Green's functions

Suppose we want to solve a linear, inhomogeneous equation

$$
\mathcal{L} u(\mathbf{x})=f(\mathbf{x}) \quad \text { + homogeneous boundary conditions. }
$$

Green's functions

Suppose we want to solve a linear, inhomogeneous equation

$$
\mathcal{L} u(\mathbf{x})=f(\mathbf{x}) \quad \text { + homogeneous boundary conditions. }
$$

Since differential operators have inverses that are integral operators, might expect a solution

$$
u(\mathbf{x})=\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{0}\right) f\left(\mathbf{x}_{0}\right) d \mathbf{x}_{0}
$$

Green's functions

Suppose we want to solve a linear, inhomogeneous equation

$$
\mathcal{L} u(\mathbf{x})=f(\mathbf{x}) \quad \text { + homogeneous boundary conditions. }
$$

Since differential operators have inverses that are integral operators, might expect a solution

$$
u(\mathbf{x})=\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{0}\right) f\left(\mathbf{x}_{0}\right) d \mathbf{x}_{0}
$$

Provided solution representation exists, $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is called the Green's function.

Green's functions

Suppose we want to solve a linear, inhomogeneous equation

$$
\mathcal{L} u(\mathbf{x})=f(\mathbf{x}) \quad \text { + homogeneous boundary conditions. }
$$

Since differential operators have inverses that are integral operators, might expect a solution

$$
u(\mathbf{x})=\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{0}\right) f\left(\mathbf{x}_{0}\right) d \mathbf{x}_{0}
$$

Provided solution representation exists, $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is called the Green's function.

Physical interpretation: $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is the influence at \mathbf{x} of source at \mathbf{x}_{0}.

Relationship to the delta function

How to construct G ? Suppose $f=\delta\left(\mathbf{x}-\mathbf{x}_{i}\right)$, i.e. a point source.

Relationship to the delta function

How to construct G ? Suppose $f=\delta\left(\mathbf{x}-\mathbf{x}_{i}\right)$, i.e. a point source.

$$
\mathcal{L} u(\mathbf{x})=\delta\left(\mathbf{x}-\mathbf{x}_{i}\right) \quad+\text { homogeneous boundary conditions }
$$

whose solution is

$$
u(\mathbf{x})=\int_{\Omega} G\left(\mathbf{x} ; \mathbf{x}_{0}\right) \delta\left(\mathbf{x}_{0}-\mathbf{x}_{i}\right) d \mathbf{x}_{0}=G\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

Relationship to the delta function

How to construct G ? Suppose $f=\delta\left(\mathbf{x}-\mathbf{x}_{i}\right)$, i.e. a point source.

$$
\mathcal{L} u(\mathbf{x})=\delta\left(\mathbf{x}-\mathbf{x}_{i}\right) \quad+\text { homogeneous boundary conditions }
$$

whose solution is

$$
u(\mathbf{x})=\int_{\Omega} G\left(\mathbf{x} ; \mathbf{x}_{0}\right) \delta\left(\mathbf{x}_{0}-\mathbf{x}_{i}\right) d \mathbf{x}_{0}=G\left(\mathbf{x}, \mathbf{x}_{i}\right) .
$$

Find that the Green's function formally satisfies

$$
\mathcal{L}_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

Reformulation of problem for $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$

Split previous equation into two conditions:

$$
\mathcal{L}_{X} G\left(\mathbf{x}, \mathbf{x}_{0}\right)=0, \quad \text { when } \mathbf{x} \neq \mathbf{x}_{0}
$$

Reformulation of problem for $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$

Split previous equation into two conditions:

$$
\mathcal{L}_{X} G\left(\mathbf{x}, \mathbf{x}_{0}\right)=0, \quad \text { when } \mathbf{x} \neq \mathbf{x}_{0}
$$

Integrating $\mathcal{L}_{X} \mathcal{G}\left(\mathbf{x}, \mathbf{x}_{0}\right)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ over

$$
\int_{B} \mathcal{L}_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) d x=1, \quad \text { for any ball } B \text { centered at } \mathbf{x}_{0} .
$$

"normalization condition"

Split previous equation into two conditions:

$$
\mathcal{L}_{X} G\left(\mathbf{x}, \mathbf{x}_{0}\right)=0, \quad \text { when } \mathbf{x} \neq \mathbf{x}_{0}
$$

Integrating $\mathcal{L}_{X} \mathcal{G}\left(\mathbf{x}, \mathbf{x}_{0}\right)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ over

$$
\int_{B} \mathcal{L}_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) d x=1, \quad \text { for any ball } B \text { centered at } \mathbf{x}_{0} .
$$

"normalization condition"
Lastly, G must satisfy the same type of homogeneous boundary conditions as u.

