Solutions of differential equations using transforms

Process:

m Take transform of equation and boundary/initial conditions
in one variable.

m Derivatives are turned into multiplication operators.
m Solve (hopefully easier) problem in k variable.

B Inverse transform to recover solution, often as a
convolution integral.



Ordinary differential equations: example 1

—U"+u="f(x), lim u(x)=0.

[X| =00
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Transform using the derivative rule, giving
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Ordinary differential equations: example 1

—U"+u="f(x), lim u(x)=0.
Transform using the derivative rule, giving
K20(k) + (k) = f(k).
Just an algebraic equation, whose solution is

f(k)
1+ k2

b(k) =

Inverse transform of product of f(k) and 1/(1 + k?) is
convolution:

u(x) = f(x) x ( +k2> 2/ e Yf(y)dy.

But where was far field condition used?



Ordinary differential equations: example 2

Example 2. The Airy equation is

u"—xu=0, lim u(x)=0.
|x|—00



Ordinary differential equations: example 2

Example 2. The Airy equation is

u"—xu=0, lim u(x)=0.
|x|—00

Transform leads to

—k20(k) — itr' (k) = 0.
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Example 2. The Airy equation is

u"—xu=0, lim u(x)=0.
|X|—o0

Transform leads to
—k20(k) — itr' (k) = 0.
Solve by separation of variables: dii/U = ik?dk integrates to

(k) = ce°/3.



Ordinary differential equations: example 2

Example 2. The Airy equation is

u"—xu=0, lim u(x)=0.
|X|—o0

Transform leads to
—k20(k) — itr' (k) = 0.
Solve by separation of variables: dii/U = ik?dk integrates to
(k) = ce°/3.

Inverse transform is
o0

u(x) = c / exp(i[kx + k3/3])dk.

21 J_o

With the choice C = 1 get the Airy function.



Partial differential equations, example 1

Laplace equation in upper half plane:

Uxx + Uy =0, —oco<Xx<oo, y>0,
u(x,0) = g(x), yI|_>moo u(x,y)=0.



Partial differential equations, example 1

Laplace equation in upper half plane:
Uxx + Uy =0, —oco<x<oo, y>0,

u(x,0) = g(x), yIi_)moo u(x,y)=0.

Transform in the x variable only:

Utky) = | e u(x y)ox.

—0o0

Note y-derivatives commute with the Fourier transform in x.

~K2U + Uy =0, U(k,0)=g(k). lim U(k,y)=0.

y—00



Partial differential equations, example 1, cont.

Now solve ODEs

_k2U+ Uyy — 07 U(k, O) = g(k)7 y||_>m U(k,y) =0.



Partial differential equations, example 1, cont.

Now solve ODEs

_k2U+ Uyy — 07 U(k, 0) = g(k)7 y||_>m U(k,y) =0.

General solution is U = ¢;(k)eTklY + ¢, (k)e~Ikl¥. Using
boundary conditions,

Ulk,y) = g(k)e~ V.



Partial differential equations, example 1, cont.

Now solve ODEs

y—o0

General solution is U = ¢;(k)eTklY + ¢, (k)e~Ikl¥. Using
boundary conditions,

Ulk,y) = g(k)e~ V.

Inverse transform using convolution and exponential formulas

u(x,y) =a(x) + (e7) " = g(x) + (ﬂy>

(X2 +y?)
1 /°° ¥9(Xo)

= —————"——>0Xp-
T J oo (X = X0)2 + 2

Same formula as obtained by Green’s function methods!



Partial differential equations, example 2

“Transport equation”

Ur+cuy =0, —oco<x<oo, >0, u(x,0) = f(x).



Partial differential equations, example 2

“Transport equation”
Ur+cuy =0, —oco<x<oo, >0, u(x,0) = f(x).

As before, .
Uk, 1) = / e~ u(x, )dx.

—0o0

therefore transform in x variables is

U+ ikeU = 0, U(k,0) = f(k).



