
Using Green’s functions with inhomogeneous BCs

Surprise: Although Green’s functions satisfy homogeneous
boundary conditions, they can be used for problems with
inhomogeneous BCs!

For self adjoint L and u, v with homogeneous boundary
conditions it follows that∫

Ω
(Lv)u dx−

∫
Ω

(Lu)v dx = 0.

But if u, v don’t satisfy homogeneous boundary conditions, get∫
Ω

(Lv)u dx−
∫
Ω

(Lu)v dx = boundary terms involving u and v .

This is called the Green’s formula, which depends on L and Ω.



Using Green’s functions with inhomogeneous BCs

Surprise: Although Green’s functions satisfy homogeneous
boundary conditions, they can be used for problems with
inhomogeneous BCs!

For self adjoint L and u, v with homogeneous boundary
conditions it follows that∫

Ω
(Lv)u dx−

∫
Ω

(Lu)v dx = 0.

But if u, v don’t satisfy homogeneous boundary conditions, get∫
Ω

(Lv)u dx−
∫
Ω

(Lu)v dx = boundary terms involving u and v .

This is called the Green’s formula, which depends on L and Ω.



Using Green’s functions with inhomogeneous BCs

Surprise: Although Green’s functions satisfy homogeneous
boundary conditions, they can be used for problems with
inhomogeneous BCs!

For self adjoint L and u, v with homogeneous boundary
conditions it follows that∫

Ω
(Lv)u dx−

∫
Ω

(Lu)v dx = 0.

But if u, v don’t satisfy homogeneous boundary conditions, get∫
Ω

(Lv)u dx−
∫
Ω

(Lu)v dx = boundary terms involving u and v .

This is called the Green’s formula, which depends on L and Ω.



Using Green’s functions with inhomogeneous BCs

Surprise: Although Green’s functions satisfy homogeneous
boundary conditions, they can be used for problems with
inhomogeneous BCs!

For self adjoint L and u, v with homogeneous boundary
conditions it follows that∫

Ω
(Lv)u dx−

∫
Ω

(Lu)v dx = 0.

But if u, v don’t satisfy homogeneous boundary conditions, get∫
Ω

(Lv)u dx−
∫
Ω

(Lu)v dx = boundary terms involving u and v .

This is called the Green’s formula, which depends on L and Ω.



Using Green’s formula for inhomogeneous boundary conditions

Want to solve

Lu(x) = f (x) + inhomogeneous boundary conditions.

Set v(x) = G(x,x0) in Green’s formula∫
Ω

(LG)u dx−
∫
Ω

(Lu)G dx = boundary terms.

Since LG = δ(x− x0) and Lu = f , we have∫
Ω
δ(x− x0)u(x)dx−

∫
Ω

f (x)G(x,x0)dx = boundary terms

Collapsing the integral involving the δ function,

u(x0) =

∫
Ω

G(x,x0)f (x)dx + boundary terms



Using Green’s formula for inhomogeneous boundary conditions

Want to solve

Lu(x) = f (x) + inhomogeneous boundary conditions.

Set v(x) = G(x,x0) in Green’s formula∫
Ω

(LG)u dx−
∫
Ω

(Lu)G dx = boundary terms.

Since LG = δ(x− x0) and Lu = f , we have∫
Ω
δ(x− x0)u(x)dx−

∫
Ω

f (x)G(x,x0)dx = boundary terms

Collapsing the integral involving the δ function,

u(x0) =

∫
Ω

G(x,x0)f (x)dx + boundary terms



Using Green’s formula for inhomogeneous boundary conditions

Want to solve

Lu(x) = f (x) + inhomogeneous boundary conditions.

Set v(x) = G(x,x0) in Green’s formula∫
Ω

(LG)u dx−
∫
Ω

(Lu)G dx = boundary terms.

Since LG = δ(x− x0) and Lu = f , we have∫
Ω
δ(x− x0)u(x)dx−

∫
Ω

f (x)G(x,x0)dx = boundary terms

Collapsing the integral involving the δ function,

u(x0) =

∫
Ω

G(x,x0)f (x)dx + boundary terms



Using Green’s formula for inhomogeneous boundary conditions

Want to solve

Lu(x) = f (x) + inhomogeneous boundary conditions.

Set v(x) = G(x,x0) in Green’s formula∫
Ω

(LG)u dx−
∫
Ω

(Lu)G dx = boundary terms.

Since LG = δ(x− x0) and Lu = f , we have∫
Ω
δ(x− x0)u(x)dx−

∫
Ω

f (x)G(x,x0)dx = boundary terms

Collapsing the integral involving the δ function,

u(x0) =

∫
Ω

G(x,x0)f (x)dx + boundary terms



Green’s formula for Laplacian

Want to solve
∆u = f in Ω, u = h on ∂Ω,

For dimensions ≥ 2, the Green’s formula is just Green’s identity∫
Ω

u∆v − v∆u dx =

∫
∂Ω

u∇v · n̂ − v∇u · n̂ dx .

Let G solve ∆G = δ(x− x0) and G = 0 on boundary.
Substituting v(x) = G(x,x0) into Green’s formula,∫
Ω

u(x)δ(x−x0)−G(x, x0)f (x) dx =

∫
∂Ω

u(x)∇x G(x, x0)·n̂(x)−G(x, x0)∇u(x)·n̂(x) dx .

Simplifies to

u(x0) =

∫
Ω

G(x,x0)f (x)dx +

∫
∂Ω

h(x)∇xG(x,x0) · n̂(x) dx ,
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Example: the Poisson integral formula revisited

In the case that Ω is a disk of radius a, Green’s function is

G(r , θ; r0, θ0) =
1

4π
ln

(
a2

r 2
0

r 2 + r 2
0 − 2rr0 cos(θ − θ0)

r 2 + a4/r 2
0 − 2ra2/r0 cos(θ − θ0)

)
.

