
Green’s functions

Suppose we want to solve a linear, inhomogeneous equation

Lu(x) = f (x) + homogeneous boundary conditions.

Since differential operators have inverses that are integral
operators, might expect a solution

u(x) =
∫

Ω
G(x,x0)f (x0)dx0.

Provided solution representation exists, G(x,x0) is called the
Green’s function.

Physical interpretation: G(x,x0) is the influence at x of source
at x0.
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Relationship to the delta function

How to construct G? Suppose f = δ(x− xi), i.e. a point source.

Lu(x) = δ(x− xi) + homogeneous boundary conditions

whose solution is

u(x) =
∫

Ω
G(x;x0)δ(x0 − xi)dx0 = G(x,xi).

Find that the Green’s function formally satisfies

LxG(x,x0) = δ(x− x0)
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Reformulation of problem for G(x,x0)

Split previous equation into two conditions:

LxG(x,x0) = 0, when x 6= x0

Integrating LxG(x,x0) = δ(x− x0) over∫
B
LxG(x,x0)dx = 1, for any ball B centered at x0.

"normalization condition"

Lastly, G must satisfy the same type of homogeneous
boundary conditions as u.
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Connection conditions for ODEs

In one dimension, Green’s functions satisfy pointwise conditions
when x → x0.

Suppose one has a n-th order linear equation of the form

u(n)(x) + F (u(n−1)(x),u(n−2)(x), . . .) = f (x),

where F is some expression involving lower order derivatives. The
Green’s function G(x , x0) formally satisfies

G(n) + F (G(n−1),G(n−2), . . .) = δ(x − x0),

where G(n) = dn

dxn . Integration gives

G(n−1) = H(x − x0) + some continuous function

Thus the n − 1-th derivative has a jump at x0, and lower order
derivatives are continuous:

lim
x→x+

0

∂n−1G
∂xn−1 − lim

x→x−
0

∂n−1G
∂xn−1 = 1, lim

x→x+
0

∂mG
∂xm = lim

x→x−
0

∂mG
∂xm ,m < n−1.
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Example: L = d2/dx2

Suppose u : R→ R solves

uxx = f (x), u(0) = 0 = u(L).

The corresponding Green’s function will solve

Gxx(x , x0) = 0 for x 6= x0, G(0, x0) = 0 = G(L, x0),

with connection conditions

lim
x→x+

0

Gx(x , x0)− lim
x→x−

0

Gx(x , x0) = 1, lim
x→x+

0

G(x , x0) = lim
x→x−

0

G(x , x0).

General solution to ODEs are:

G(x , x0) =

{
c1x + c3 x < x0

c2(x − L) + c4 x > x0.

Imposing boundary conditions gives c3 = 0 = c4.
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Example: L = d2/dx2, cont.

For solution

G(x , x0) =

{
c1x x < x0

c2(x − L) x > x0

impose connection conditions

c1x0 = c2(x0 − L), c2 − c1 = 1,

so that c1 = (x0 − L)/L and c2 = x0/L.

Solution to uxx = f ,u(0) = 0 = u(L) in terms of G:

u(x) =
1
L

(∫ x

0
x0(x − L)f (x0)dx0 +

∫ L

x
x(x0 − L)f (x0)dx0

)
.
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Example: L = d2/dx2, cont.

Does our formula really work?

Note u(x) = x(1− x) solves u′′ = −2 and u(0) = 0 = u(1).
Green’s function solution is

u(x) =
1
L

(∫ x

0
x0(x − L)f (x0)dx0 +

∫ L

x
x(x0 − L)f (x0)dx0

)

= −2

(∫ x

0
x0(x − 1)dx0 +

∫ 1

x
x(x0 − 1)dx0

)
.

Integrals evaluate to

−2
(

x2

2
(x − 1)− x

(x − 1)2

2

)
= x(1− x).
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Example: Helmholtz equation

uxx − k2u = f (x), lim
x→±∞

u(x) = 0.