Connection conditions for ODEs

In one dimension, Green's functions satisfy pointwise conditions when $x \rightarrow x_{0}$.

Connection conditions for ODEs

In one dimension, Green's functions satisfy pointwise conditions when $x \rightarrow x_{0}$.
Suppose one has a n-th order linear equation of the form

$$
u^{(n)}(x)+F\left(u^{(n-1)}(x), u^{(n-2)}(x), \ldots\right)=f(x)
$$

where F is some expression involving lower order derivatives. The Green's function $G\left(x, x_{0}\right)$ formally satisfies

$$
G^{(n)}+F\left(G^{(n-1)}, G^{(n-2)}, \ldots\right)=\delta\left(x-x_{0}\right),
$$

where $G^{(n)}=\frac{d^{n}}{d x^{n}}$.

Connection conditions for ODEs

In one dimension, Green's functions satisfy pointwise conditions when $x \rightarrow x_{0}$.
Suppose one has a n-th order linear equation of the form

$$
u^{(n)}(x)+F\left(u^{(n-1)}(x), u^{(n-2)}(x), \ldots\right)=f(x),
$$

where F is some expression involving lower order derivatives. The Green's function $G\left(x, x_{0}\right)$ formally satisfies

$$
G^{(n)}+F\left(G^{(n-1)}, G^{(n-2)}, \ldots\right)=\delta\left(x-x_{0}\right),
$$

where $G^{(n)}=\frac{d^{n}}{d x^{n}}$. Integration gives

$$
G^{(n-1)}=H\left(x-x_{0}\right)+\text { some continuous function }
$$

Connection conditions for ODEs

In one dimension, Green's functions satisfy pointwise conditions when $x \rightarrow x_{0}$.

Suppose one has a n-th order linear equation of the form

$$
u^{(n)}(x)+F\left(u^{(n-1)}(x), u^{(n-2)}(x), \ldots\right)=f(x)
$$

where F is some expression involving lower order derivatives. The Green's function $G\left(x, x_{0}\right)$ formally satisfies

$$
G^{(n)}+F\left(G^{(n-1)}, G^{(n-2)}, \ldots\right)=\delta\left(x-x_{0}\right),
$$

where $G^{(n)}=\frac{d^{n}}{d x^{n}}$. Integration gives

$$
G^{(n-1)}=H\left(x-x_{0}\right)+\text { some continuous function }
$$

Thus the n - 1 -th derivative has a jump at x_{0}, and lower order derivatives are continuous:
$\lim _{x \rightarrow x_{0}^{+}} \frac{\partial^{n-1} G}{\partial x^{n-1}}-\lim _{x \rightarrow x_{0}^{-}} \frac{\partial^{n-1} G}{\partial x^{n-1}}=1, \quad \lim _{x \rightarrow x_{0}^{+}} \frac{\partial^{m} G}{\partial x^{m}}=\lim _{x \rightarrow x_{0}^{-}} \frac{\partial^{m} G}{\partial x^{m}}, m<n-1$.