Partial differential equations, example 2

“Transport equation”
urt+cuy =0, —oco<x<oo, t>0, u(x,0) = f(x).
As before, .
WKQ_/weWM&mu
therefore transform in x variables is
U+ ikeU = 0, U(k,0) = f(k).

Simple differential equation with solution

U(k, t) = e "™F(k).



Partial differential equations, example 2

“Transport equation”
Ur+cuy =0, —oco<x<oo, >0, u(x,0) = f(x).

As before,
Uk, t) = / e u(x, t)ax.
therefore transform in x variables is
U+ ikeU = 0, U(k,0) = f(k).
Simple differential equation with solution
U(k, t) = e "™F(k).

Use translation formula f(x — a) = e~af(k) with a = ct,

u(x, t) = f(x —ct).



Partial differential equations, example 3

Consider the wave equation on the real line

U = Uxx, —00 <X <00, t>07 U(X,O):f(X), ut(X70):g(X)‘



Partial differential equations, example 3

Consider the wave equation on the real line
U = Uxx, —00 <X <00, t>07 U(X,O):f(X), ut(X70):g(X)‘
Transforming as before,

Upr+k2U =0, U(k,0)=F(k), Ufk,0)=g(k).



Partial differential equations, example 3

Consider the wave equation on the real line
U = Uxx, —00<X<oo, t>0, u(x,0)=7Ff(x), u(x,0)=g(x)
Transforming as before,

Ug+ KU =0, U(k,0)=Fk), Ufk,0)=g(k).

Solution of initial value problem

U(k, t) = f(k) cos(kt) + ?’(kk) sin(kt).



Partial differential equations, example 3, cont.

Sines and cosines can be written in terms of complex exponentials

Uk, t) = %?(k)(e’k'Jre”“) SOk —e™™).



Partial differential equations, example 3, cont.

Sines and cosines can be written in terms of complex exponentials
Uk, 1) = STk +67) + o g(k) (e — &™),

The inverse transform is now straightforward, using the exponential and
integral formulas,

u(x, t) = %[f(x S+ D]+ % [ g 4 1) — g(x — Hax’



Partial differential equations, example 3, cont.

Sines and cosines can be written in terms of complex exponentials
Uk, 1) = STk +67) + o g(k) (e — &™),

The inverse transform is now straightforward, using the exponential and
integral formulas,

1 1 x / / /
u(x,t) = E[f(x —H+f(x+1)]+ 5/ gix' +t)—g(x — t)dx".
Simplify integral using change of variables
X , , X+t x—t X+t
| o +t-al —nax = [ gde— [ grde= [ o)
All together get d’Alembert’s formula

X+t
uet) = gl =0+ fxr 0]+ 5 [ gk



Fundamental solutions

Consider generic, linear, time-dependent equation

ui(x, t) = Lu(x,t), —oo < x < o0, U(x,0)=1f(x), lim u(x,t)=0,

[X| =00

where L is some operator(e.g. £ = 92/0x?).
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[X| =00
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The fundamental solution S(x, xo, t) is a type of Green’s
function, solving

St = LxS, —00 < X < 00, S(X,Xp,0) = 5(x—x0),‘ I|im S(x, xp,t) = 0.
X|—00



Fundamental solutions

Consider generic, linear, time-dependent equation

ui(x, t) = Lu(x,t), —oo < x < o0, U(x,0)=1f(x), lim u(x,t)=0,

[X| =00
where L is some operator(e.g. £ = 92/0x?).

The fundamental solution S(x, xo, t) is a type of Green’s
function, solving

St = LxS, —00 < X < 00, S(X,Xp,0) = 5(x—x0),‘ I|im S(x, xp,t) = 0.
X|—00

Initial condition means S limits to a -function as t — O:

l!iT;l)/ S(x, xp, 1) dx_/ I(x — xo)p(x)dx = ¢(xp),



Fundamental solutions, cont.

Claim that the initial value problem has solution

u(x,t) = /oo S(x, xo, t)f(Xo)dXo,



Fundamental solutions, cont.

Claim that the initial value problem has solution
()= [ S0, 0f0x0)de,
Check:

u(x,0) Ilm/ S(x, Xo, t)f(X0)dxo _/ d(x—xo)f(x0)dXxo = f(x).

t—0



Fundamental solutions, cont.