The boundary value problem

∆u = 0, u(a, θ) = h(θ)

has a solution
u(x0) =

∫
∂Ω

h(x)∇x G(x, x0) · n̂(x) dx .

Need normal derivative of G

∇x G(x, x0) · n̂(x) = Gr (r , θ; r0, θ0)

=
1

4π

(
2r − 2r0 cos(θ − θ0)

r 2 + r 2
0 − 2rr0 cos(θ − θ0)

− 2rr 2
0 − 2r0a2 cos(θ − θ0)

r 2r 2
0 + a4 − 2rr0a2 cos(θ − θ0)

)
,

which at r = a is
a

2π

(
1− (r/a)2

r 2 + a2 − 2ar cos(θ − θ0)

)
.

Parameterize boundary integral using θ and |dx | = a dθ,

u(r0, θ0) =
1

2π

∫ 2π

0

(a2 − r 2
0 )h(θ)

a2 + r 2
0 − 2ar0 cos(θ − θ0)

dθ.
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Neumann boundary conditions

Want to solve

∆u = 0, lim
z→∞

u(x , y , z) = 0, uz(x , y ,0) = h(x , y),

in upper half space {(x , y , z)|z > 0}.

Green’s formula∫
Ω

u∆v − v∆u dx =

∫
∂Ω

u∇v · n̂ − v∇u · n̂ dx .

has both Dirichlet and Neumann boundary terms in u, but only know
∇u(x , y ,0) · n̂ = −uz(x , y ,0).

To make ∇v · n̂ = ∇G · n̂ vanish on boundary, need Green’s function
to respect “boundary condition principle":

The Green’s function must have the same type of boundary
conditions as the problem to be solved, and they must be

homogeneous.
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Neumann boundary conditions,cont.

Method of images prescribes even reflection so Gz = 0 when z = 0:
G(x , y , z; x0, y0, z0) = G3(x , y , z; x0, y0, z0) + G3(x , y , z; x0, y0,−z0)

=
1

4π

(
1√

(x − x0)2 + (y − y0)2 + (z − z0)2
+

1√
(x − x0)2 + (y − y0)2 + (z + z0)2

)
.

Substituting v(x) = G(x,x0) into Green’s formula and collapsing the
δ-function integral,

u(x0) = −
∫
∂Ω

G(x; x0)∇u(x) · n̂(x) dx,

Boundary ∂Ω is both xy -plane and the effective boundary at infinity,
but integrand vanishes on the latter.

Since n̂ is directed outward, ∇u(x) · n̂(x) = −uz(x , y ,0), and

u(x0, y0, z0) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

h(x , y)√
(x − x0)2 + (y − y0)2 + z2

0

dxdy .
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Symmetry (reciprocity) of the Green’s function

If L is self-adjoint, might expect that its inverse to also be:

G(x, x0) = G(x0, x), “Reciprocity"

Proof: Insert v(x) = G(x, x1), u(x) = G(x, x2), Lv = δ(x− x1) and
Lu = δ(x− x2) into Green’s formula:∫

Ω

δ(x− x1)G(x, x2)dx−
∫
Ω

G(x, x1)δ(x− x2)dx = 0

which simplifies to G(x1, x2)−G(x2, x1) = 0.
Also: can interchange arguments of partial derivatives, e.g.

∂x G(x , x0) = lim
h→0

(G(x + h, x0)−G(x , x0))/h

= lim
h→0

(G(x0, x + h)−G(x0, x))/h

=∂x0 G(x0, x).

For example, representation formula

u(x0) =

∫
Ω

G(x, x0)f (x)dx +

∫
∂Ω

h(x)∇x G(x, x0) · n̂(x) dx ,

can be rewritten by exchanging the notation for x and x0 and using reciprocity,

u(x) =

∫
Ω

G(x, x0)f (x0)dx0 +

∫
∂Ω

h(x0)∇x0 G(x, x0) · n̂(x0) dx0.
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u(x0) =

∫
Ω

G(x, x0)f (x)dx +

∫
∂Ω

h(x)∇x G(x, x0) · n̂(x) dx ,

can be rewritten by exchanging the notation for x and x0 and using reciprocity,

u(x) =

∫
Ω

G(x, x0)f (x0)dx0 +

∫
∂Ω

h(x0)∇x0 G(x, x0) · n̂(x0) dx0.



Symmetry (reciprocity) of the Green’s function

If L is self-adjoint, might expect that its inverse to also be:

G(x, x0) = G(x0, x), “Reciprocity"

Proof: Insert v(x) = G(x, x1), u(x) = G(x, x2), Lv = δ(x− x1) and
Lu = δ(x− x2) into Green’s formula:∫

Ω

δ(x− x1)G(x, x2)dx−
∫
Ω

G(x, x1)δ(x− x2)dx = 0

which simplifies to G(x1, x2)−G(x2, x1) = 0.
Also: can interchange arguments of partial derivatives, e.g.

∂x G(x , x0) = lim
h→0

(G(x + h, x0)−G(x , x0))/h

= lim
h→0

(G(x0, x + h)−G(x0, x))/h

=∂x0 G(x0, x).

For example, representation formula

u(x0) =

∫
Ω

G(x, x0)f (x)dx +

∫
∂Ω

h(x)∇x G(x, x0) · n̂(x) dx ,

can be rewritten by exchanging the notation for x and x0 and using reciprocity,

u(x) =

∫
Ω

G(x, x0)f (x0)dx0 +

∫
∂Ω

h(x0)∇x0 G(x, x0) · n̂(x0) dx0.