The Green’s function solves

Gxx(x , x0)− k2G = 0 for x 6= x0, lim
x→±∞

G(x , x0) = 0,

plus connection conditions.
General solution is G = c1 exp(−kx) + c2 exp(kx); far-field conditions give

G(x , x0) =

{
c2ekx x < x0,

c1e−kx x > x0.

Connection conditions imply

c2 exp(kx0) = c1 exp(−kx0), −kc1 exp(−kx0)− kc2 exp(kx0) = 1,

which give c1 = − exp(kx0)/2k and c2 = − exp(−kx0)/2k .
The entire Green’s function may then be written compactly as

G(x , x0) = − exp(−k |x − x0|)/2k ,

and the solution is represented as

u(x) = − 1
2k

∫ ∞
−∞

f (x0)e−k|x−x0|dx0.
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Using symmetry to obtain new Green’s functions

Consider modification of the previous example:

Lu = uxx − k2u = f (x), u(0) = 0, lim
x→∞

u(x) = 0.

Can’t use the “free space" Green’s function

G∞(x , x0) = − exp(−k |x − x0|)/2k ,

since it doesn’t satisfy G(0, x0) = 0.
Insight: Subtract G∞ and its reflection about x = 0:

G(x , x0) = G∞(x , x0)−G∞(−x , x0)

This does satisfy G(0, x0) = 0, but does it still solve correct equation?

LG(x , x0) = LG∞(x , x0)− LG∞(−x , x0) = δ(x − x0)− δ(−x − x0).

Ok, since δ-function at −x0 is not even in domain!
Solution is

u(x) = − 1
2k

∫ ∞
0

f (x0)
[
e−k|x−x0| − e−k|x+x0|

]
dx0.
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Dealing with inhomogeneous boundary conditions

Remarkable fact: although Green’s function itself satisfies
homogeneous boundary conditions, it can be used for problems with
inhomogeneous boundary conditions.

Suppose we wanted to solve

uxx = f , u(0) = A, u(L) = B.

For A = B = 0, we obtained the Green’s function

G(x , x0) =

{
x(x0 − L)/L x < x0

x0(x − L)/L x > x0.

Idea to incorporate boundary conditions into representation formula:
For any u, v , integration by parts twice gives “Green’s formula"∫ L

0
uv ′′ − vu′′ dx = [uv ′ − vu′]L0.
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Dealing with inhomogeneous boundary conditions, cont.

To use the Green’s formula∫ L

0
uv ′′ − vu′′ dx = [uv ′ − vu′]L0.

set v(x) = G(x , x0), giving∫ L

0
u(x)Gxx(x , x0)−G(x , x0)u′′(x)dx = [u(x)Gx(x , x0)−G(x , x0)u′(x)]x=L

x=0.

Using uxx(x) = f (x), Gxx(x , x0) = δ(x − x0), G(0, x0) = 0 = G(L, x0),
this becomes

u(x0) =

∫ L

0
G(x , x0)f (x)dx + [u(x)Gx(x , x0)]

x=L
x=0

=

∫ L

0
G(x , x0)f (x)dx + BGx(L, x0)− AGx(0, x0).



Dealing with inhomogeneous boundary conditions, cont.

To use the Green’s formula∫ L

0
uv ′′ − vu′′ dx = [uv ′ − vu′]L0.

set v(x) = G(x , x0), giving∫ L

0
u(x)Gxx(x , x0)−G(x , x0)u′′(x)dx = [u(x)Gx(x , x0)−G(x , x0)u′(x)]x=L

x=0.

Using uxx(x) = f (x), Gxx(x , x0) = δ(x − x0), G(0, x0) = 0 = G(L, x0),
this becomes

u(x0) =

∫ L

0
G(x , x0)f (x)dx + [u(x)Gx(x , x0)]

x=L
x=0

=

∫ L

0
G(x , x0)f (x)dx + BGx(L, x0)− AGx(0, x0).


