
Solutions of differential equations using transforms

Process:
Take transform of equation and boundary/initial conditions
in one variable.
Derivatives are turned into multiplication operators.
Solve (hopefully easier) problem in k variable.
Inverse transform to recover solution, often as a
convolution integral.



Ordinary differential equations: example 1

− u′′ + u = f (x), lim
|x |→∞

u(x) = 0.

Transform using the derivative rule, giving

k2û(k) + û(k) = f̂ (k).

Just an algebraic equation, whose solution is

û(k) =
f̂ (k)

1 + k2 .

Inverse transform of product of f̂ (k) and 1/(1 + k2) is
convolution:

u(x) = f (x) ∗
(

1
1 + k2

)∨
=

1
2

∫ ∞
−∞

e−|x−y |f (y)dy .

But where was far field condition used?
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Ordinary differential equations: example 2

Example 2. The Airy equation is

u′′ − xu = 0, lim
|x |→∞

u(x) = 0.

Transform leads to

−k2û(k)− i û′(k) = 0.

Solve by separation of variables: dû/û = ik2dk integrates to

û(k) = Ceik3/3.

Inverse transform is

u(x) =
C
2π

∫ ∞
−∞

exp(i[kx + k3/3])dk .

With the choice C = 1 get the Airy function.
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Partial differential equations, example 1

Laplace equation in upper half plane:

uxx + uyy = 0, −∞ < x <∞, y > 0,
u(x ,0) = g(x), lim

y→∞
u(x , y) = 0.

Transform in the x variable only:

U(k , y) =
∫ ∞
−∞

e−ikxu(x , y)dx .

Note y -derivatives commute with the Fourier transform in x .

−k2U + Uyy = 0, U(k ,0) = ĝ(k), lim
y→∞

U(k , y) = 0.
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Partial differential equations, example 1, cont.

Now solve ODEs

−k2U + Uyy = 0, U(k ,0) = ĝ(k), lim
y→∞

U(k , y) = 0.

General solution is U = c1(k)e+|k |y + c2(k)e−|k |y . Using
boundary conditions,

U(k , y) = ĝ(k)e−|k |y .

Inverse transform using convolution and exponential formulas

u(x , y) =g(x) ∗
(

e−|k |y
)∨

= g(x) ∗
(

y
π(x2 + y2)

)
=

1
π

∫ ∞
−∞

yg(x0)

(x − x0)2 + y2 dx0.

Same formula as obtained by Green’s function methods!
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Partial differential equations, example 2

“Transport equation"

ut + cux = 0, −∞ < x <∞, t > 0, u(x ,0) = f (x).

As before,

U(k , t) =
∫ ∞
−∞

e−ikxu(x , t)dx .

therefore transform in x variables is

Ut + ikcU = 0, U(k ,0) = f̂ (k).

Simple differential equation with solution

U(k , t) = e−ickt f̂ (k).

Use translation formula f (x − a) = e−iat f̂ (k) with a = ct ,

u(x , t) = f (x − ct).
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Partial differential equations, example 3

Consider the wave equation on the real line

utt = uxx , −∞ < x <∞, t > 0, u(x ,0) = f (x), ut(x ,0) = g(x).

Transforming as before,

Utt + k2U = 0, U(k ,0) = f̂ (k), Ut(k ,0) = ĝ(k).

Solution of initial value problem

U(k , t) = f̂ (k) cos(kt) +
ĝ(k)

k
sin(kt).
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Partial differential equations, example 3, cont.

Sines and cosines can be written in terms of complex exponentials

U(k , t) =
1
2

f̂ (k)(eikt + e−ikt) +
1

2ik
ĝ(k)(eikt − e−ikt).

The inverse transform is now straightforward, using the exponential and
integral formulas,

u(x , t) =
1
2
[f (x − t) + f (x + t)] +

1
2

∫ x

−∞
g(x ′ + t)− g(x ′ − t)dx ′.

Simplify integral using change of variables∫ x

−∞
g(x ′ + t)− g(x ′ − t)dx ′ =

∫ x+t

−∞
g(ξ)dξ −

∫ x−t

−∞
g(ξ)dξ =

∫ x+t

x−t
g(ξ)dξ.

All together get d’Alembert’s formula

u(x , t) =
1
2
[f (x − t) + f (x + t)] +

1
2

∫ x+t

x−t
g(ξ)dξ.
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Fundamental solutions

Consider generic, linear, time-dependent equation

ut(x , t) = Lu(x , t), −∞ < x <∞, u(x ,0) = f (x), lim
|x |→∞

u(x , t) = 0,

where L is some operator(e.g. L = ∂2/∂x2).

The fundamental solution S(x , x0, t) is a type of Green’s
function, solving

St = LxS, −∞ < x <∞, S(x , x0,0) = δ(x−x0), lim
|x |→∞

S(x , x0, t) = 0.

Initial condition means S limits to a δ-function as t → 0:

lim
t→0

∫ ∞
−∞

S(x , x0, t)φ(x)dx =

∫ ∞
−∞

δ(x − x0)φ(x)dx = φ(x0),
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Fundamental solutions, cont.

Claim that the initial value problem has solution

u(x , t) =
∫ ∞
−∞

S(x , x0, t)f (x0)dx0,

Check:

u(x ,0) = lim
t→0

∫ ∞
−∞

S(x , x0, t)f (x0)dx0 =

∫ ∞
−∞

δ(x−x0)f (x0)dx0 = f (x).