Claim that the initial value problem has solution
()= [ S0, 0f0x0)de,
Check:

u(x,0) Ilm/ S(x, Xo, t)f(X0)dxo _/ d(x—xo)f(x0)dXxo = f(x).

t—0

Plugging u into the equation and moving time derivative inside
the integral

i = [ Sl Of0)do = [ LeS(x 10, 1f(x0)cko



Fundamental solutions, cont.

Claim that the initial value problem has solution
u(x,t) = /oo S(x, xo, t)f(Xo)dXo,
Check:
u(x,0) t'f?)/ S(x, Xo, t)f(X0)dxo _/ d(x—xo)f(x0)dXxo = f(x).

Plugging u into the equation and moving time derivative inside
the integral

i = [ Sl Of0)do = [ LeS(x 10, 1f(x0)cko
—00 —0o0
Now move operator outside integral

us = Ex/ S(x, X0, t)f(Xo0)dXo = LxU.



Fundamental solutions using the Fourier transform, example 1

For diffusion equation on the real line, S solves

St = DSxx, —0 < x < 00, S(x, Xp,0) = <5(x—x0),| I|im S(x, xp,t) = 0.
X|—00
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For diffusion equation on the real line, S solves

St = DSxx, —0 < x < 00, S(x, Xp,0) = <5(x—x0),| I|im S(x, xp,t) = 0.
X|—00

Take Fourier transform in x by letting
S(k, X0, 1) = [*_ S(x, X0, t)e~®dx, giving
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For diffusion equation on the real line, S solves
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Fundamental solutions using the Fourier transform, example 1

For diffusion equation on the real line, S solves

St = DSxx, —0 < x < 00, S(x, Xp,0) = <5(x—x0),| I|im S(x, xp,t) = 0.
X|—00

Take Fourier transform in x by letting
S(k, X0, 1) = [*_ S(x, X0, t)e~®dx, giving

St = —Dk?8, §(k,0) = e ok,

Solution to this ODE

S — o xok—DK?t



Fundamental solutions using the Fourier transform, example 1

Inverse transform of

S — o ixok—DK%t
uses translation, dilation, and Gaussian formulas:

1
S(x, X0, ) = \/me*(X*XO)Z/MDt)'




Fundamental solutions using the Fourier transform, example 1

Inverse transform of

S — o ixok—DK%t
uses translation, dilation, and Gaussian formulas:

S(x, xp, t) = 1 g (xo)/(40n),

VarDt

It follows that the solution to u; = Duyy and u(x,0) = f(x) is

u(x,t) = /OO ’me_(x_x")z/(“m)dxo.
—00 i



Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:

U = —Ugxx, U(X,0)=f(x), lim u(x,f)=0.
|X|— o0



Fundamental solutions using the Fourier transform, example 2
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|X|— o0
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Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:
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Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:

U = —Ugxx, U(X,0)=f(x), lim u(x,f)=0.
|X|— o0

Fundamental solution solves
St = =S,  S(X,%,0) =d(x — Xp), lim S(x,x0,t)=0.

|X|— o0

Transforming '
S: = ik®S,  S(k,0) = e "k,

whose solution is S(k, Xo, t) = e~*kek’t,
Recall transform of Airy function Ai(x) is e**/3, therefore

S(X, X, 1) = [e—ixokeik%}v _ [ei(k/a)s/s]v (X - x0)

= aAi (a(x - xo)), a= (3173



Fundamental solutions using the Fourier transform, example 2

Linearized Korteweg - de Vries (KdV) equation:

U = —Ugxx, U(X,0)=f(x), lim u(x,f)=0.
|X|— o0

Fundamental solution solves
St = =S,  S(X,%,0) =d(x — Xp), lim S(x,x0,t)=0.

|X|— o0

Transforming '
S;=ik®S, S(k,0) = ek

whose solution is S(k, Xo, t) = e~*kek’t,
Recall transform of Airy function Ai(x) is e**/3, therefore

S(X, X, 1) = [e—ixokeik%}v _ [ei(k/a)s/s]v (X - x0)
= aAi (a(x - xo)), a= (3173

Solution to original equation:
1 X — Xo

U(X, t) = W /_Oo Ai <(3t)1/3> f(Xo)dXo.