Example: $\mathcal{L}=d^{2} / d x^{2}$

Suppose $u: \mathbb{R} \rightarrow \mathbb{R}$ solves

$$
u_{x x}=f(x), \quad u(0)=0=u(L)
$$

Example: $\mathcal{L}=d^{2} / d x^{2}$

Suppose $u: \mathbb{R} \rightarrow \mathbb{R}$ solves

$$
u_{x x}=f(x), \quad u(0)=0=u(L)
$$

The corresponding Green's function will solve

$$
G_{x x}\left(x, x_{0}\right)=0 \text { for } x \neq x_{0}, \quad G\left(0, x_{0}\right)=0=G\left(L, x_{0}\right),
$$

with connection conditions

$$
\lim _{x \rightarrow x_{0}^{+}} G_{x}\left(x, x_{0}\right)-\lim _{x \rightarrow x_{0}^{-}} G_{x}\left(x, x_{0}\right)=1, \lim _{x \rightarrow x_{0}^{+}} G\left(x, x_{0}\right)=\lim _{x \rightarrow x_{0}^{-}} G\left(x, x_{0}\right) .
$$

Example: $\mathcal{L}=d^{2} / d x^{2}$

Suppose $u: \mathbb{R} \rightarrow \mathbb{R}$ solves

$$
u_{x x}=f(x), \quad u(0)=0=u(L)
$$

The corresponding Green's function will solve

$$
G_{x x}\left(x, x_{0}\right)=0 \text { for } x \neq x_{0}, \quad G\left(0, x_{0}\right)=0=G\left(L, x_{0}\right),
$$

with connection conditions

$$
\lim _{x \rightarrow x_{0}^{+}} G_{x}\left(x, x_{0}\right)-\lim _{x \rightarrow x_{0}^{-}} G_{x}\left(x, x_{0}\right)=1, \lim _{x \rightarrow x_{0}^{+}} G\left(x, x_{0}\right)=\lim _{x \rightarrow x_{0}^{-}} G\left(x, x_{0}\right) .
$$

General solution to ODEs are:

$$
G\left(x, x_{0}\right)= \begin{cases}c_{1} x+c_{3} & x<x_{0} \\ c_{2}(x-L)+c_{4} & x>x_{0}\end{cases}
$$

Imposing boundary conditions gives $c_{3}=0=c_{4}$.

Example: $\mathcal{L}=d^{2} / d x^{2}$, cont.

For solution

$$
G\left(x, x_{0}\right)= \begin{cases}c_{1} x & x<x_{0} \\ c_{2}(x-L) & x>x_{0}\end{cases}
$$

impose connection conditions

$$
c_{1} x_{0}=c_{2}\left(x_{0}-L\right), \quad c_{2}-c_{1}=1
$$

Example: $\mathcal{L}=d^{2} / d x^{2}$, cont.

For solution

$$
G\left(x, x_{0}\right)= \begin{cases}c_{1} x & x<x_{0} \\ c_{2}(x-L) & x>x_{0}\end{cases}
$$

impose connection conditions

$$
c_{1} x_{0}=c_{2}\left(x_{0}-L\right), \quad c_{2}-c_{1}=1
$$

so that $c_{1}=\left(x_{0}-L\right) / L$ and $c_{2}=x_{0} / L$.

Example: $\mathcal{L}=d^{2} / d x^{2}$, cont.

For solution

$$
G\left(x, x_{0}\right)= \begin{cases}c_{1} x & x<x_{0} \\ c_{2}(x-L) & x>x_{0}\end{cases}
$$

impose connection conditions

$$
c_{1} x_{0}=c_{2}\left(x_{0}-L\right), \quad c_{2}-c_{1}=1,
$$

so that $c_{1}=\left(x_{0}-L\right) / L$ and $c_{2}=x_{0} / L$.
Solution to $u_{x x}=f, u(0)=0=u(L)$ in terms of G :

$$
u(x)=\frac{1}{L}\left(\int_{0}^{x} x_{0}(x-L) f\left(x_{0}\right) d x_{0}+\int_{x}^{L} x\left(x_{0}-L\right) f\left(x_{0}\right) d x_{0}\right) .
$$

Example: $\mathcal{L}=d^{2} / d x^{2}$, cont.

Does our formula really work?

Example: $\mathcal{L}=d^{2} / d x^{2}$, cont.

