.

The method of images for fundamental solutions, example

Consider diffusion equation on half line:

$$
u_{t}=D u_{x x}, \quad u(x, 0)=f(x), u(0, t)=0, \lim _{x \rightarrow \infty} u(x, t)=0 .
$$

The method of images for fundamental solutions, example

Consider diffusion equation on half line:

$$
u_{t}=D u_{x x}, \quad u(x, 0)=f(x), u(0, t)=0, \lim _{x \rightarrow \infty} u(x, t)=0
$$

Use odd reflection of fundamental solution for whole line $S_{\infty}=e^{-\left(x-x_{0}\right)^{2} /(4 D t)} / \sqrt{4 \pi D t}$,

$$
S\left(x, x_{0}, t\right)=\frac{1}{\sqrt{4 \pi D t}}\left[e^{-\left(x-x_{0}\right)^{2} /(4 D t)}-e^{-\left(x+x_{0}\right)^{2} /(4 D t)}\right]
$$

The method of images for fundamental solutions, example

Consider diffusion equation on half line:

$$
u_{t}=D u_{x x}, \quad u(x, 0)=f(x), u(0, t)=0, \lim _{x \rightarrow \infty} u(x, t)=0
$$

Use odd reflection of fundamental solution for whole line $S_{\infty}=e^{-\left(x-x_{0}\right)^{2} /(4 D t)} / \sqrt{4 \pi D t}$,

$$
S\left(x, x_{0}, t\right)=\frac{1}{\sqrt{4 \pi D t}}\left[e^{-\left(x-x_{0}\right)^{2} /(4 D t)}-e^{-\left(x+x_{0}\right)^{2} /(4 D t)}\right]
$$

Therefore the solution u is just

$$
u(x, t)=\int_{0}^{\infty} \frac{f\left(x_{0}\right)}{\sqrt{4 \pi D t}}\left[e^{-\left(x-x_{0}\right)^{2} /(4 D t)}-e^{-\left(x+x_{0}\right)^{2} /(4 D t)}\right] d x_{0}
$$

The age of the earth

Lord Kelvin: simple model of temperature of earth $u(x, t)$ at depth x and time t

$$
u_{t}=D u_{x x}, x>0, \quad u(x, 0)=U_{0}, u(0, t)=0
$$

Scale chosen so $u=0$ on surface; assumes initially constant temperature $\left(U_{0}\right)$ throughout the molten earth.

The age of the earth

Lord Kelvin: simple model of temperature of earth $u(x, t)$ at depth x and time t

$$
u_{t}=D u_{x x}, x>0, \quad u(x, 0)=U_{0}, u(0, t)=0
$$

Scale chosen so $u=0$ on surface; assumes initially constant temperature (U_{0}) throughout the molten earth.

We found solution

$$
u(x, t)=\int_{0}^{\infty} \frac{U_{0}}{\sqrt{4 \pi D t}}\left[e^{-\left(x-x_{0}\right)^{2} /(4 D t)}-e^{-\left(x+x_{0}\right)^{2} /(4 D t)}\right] d x_{0} .
$$

The age of the earth

Lord Kelvin: simple model of temperature of earth $u(x, t)$ at depth x and time t

$$
u_{t}=D u_{x x}, x>0, \quad u(x, 0)=U_{0}, u(0, t)=0
$$

Scale chosen so $u=0$ on surface; assumes initially constant temperature $\left(U_{0}\right)$ throughout the molten earth.

We found solution

$$
u(x, t)=\int_{0}^{\infty} \frac{U_{0}}{\sqrt{4 \pi D t}}\left[e^{-\left(x-x_{0}\right)^{2} /(4 D t)}-e^{-\left(x+x_{0}\right)^{2} /(4 D t)}\right] d x_{0} .
$$

Temperature gradient μ at surface is therefore

$$
\mu=u_{x}(0, t)=\frac{U_{0}}{\sqrt{4 \pi D t}} \frac{1}{D t} \int_{0}^{\infty} x_{0} e^{-x_{0}^{2} /(4 D t)} d x_{0}=\frac{U_{0}}{\sqrt{\pi D t}} .
$$

The age of the earth

Lord Kelvin: simple model of temperature of earth $u(x, t)$ at depth x and time t

$$
u_{t}=D u_{x x}, x>0, \quad u(x, 0)=U_{0}, u(0, t)=0
$$

Scale chosen so $u=0$ on surface; assumes initially constant temperature $\left(U_{0}\right)$ throughout the molten earth.

We found solution

$$
u(x, t)=\int_{0}^{\infty} \frac{U_{0}}{\sqrt{4 \pi D t}}\left[e^{-\left(x-x_{0}\right)^{2} /(4 D t)}-e^{-\left(x+x_{0}\right)^{2} /(4 D t)}\right] d x_{0} .
$$

Temperature gradient μ at surface is therefore

$$
\mu=u_{x}(0, t)=\frac{U_{0}}{\sqrt{4 \pi D t}} \frac{1}{D t} \int_{0}^{\infty} x_{0} e^{-x_{0}^{2} /(4 D t)} d x_{0}=\frac{U_{0}}{\sqrt{\pi D t}} .
$$

This relates the age of earth t to quantities we can estimate
$U_{0} \approx$ melting temp. of iron $\approx 10^{4} \mathrm{C}, \quad D \approx 10^{-3} \mathrm{~m}^{2} / \mathrm{s}, \quad \mu \approx 10^{-2} \mathrm{C} / \mathrm{m}$,

The age of the earth

Lord Kelvin: simple model of temperature of earth $u(x, t)$ at depth x and time t

$$
u_{t}=D u_{x x}, x>0, \quad u(x, 0)=U_{0}, u(0, t)=0
$$

Scale chosen so $u=0$ on surface; assumes initially constant temperature $\left(U_{0}\right)$ throughout the molten earth.

We found solution

$$
u(x, t)=\int_{0}^{\infty} \frac{U_{0}}{\sqrt{4 \pi D t}}\left[e^{-\left(x-x_{0}\right)^{2} /(4 D t)}-e^{-\left(x+x_{0}\right)^{2} /(4 D t)}\right] d x_{0} .
$$

Temperature gradient μ at surface is therefore

$$
\mu=u_{x}(0, t)=\frac{U_{0}}{\sqrt{4 \pi D t}} \frac{1}{D t} \int_{0}^{\infty} x_{0} e^{-x_{0}^{2} /(4 D t)} d x_{0}=\frac{U_{0}}{\sqrt{\pi D t}} .
$$

This relates the age of earth t to quantities we can estimate $U_{0} \approx$ melting temp. of iron $\approx 10^{4} \mathrm{C}, \quad D \approx 10^{-3} \mathrm{~m}^{2} / \mathrm{s}, \quad \mu \approx 10^{-2} \mathrm{C} / \mathrm{m}$, which gives $t \approx 3 \times 10^{7}$ years !!??