The method of images for fundamental solutions

m For solutions on half-line x > 0, can’t use Fourier transform
directly.
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The method of images for fundamental solutions

m For solutions on half-line x > 0, can’t use Fourier transform
directly.

m Fundamental solution must satisfy boundary condition at
x=0
m Inspiration: method of images. If S.o(x; xo, t) is the
fundamental solution for the whole line, then:
m Odd reflection S = S..(X; X0, t) — Soc(X; —Xo, t) gives
S(O,Xo, t) =0.
m Even reflection S = So(x; X0, 1) + S (X; —Xo, t) gives
Sx(0,Xo,t) = 0.



The method of images for fundamental solutions, example

Consider diffusion equation on half line:

ur = Duyy, u(x,0) = f(x), u(0,t) =0, XILm u(x,t)=0.



The method of images for fundamental solutions, example

Consider diffusion equation on half line:
ur = Duyy, u(x,0) = f(x), u(0,t) =0, XILm u(x,t)=0.

Use odd reflection of fundamental solution for whole line
S, = e (x—%)*/(4D0) /\/ax Dt

S(x,x0, 1) = — [0 /(4D0) _ g=tocnf?/ 1401

B VarDt



The method of images for fundamental solutions, example

Consider diffusion equation on half line:
ur = Duxy, u(x,0) = f(x), u(0,t) =0, XILm u(x,t)=0.

Use odd reflection of fundamental solution for whole line
S, = e (x—%)*/(4D0) /\/ax Dt

1
VarDt

Therefore the solution u is just

S(X, XO’ t) = |:e_(X—X0)2/(4Dt) _ e_(X+XO)2/(4Dt):|

% F(X0) [ (x—x0)2/(4Dt) _ —(x+x0)2/(4D1)
u(x, t) = —=_|e 0 —e 0 adxo.
(x.0) /0 47Dt [ ] ’



The age of the earth

Lord Kelvin: simple model of temperature of earth
u(x,t) at depth x and time t

us = Duyy, x >0, u(x,0)= Uy, u(0,t) =0.

Scale chosen so u = 0 on surface; assumes initially
constant temperature (Up) throughout the molten earth.
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The age of the earth

Lord Kelvin: simple model of temperature of earth
u(x,t) at depth x and time t

us = Duyy, x >0, u(x,0)= Uy, u(0,t) =0.

Scale chosen so u = 0 on surface; assumes initially
constant temperature (Up) throughout the molten earth.

We found solution
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The age of the earth

Lord Kelvin: simple model of temperature of earth
u(x,t) at depth x and time t

us = Duyy, x >0, u(x,0)= Uy, u(0,t) =0.

Scale chosen so u = 0 on surface; assumes initially
constant temperature (Up) throughout the molten earth.

We found solution
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Temperature gradient 1 at surface is therefore
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This relates the age of earth t to quantities we can estimate

Up ~ melting temp. of iron ~ 10*°C, D~10"3m?/s, u~10"2C/m,



The age of the earth

Lord Kelvin: simple model of temperature of earth
u(x,t) at depth x and time t

us = Duyy, x >0, u(x,0)= Uy, u(0,t) =0.

Scale chosen so u = 0 on surface; assumes initially
constant temperature (Up) throughout the molten earth.

We found solution

00 U0 5 B 5
u(x. ) = o (=10 /(4D1) _ g(ctx072/(4D0)] gy
( ) /()’ V 47TDt |: :| °

Temperature gradient 1 at surface is therefore

_ _ U [T ey g, Yo
M_UX(O,t)_\/4TDtDt/o Xp€ %0 dxo_\/m.

This relates the age of earth t to quantities we can estimate
Up ~ melting temp. of iron ~ 10*°C, D~10"3m?/s, u~10"2C/m,

which gives t ~ 3 x 107 years !1??