Does our formula really work?
Note $u(x)=x(1-x)$ solves $u^{\prime \prime}=-2$ and $u(0)=0=u(1)$. Green's function solution is

$$
\begin{aligned}
u(x) & =\frac{1}{L}\left(\int_{0}^{x} x_{0}(x-L) f\left(x_{0}\right) d x_{0}+\int_{x}^{L} x\left(x_{0}-L\right) f\left(x_{0}\right) d x_{0}\right) \\
& =-2\left(\int_{0}^{x} x_{0}(x-1) d x_{0}+\int_{x}^{1} x\left(x_{0}-1\right) d x_{0}\right) .
\end{aligned}
$$

Example: $\mathcal{L}=d^{2} / d x^{2}$, cont.

Does our formula really work?
Note $u(x)=x(1-x)$ solves $u^{\prime \prime}=-2$ and $u(0)=0=u(1)$. Green's function solution is

$$
\begin{aligned}
u(x) & =\frac{1}{L}\left(\int_{0}^{x} x_{0}(x-L) f\left(x_{0}\right) d x_{0}+\int_{x}^{L} x\left(x_{0}-L\right) f\left(x_{0}\right) d x_{0}\right) \\
& =-2\left(\int_{0}^{x} x_{0}(x-1) d x_{0}+\int_{x}^{1} x\left(x_{0}-1\right) d x_{0}\right)
\end{aligned}
$$

Integrals evaluate to

$$
-2\left(\frac{x^{2}}{2}(x-1)-x \frac{(x-1)^{2}}{2}\right)=x(1-x)
$$

Example: Helmholtz equation

$$
u_{x x}-k^{2} u=f(x), \quad \lim _{x \rightarrow \pm \infty} u(x)=0
$$

$$
u_{x x}-k^{2} u=f(x), \quad \lim _{x \rightarrow \pm \infty} u(x)=0
$$

The Green's function solves

$$
G_{x x}\left(x, x_{0}\right)-k^{2} G=0 \text { for } x \neq x_{0}, \quad \lim _{x \rightarrow \pm \infty} G\left(x, x_{0}\right)=0
$$

plus connection conditions.

Example: Helmholtz equation

$$
u_{x x}-k^{2} u=f(x), \quad \lim _{x \rightarrow \pm \infty} u(x)=0
$$

The Green's function solves

$$
G_{x x}\left(x, x_{0}\right)-k^{2} G=0 \text { for } x \neq x_{0}, \quad \lim _{x \rightarrow \pm \infty} G\left(x, x_{0}\right)=0
$$

plus connection conditions.
General solution is $G=c_{1} \exp (-k x)+c_{2} \exp (k x)$; far-field conditions give

$$
G\left(x, x_{0}\right)= \begin{cases}c_{2} e^{k x} & x<x_{0} \\ c_{1} e^{-k x} & x>x_{0}\end{cases}
$$

Connection conditions imply

$$
c_{2} \exp \left(k x_{0}\right)=c_{1} \exp \left(-k x_{0}\right), \quad-k c_{1} \exp \left(-k x_{0}\right)-k c_{2} \exp \left(k x_{0}\right)=1
$$

which give $c_{1}=-\exp \left(k x_{0}\right) / 2 k$ and $c_{2}=-\exp \left(-k x_{0}\right) / 2 k$.

Example: Helmholtz equation

$$
u_{x x}-k^{2} u=f(x), \quad \lim _{x \rightarrow \pm \infty} u(x)=0
$$

The Green's function solves

$$
G_{x x}\left(x, x_{0}\right)-k^{2} G=0 \text { for } x \neq x_{0}, \quad \lim _{x \rightarrow \pm \infty} G\left(x, x_{0}\right)=0
$$

plus connection conditions.
General solution is $G=c_{1} \exp (-k x)+c_{2} \exp (k x)$; far-field conditions give

$$
G\left(x, x_{0}\right)= \begin{cases}c_{2} e^{k x} & x<x_{0} \\ c_{1} e^{-k x} & x>x_{0}\end{cases}
$$

