
Distributions and distributional derivatives



Distributions

Motivations:
1 Ordinary functions are not enough to describe every

physical situation
2 We want to include non-smooth solutions of differential

equations

Idea: create new class of function-like objects called
distributions by defining how they “act" on smooth functions.
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The delta function

The most basic distribution (or “generalized function") is the so-called
δ-function.

Approximate for ε > 0

δε(x) =
1
ε
√
π

e−x2/ε2
.

For any continuous and bounded f (x),∫ ∞
−∞

f (x)δε(x − x0)dx ≈ f (x0)

∫ ∞
−∞

δε(x − x0)dx = f (x0), ε→ 0.

Define the object δ to act as∫ ∞
−∞

f (x)δ(x − x0)dx = f (x0).

The δ-function “picks out" the value of the function f (x) at x0.

Also define in higher dimensions:∫
Rn

f (x)δ(x− x0)dx = f (x0), x,x0 ∈ Rn.
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Duality and linear functionals

The operation ∫ ∞
−∞

f (x)δ(x − x0)dx = f (x0).

can be regarded as a mapping from a continuous function f (x)
to a real number.

Definition: a linear functional is a linear mapping from a vector
space to the real numbers.

Examples:
(1) If g(x) ∈ C1(R), g(x)→ g′(0) is a linear functional.
(2) If q(x) is bounded, integrable,
f (x)→

∫∞
−∞ q(x)f (x) dx is a linear functional.

Should q(x) be regarded as a function, or a functional?
BOTH! We call this situation duality.
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Distributions in general

Idea: create new set of objects not as functions, but as continuous
linear functionals.

Precise definition: A distribution is a continuous linear functional on
the set of infinitely differentiable functions with bounded support
(Notated C∞0 or simply D). Write

d [φ] : D → R
Some facts:

A continuous function g(x) can be regarded as a distribution by
setting g[φ] =

∫∞
−∞ g(x)φ(x)dx .

Distributions can be approximated by usual functions: there
exists a sequence dn(x) ∈ D so that

d [φ] = lim
n→∞

∫
dn(x)φ(x)dx , for all φ ∈ D.

Distributions have integrals:∫ ∞
−∞

d(x)φ(x)dx ≡ d [φ], for any φ ∈ D.
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Some examples

Ex. #1: Linear combinations of delta functions are distributions: If
d = 3δ(x − 1) + 2δ(x) then corresponding linear functional is

d [φ] =

∫ ∞
−∞

d(x)φ(x)dx = 3φ(1) + 2φ(0).

Ex. #2: d [φ] =
∫∞

0 xφ′(x)dx . (check that it’s linear!)
Can it be written in the form

∫∞
−∞ g(x)φ(x)dx? Integrate by parts:

d [φ] = xφ(x)
∣∣∣∞
0
−
∫ ∞

0
φ(x)dx =

∫ ∞
−∞

(
− H(x)

)
φ(x)dx ,

where the “step function" is

H(x) =

{
0 x ≤ 0
1 x > 0.

Abuse of notation: d = −H.
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Distributions as derivatives

Can a non-differentiable function or distribution be differentiated?

We define the distributional derivative of d [φ] to be the distribution
d ′[φ] so that

d ′[φ] ≡ −d [φ′].

Idea behind this: if d [φ] =
∫∞
−∞ g(x)φ(x)dx for smooth g(x),

integration by parts gives

g′[φ] =

∫ ∞
−∞

g′(x)φ(x)dx ≡ −
∫ ∞
−∞

g(x)φ′(x)dx = −g[φ′], for all φ ∈ D.

Ex. #1: Compute derivative of step function H(x). The distributional
derivative H ′[φ] of H is the rule

H ′[φ] = −
∫ ∞
−∞

H(x)φ′(x)dx = −
∫ ∞

0
φ′(x)dx = φ(0) =

∫ ∞
−∞

δ(x)φ(x)dx .

Thus H ′ = δ.

Ex. #2: What is the rule implied by the derivative of the δ-function?
By definition, δ′[φ] = −δ[φ′] = −φ′(0).
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Distributions as derivatives: more examples

The n-th derivative of a distribution d is defined to be

(−1)nd [φ(n)].

(this follows from integration by parts n-times).

Example: Find rule representing second derivative of f (x) = |x |.
By definition,

f ′′[φ] = (−1)2f [φ′′] =

∫ ∞
−∞
|x |φ′′(x)dx .

Now integrate by parts and integrate again:

f ′′[φ] =−
∫ 0

−∞
xφ′′(x)dx +

∫ ∞
0

xφ′′(x)dx

=− xφ′(x)|0−∞ + xφ′(x)|∞0 + φ(x)|0−∞ − φ(x)|∞0 = 2φ(0).

So the second derivative of |x | in the distributional sense is 2δ(x).
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By definition,

f ′′[φ] = (−1)2f [φ′′] =

∫ ∞
−∞
|x |φ′′(x)dx .

Now integrate by parts and integrate again:

f ′′[φ] =−
∫ 0

−∞
xφ′′(x)dx +

∫ ∞
0

xφ′′(x)dx

=− xφ′(x)|0−∞ + xφ′(x)|∞0 + φ(x)|0−∞ − φ(x)|∞0 = 2φ(0).

So the second derivative of |x | in the distributional sense is 2δ(x).



Distributional derivatives in higher dimensions

In higher dimensions, distributional derivatives (gradients etc.)
are defined using Green’s identity: for a smooth function u(x)
and φ ∈ D, one has∫

Rn
(∆u)φdx =

∫
Rn

u ∆φdx .

This motivates the definition of the distributional Laplacian:

(∆u)[φ] = u[∆φ] =

∫
Rn

u ∆φdx .
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Distributional Laplacian example

Find distributional Laplacian of f (x) = 1/|x|, x ∈ R3.

In spherical coordinates,

∆(1/|x|) =
(
∂rr +

2
r
∂r

)1
r

= 0,

except when |x| = 0. Using definition of distributional derivative,

∆f [φ] = f [∆φ] = lim
ε→0

∫
R3/Bε(0)

∆φ

|x| dx , Bε(0) = {|x| < ε}.

We can now use Green’s identity:

∆f [φ] = lim
ε→0

∫
∂Bε(0)

−φ ∂

∂n

(
1
|x|

)
+

1
|x|

∂φ

∂n
dx

Note that n̂ = −x/|x|, ∂/∂n = ∂r , and 1/|x| = 1/ε on ∂Bε(0).

= lim
ε→0

(
− 1
ε2

∫
∂Bε(0)

φ dx +
1
ε

∫
∂Bε(0)

∂φ

∂n
dx

)
,

Since ∂Bε(0) is the surface of a sphere, we have∫
∂Bε(0)

φ dx ∼ 4πε2φ(0),

∫
∂Bε(0)

∂φ

∂n
dx = O(ε2).

The limit ε→ 0 yields ∆f [φ] = −4πφ(0); therefore ∆f = −4πδ(x).
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