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Suppose we want to solve a linear, inhomogeneous equation
Lu(x) = f(x) + homogeneous boundary conditions.

Since differential operators have inverses that are integral
operators, might expect a solution

u(x):/QG(x,xo)f(xo)dxo.

Provided solution representation exists, G(X, Xp) is called the
Green'’s function.

Physical interpretation: G(x, Xo) is the influence at x of source
at Xp.
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Relationship to the delta function

How to construct G? Suppose f = §(X — X;), i.e. a point source.
Lu(x) = d(x —x;) + homogeneous boundary conditions

whose solution is
u(x) = [ Gxi%0)3(0 ~ X)oko = G(x. ).
Q

Find that the Green’s function formally satisfies

LxG(X,Xg) = 6(X — Xp)
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Lastly, G must satisfy the same type of homogeneous
boundary conditions as u.
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Connection conditions for ODEs

In one dimension, Green’s functions satisfy pointwise conditions
when x — Xxp.

Suppose one has a n-th order linear equation of the form
U (x) + Fu" D (x), u" 3 (x),...) = f(x),

where F is some expression involving lower order derivatives. The
Green’s function G(x, xo) formally satisfies

G + F(G=1, G2 ) = 6(x — x),
where G = 2. Integration gives
G = H(x — xo) + some continuous function

Thus the n — 1-th derivative has a jump at xg, and lower order
derivatives are continuous:
oG oG . 0"G oG

lim ——— lim =1 im — = Im — m<n-1.
x—>x0+ axn—1 X=Xy 3X”_1 ’ x—>X0+ oxm X—rxg axmv
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Example: £ = d?/dx?

Suppose u : R — R solves
uxx = f(x), wu(0)=0=u(L).
The corresponding Green’s function will solve
Gux (X, %) = 0 for x # xo,  G(0, %) = 0 = G(L, X),
with connection conditions

lim Gx(x,x)— lim Gx(x,x) =1, lim G(x,x) = lim G(x, Xp).
X—Xg X=Xy X—X5 X=Xy

General solution to ODEs are:

CiX+C3 X < Xp
CQ(X*L)+C4 X > Xp.

G(x, xp) = {

Imposing boundary conditions gives ¢; = 0 = ¢;.
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Example: £ = d?/dx?, cont.

For solution

LS P,
impose connection conditions

CiXo=Co(xo—L), co—cy=1,
sothat ¢; = (xo — L)/L and ¢, = xo/L.
Solution to uxx = f, u(0) = 0 = u(L) in terms of G:

X L
u(x) = 1[ ( /0 Xo(X — LYF(x0)dxo + /X x(Xo — L)f(xo)dx0> .
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Note u(x) = x(1 — x) solves u” = -2 and u(0) = 0 = u(1).
Green’s function solution is

X L
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Example: £ = d?/dx?, cont.

Does our formula really work?

Note u(x) = x(1 — x) solves u” = -2 and u(0) = 0 = u(1).
Green’s function solution is

(/OX Xo(X — L)F(x0)dxo + /Lx(xo - L)f(xo)dx0>

X 1
=-2 (/0 Xo(x — 1)dxp +/X X(Xo — 1)dx0> .

Integrals evaluate to

2 _1)2
-2 <)(2(x—1)—x(x 21) ):x(1 — X).

u(x) =

~l =
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Ue — Ku = f(x), im u(x) =0.

The Green’s function solves
Gu(X, %) — K*G=0for x # xo, lim G(x,x) =0,
X—+oo

plus connection conditions.
General solution is G = ¢ exp(—kx) + ¢ exp(kx); far-field conditions give

G(x,x) = {

Connection conditions imply

e x < X,

ce ™ x> x.

cexp(kxo) = crexp(—kxp), —key exp(—kxo) — ke exp(kxo) = 1,
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Example: Helmholtz equation

2. ; _
Uxx — k“u = f(x), Xllrj];]oo u(x) =0.

The Green’s function solves
Gu(X, %) — K*G=0for x # xo, lim G(x,x) =0,
X—+oo

plus connection conditions.
General solution is G = ¢ exp(—kx) + ¢ exp(kx); far-field conditions give

e x < X,
ce ™ x> x.

G(x,x) = {
Connection conditions imply
c exp(kxo) = c1exp(—kxo), —kciexp(—kxo) — ke exp(kxp) =1,

which give ¢ = — exp(kxo)/2k and ¢, = — exp(—kxo)/2k.
The entire Green’s function may then be written compactly as

G(x, x0) = —exp(—k|x — xo|)/2k,
and the solution is represented as

u(x) = —%/ f(xo)e ¥l dxg.
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Using symmetry to obtain new Green’s functions

Consider modification of the previous example:

LU= Uy — K°u=f(x), u(0)=0, Ilim u(x)=0.
X— 00

Can't use the “free space" Green'’s function
Goo (X, X0) = — exp(—k|x — Xo|)/2k,

since it doesn’t satisfy G(0, xo) = 0.
Insight: Subtract G and its reflection about x = 0:

G(X,X0) = Goo(X, X0) — Goo(—X, X0)
This does satisfy G(0, xo) = 0, but does it still solve correct equation?

LG(X,X0) = LGoso (X, X0) — LGoo(—X, X0) = 6(X — X0) — 6(—X — Xo).

Ok, since é-function at —xp is not even in domain!
Solution is

u(x) = _217 /0 flx0) [l — K 0l] g
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Dealing with inhomogeneous boundary conditions

Remarkable fact: although Green’s function itself satisfies
homogeneous boundary conditions, it can be used for problems with
inhomogeneous boundary conditions.

Suppose we wanted to solve

uw =f, u(0)=A, u(L)=B.
For A= B = 0, we obtained the Green’s function

x(xo—L)/L x<Xo
Xo(x = L)/L x> Xp.

G(x,x) = {

Idea to incorporate boundary conditions into representation formula:
For any u, v, integration by parts twice gives “Green’s formula"

L
/ w” — " dx = [uv' — w]s.
0



Dealing with inhomogeneous boundary conditions, cont.

To use the Green’s formula
L
/ w” — " dx = [uv' — w]s.
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Dealing with inhomogeneous boundary conditions, cont.

To use the Green’s formula
L
/ w” — " dx = [uv' — w]s.
0
set v(x) = G(x, x0), giving

/LU(X)GXX(X, X0)—G(x, x0)u" (x)ax = [u(x) Gx(X, X0)—G(X, Xo) U (X)\=.
0

Using U (x) = f(X), Gux(X, X0) = 0(X — X0), G(0, Xo) = 0 = G(L, xo),
this becomes

L
u(x) = /0 G(x, %) F(x)ax + [U(X) Ge(x, %)

= /L G(x, Xx0)f(x)dx + BGx(L, xo) — AGx(0, xo).
0