Connection conditions imply

$$
c_{2} \exp \left(k x_{0}\right)=c_{1} \exp \left(-k x_{0}\right), \quad-k c_{1} \exp \left(-k x_{0}\right)-k c_{2} \exp \left(k x_{0}\right)=1
$$

which give $c_{1}=-\exp \left(k x_{0}\right) / 2 k$ and $c_{2}=-\exp \left(-k x_{0}\right) / 2 k$.
The entire Green's function may then be written compactly as

$$
G\left(x, x_{0}\right)=-\exp \left(-k\left|x-x_{0}\right|\right) / 2 k,
$$

and the solution is represented as

$$
u(x)=-\frac{1}{2 k} \int_{-\infty}^{\infty} f\left(x_{0}\right) e^{-k\left|x-x_{0}\right|} d x_{0} .
$$

Using symmetry to obtain new Green's functions

Consider modification of the previous example:

$$
\mathcal{L} u=u_{x x}-k^{2} u=f(x), \quad u(0)=0, \quad \lim _{x \rightarrow \infty} u(x)=0 .
$$

Using symmetry to obtain new Green's functions

Consider modification of the previous example:

$$
\mathcal{L} u=u_{x x}-k^{2} u=f(x), \quad u(0)=0, \quad \lim _{x \rightarrow \infty} u(x)=0 .
$$

Can't use the "free space" Green's function

$$
G_{\infty}\left(x, x_{0}\right)=-\exp \left(-k\left|x-x_{0}\right|\right) / 2 k,
$$

since it doesn't satisfy $G\left(0, x_{0}\right)=0$.

Using symmetry to obtain new Green's functions

Consider modification of the previous example:

$$
\mathcal{L} u=u_{x x}-k^{2} u=f(x), \quad u(0)=0, \quad \lim _{x \rightarrow \infty} u(x)=0
$$

Can't use the "free space" Green's function

$$
G_{\infty}\left(x, x_{0}\right)=-\exp \left(-k\left|x-x_{0}\right|\right) / 2 k
$$

since it doesn't satisfy $G\left(0, x_{0}\right)=0$. Insight: Subtract G_{∞} and its reflection about $x=0$:

$$
G\left(x, x_{0}\right)=G_{\infty}\left(x, x_{0}\right)-G_{\infty}\left(-x, x_{0}\right)
$$

This does satisfy $G\left(0, x_{0}\right)=0$, but does it still solve correct equation?

Using symmetry to obtain new Green's functions

Consider modification of the previous example:

$$
\mathcal{L} u=u_{x x}-k^{2} u=f(x), \quad u(0)=0, \quad \lim _{x \rightarrow \infty} u(x)=0 .
$$

Can't use the "free space" Green's function

$$
G_{\infty}\left(x, x_{0}\right)=-\exp \left(-k\left|x-x_{0}\right|\right) / 2 k,
$$

since it doesn't satisfy $G\left(0, x_{0}\right)=0$.
Insight: Subtract G_{∞} and its reflection about $x=0$:

$$
G\left(x, x_{0}\right)=G_{\infty}\left(x, x_{0}\right)-G_{\infty}\left(-x, x_{0}\right)
$$

This does satisfy $G\left(0, x_{0}\right)=0$, but does it still solve correct equation?

$$
\mathcal{L} G\left(x, x_{0}\right)=\mathcal{L} G_{\infty}\left(x, x_{0}\right)-\mathcal{L} G_{\infty}\left(-x, x_{0}\right)=\delta\left(x-x_{0}\right)-\delta\left(-x-x_{0}\right)
$$

Ok, since δ-function at $-x_{0}$ is not even in domain!

Using symmetry to obtain new Green's functions

Consider modification of the previous example:

$$
\mathcal{L} u=u_{x x}-k^{2} u=f(x), \quad u(0)=0, \quad \lim _{x \rightarrow \infty} u(x)=0 .
$$

Can't use the "free space" Green's function

$$
G_{\infty}\left(x, x_{0}\right)=-\exp \left(-k\left|x-x_{0}\right|\right) / 2 k,
$$

since it doesn't satisfy $G\left(0, x_{0}\right)=0$.
Insight: Subtract G_{∞} and its reflection about $x=0$:

$$
G\left(x, x_{0}\right)=G_{\infty}\left(x, x_{0}\right)-G_{\infty}\left(-x, x_{0}\right)
$$

This does satisfy $G\left(0, x_{0}\right)=0$, but does it still solve correct equation?