Plugging u into the equation and moving time derivative inside
the integral

ut =

∫ ∞
−∞

St(x , x0, t)f (x0)dx0 =

∫ ∞
−∞
LxS(x , x0, t)f (x0)dx0.

Now move operator outside integral

ut = Lx

∫ ∞
−∞

S(x , x0, t)f (x0)dx0 = Lxu.
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Fundamental solutions using the Fourier transform, example 1

For diffusion equation on the real line, S solves

St = DSxx , −∞ < x <∞, S(x , x0,0) = δ(x−x0), lim
|x |→∞

S(x , x0, t) = 0.

Take Fourier transform in x by letting
Ŝ(k , x0, t) =

∫∞
−∞ S(x , x0, t)e−ikxdx , giving

Ŝt = −Dk2Ŝ, Ŝ(k ,0) = e−ix0k .

Solution to this ODE

Ŝ = e−ix0k−Dk2t .
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Ŝt = −Dk2Ŝ, Ŝ(k ,0) = e−ix0k .

Solution to this ODE
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Fundamental solutions using the Fourier transform, example 1

Inverse transform of

Ŝ = e−ix0k−Dk2t .

uses translation, dilation, and Gaussian formulas:

S(x , x0, t) =
1√

4πDt
e−(x−x0)

2/(4Dt).

It follows that the solution to ut = Duxx and u(x ,0) = f (x) is

u(x , t) =
∫ ∞
−∞

f (x0)√
4πDt

e−(x−x0)
2/(4Dt)dx0.
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Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:

ut = −uxxx , u(x ,0) = f (x), lim
|x|→∞

u(x , t) = 0.

Fundamental solution solves

St = −Sxxx , S(x , x0,0) = δ(x − x0), lim
|x|→∞

S(x , x0, t) = 0.

Transforming
Ŝt = ik3Ŝ, Ŝ(k ,0) = e−ix0k ,

whose solution is Ŝ(k , x0, t) = e−ix0k eik3t .
Recall transform of Airy function Ai(x) is eik3/3, therefore

S(x , x0, t) =
[
e−ix0k eik3t

]∨
=
[
ei(k/a)3/3

]∨
(x − x0)

= aAi
(

a(x − x0)
)
, a ≡ (3t)−1/3.

Solution to original equation:

u(x , t) =
1

(3t)1/3

∫ ∞
−∞

Ai
(

x − x0

(3t)1/3

)
f (x0)dx0.
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St = −Sxxx , S(x , x0,0) = δ(x − x0), lim
|x|→∞

S(x , x0, t) = 0.

Transforming
Ŝt = ik3Ŝ, Ŝ(k ,0) = e−ix0k ,

whose solution is Ŝ(k , x0, t) = e−ix0k eik3t .

Recall transform of Airy function Ai(x) is eik3/3, therefore

S(x , x0, t) =
[
e−ix0k eik3t

]∨
=
[
ei(k/a)3/3

]∨
(x − x0)

= aAi
(

a(x − x0)
)
, a ≡ (3t)−1/3.

Solution to original equation:

u(x , t) =
1

(3t)1/3

∫ ∞
−∞

Ai
(

x − x0

(3t)1/3

)
f (x0)dx0.



Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:

ut = −uxxx , u(x ,0) = f (x), lim
|x|→∞

u(x , t) = 0.

Fundamental solution solves

St = −Sxxx , S(x , x0,0) = δ(x − x0), lim
|x|→∞

S(x , x0, t) = 0.

Transforming
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The method of images for fundamental solutions

For solutions on half-line x > 0, can’t use Fourier transform
directly.

Fundamental solution must satisfy boundary condition at
x = 0
Inspiration: method of images. If S∞(x ; x0, t) is the
fundamental solution for the whole line, then:

Odd reflection S = S∞(x ; x0, t)− S∞(x ;−x0, t) gives
S(0,x0, t) = 0.
Even reflection S = S∞(x ; x0, t) + S∞(x ;−x0, t) gives
Sx(0,x0, t) = 0.
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The method of images for fundamental solutions, example

Consider diffusion equation on half line:

ut = Duxx , u(x ,0) = f (x), u(0, t) = 0, lim
x→∞

u(x , t) = 0.

Use odd reflection of fundamental solution for whole line
S∞ = e−(x−x0)

2/(4Dt)/
√

4πDt ,

S(x , x0, t) =
1√

4πDt

[
e−(x−x0)

2/(4Dt) − e−(x+x0)
2/(4Dt)

]
Therefore the solution u is just

u(x , t) =
∫ ∞

0

f (x0)√
4πDt

[
e−(x−x0)

2/(4Dt) − e−(x+x0)
2/(4Dt)

]
dx0.
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The age of the earth

Lord Kelvin: simple model of temperature of earth
u(x , t) at depth x and time t

ut = Duxx , x > 0, u(x ,0) = U0, u(0, t) = 0.

Scale chosen so u = 0 on surface; assumes initially
constant temperature (U0) throughout the molten earth.

We found solution

u(x , t) =
∫ ∞

0

U0√
4πDt

[
e−(x−x0)

2/(4Dt) − e−(x+x0)
2/(4Dt)

]
dx0.

Temperature gradient µ at surface is therefore

µ = ux(0, t) =
U0√
4πDt

1
Dt

∫ ∞
0

x0e−x2
0/(4Dt)dx0 =

U0√
πDt

.

This relates the age of earth t to quantities we can estimate

U0 ≈ melting temp. of iron ≈ 104C, D ≈ 10−3m2/s, µ ≈ 10−2C/m,

which gives t ≈ 3× 107 years !!??
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