$$
\mathcal{L} G\left(x, x_{0}\right)=\mathcal{L} G_{\infty}\left(x, x_{0}\right)-\mathcal{L} G_{\infty}\left(-x, x_{0}\right)=\delta\left(x-x_{0}\right)-\delta\left(-x-x_{0}\right)
$$

Ok, since δ-function at $-x_{0}$ is not even in domain!
Solution is

$$
u(x)=-\frac{1}{2 k} \int_{0}^{\infty} f\left(x_{0}\right)\left[e^{-k\left|x-x_{0}\right|}-e^{-k\left|x+x_{0}\right|}\right] d x_{0}
$$

Dealing with inhomogeneous boundary conditions

Remarkable fact: although Green's function itself satisfies homogeneous boundary conditions, it can be used for problems with inhomogeneous boundary conditions.

Remarkable fact: although Green's function itself satisfies homogeneous boundary conditions, it can be used for problems with inhomogeneous boundary conditions.
Suppose we wanted to solve

$$
u_{x x}=f, \quad u(0)=A, \quad u(L)=B
$$

For $A=B=0$, we obtained the Green's function

$$
G\left(x, x_{0}\right)= \begin{cases}x\left(x_{0}-L\right) / L & x<x_{0} \\ x_{0}(x-L) / L & x>x_{0}\end{cases}
$$

Remarkable fact: although Green's function itself satisfies homogeneous boundary conditions, it can be used for problems with inhomogeneous boundary conditions.
Suppose we wanted to solve

$$
u_{x x}=f, \quad u(0)=A, \quad u(L)=B
$$

For $A=B=0$, we obtained the Green's function

$$
G\left(x, x_{0}\right)= \begin{cases}x\left(x_{0}-L\right) / L & x<x_{0} \\ x_{0}(x-L) / L & x>x_{0}\end{cases}
$$

Idea to incorporate boundary conditions into representation formula: For any u, v, integration by parts twice gives "Green's formula"

$$
\int_{0}^{L} u v^{\prime \prime}-v u^{\prime \prime} d x=\left[u v^{\prime}-v u^{\prime}\right]_{0}^{L}
$$

Dealing with inhomogeneous boundary conditions, cont.

To use the Green's formula

$$
\int_{0}^{L} u v^{\prime \prime}-v u^{\prime \prime} d x=\left[u v^{\prime}-v u^{\prime}\right]_{0}^{L}
$$

set $v(x)=G\left(x, x_{0}\right)$, giving
$\int_{0}^{L} u(x) G_{x x}\left(x, x_{0}\right)-G\left(x, x_{0}\right) u^{\prime \prime}(x) d x=\left[u(x) G_{x}\left(x, x_{0}\right)-G\left(x, x_{0}\right) u^{\prime}(x)\right]_{x=0}^{x=L}$.

Dealing with inhomogeneous boundary conditions, cont.

To use the Green's formula

$$
\int_{0}^{L} u v^{\prime \prime}-v u^{\prime \prime} d x=\left[u v^{\prime}-v u^{\prime}\right]_{0}^{L}
$$

set $v(x)=G\left(x, x_{0}\right)$, giving
$\int_{0}^{L} u(x) G_{x x}\left(x, x_{0}\right)-G\left(x, x_{0}\right) u^{\prime \prime}(x) d x=\left[u(x) G_{x}\left(x, x_{0}\right)-G\left(x, x_{0}\right) u^{\prime}(x)\right]_{x=0}^{x=L}$.
Using $u_{x x}(x)=f(x), G_{x x}\left(x, x_{0}\right)=\delta\left(x-x_{0}\right), G\left(0, x_{0}\right)=0=G\left(L, x_{0}\right)$, this becomes

$$
\begin{aligned}
u\left(x_{0}\right) & =\int_{0}^{L} G\left(x, x_{0}\right) f(x) d x+\left[u(x) G_{x}\left(x, x_{0}\right)\right]_{x=0}^{x=L} \\
& =\int_{0}^{L} G\left(x, x_{0}\right) f(x) d x+B G_{x}\left(L, x_{0}\right)-A G_{x}\left(0, x_{0}\right)
\end{aligned}
$$

