Using Green's functions with inhomogeneous BCs

Surprise: Although Green's functions satisfy homogeneous boundary conditions, they can be used for problems with inhomogeneous BCs!

Using Green's functions with inhomogeneous BCs

Surprise: Although Green's functions satisfy homogeneous boundary conditions, they can be used for problems with inhomogeneous BCs!

For self adjoint \mathcal{L} and u, v with homogeneous boundary conditions it follows that

$$
\int_{\Omega}(\mathcal{L} v) u d \mathbf{x}-\int_{\Omega}(\mathcal{L} u) v d \mathbf{x}=0
$$

Using Green's functions with inhomogeneous BCs

Surprise: Although Green's functions satisfy homogeneous boundary conditions, they can be used for problems with inhomogeneous BCs!

For self adjoint \mathcal{L} and u, v with homogeneous boundary conditions it follows that

$$
\int_{\Omega}(\mathcal{L} v) u d \mathbf{x}-\int_{\Omega}(\mathcal{L} u) v d \mathbf{x}=0 .
$$

But if u, v don't satisfy homogeneous boundary conditions, get
$\int_{\Omega}(\mathcal{L} v) u d \mathbf{x}-\int_{\Omega}(\mathcal{L} u) v d \mathbf{x}=$ boundary terms involving u and v.
This is called the Green's formula, which depends on \mathcal{L} and Ω.

Using Green's formula for inhomogeneous boundary conditions

Want to solve
$\mathcal{L} u(\mathbf{x})=f(\mathbf{x}) \quad+$ inhomogeneous boundary conditions.

Using Green's formula for inhomogeneous boundary conditions

Want to solve

$$
\mathcal{L} u(\mathbf{x})=f(\mathbf{x}) \quad+\text { inhomogeneous boundary conditions. }
$$

Set $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ in Green's formula

$$
\int_{\Omega}(\mathcal{L} G) u d \mathbf{x}-\int_{\Omega}(\mathcal{L} u) G d \mathbf{x}=\text { boundary terms }
$$

Using Green's formula for inhomogeneous boundary conditions

Want to solve

$$
\mathcal{L} u(\mathbf{x})=f(\mathbf{x}) \quad+\text { inhomogeneous boundary conditions. }
$$

Set $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ in Green's formula

$$
\int_{\Omega}(\mathcal{L} G) u d \mathbf{x}-\int_{\Omega}(\mathcal{L} u) G d \mathbf{x}=\text { boundary terms }
$$

Since $\mathcal{L} G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ and $\mathcal{L} u=f$, we have

$$
\int_{\Omega} \delta\left(\mathbf{x}-\mathbf{x}_{0}\right) u(\mathbf{x}) d \mathbf{x}-\int_{\Omega} f(\mathbf{x}) G\left(\mathbf{x}, \mathbf{x}_{0}\right) d \mathbf{x}=\text { boundary terms }
$$

Using Green's formula for inhomogeneous boundary conditions

Want to solve

$$
\mathcal{L} u(\mathbf{x})=f(\mathbf{x}) \quad+\text { inhomogeneous boundary conditions. }
$$

Set $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ in Green's formula

$$
\int_{\Omega}(\mathcal{L} G) u d \mathbf{x}-\int_{\Omega}(\mathcal{L} u) G d \mathbf{x}=\text { boundary terms }
$$

Since $\mathcal{L} G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ and $\mathcal{L} u=f$, we have

$$
\int_{\Omega} \delta\left(\mathbf{x}-\mathbf{x}_{0}\right) u(\mathbf{x}) d \mathbf{x}-\int_{\Omega} f(\mathbf{x}) G\left(\mathbf{x}, \mathbf{x}_{0}\right) d \mathbf{x}=\text { boundary terms }
$$

Collapsing the integral involving the δ function,

$$
u\left(\mathbf{x}_{0}\right)=\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{0}\right) f(\mathbf{x}) d x+\text { boundary terms }
$$

Green's formula for Laplacian

Want to solve

$$
\Delta u=f \text { in } \Omega, \quad u=h \text { on } \partial \Omega,
$$

Green's formula for Laplacian

Want to solve

$$
\Delta u=f \text { in } \Omega, \quad u=h \text { on } \partial \Omega,
$$

For dimensions ≥ 2, the Green's formula is just Green's identity

$$
\int_{\Omega} u \Delta v-v \Delta u d x=\int_{\partial \Omega} u \nabla v \cdot \hat{n}-v \nabla u \cdot \hat{n} d x
$$

Green's formula for Laplacian

Want to solve

$$
\Delta u=f \text { in } \Omega, \quad u=h \text { on } \partial \Omega,
$$

For dimensions ≥ 2, the Green's formula is just Green's identity

$$
\int_{\Omega} u \Delta v-v \Delta u d x=\int_{\partial \Omega} u \nabla v \cdot \hat{n}-v \nabla u \cdot \hat{n} d x .
$$

Let G solve $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ and $G=0$ on boundary.

Green's formula for Laplacian

Want to solve

$$
\Delta u=f \text { in } \Omega, \quad u=h \text { on } \partial \Omega,
$$

For dimensions ≥ 2, the Green's formula is just Green's identity

$$
\int_{\Omega} u \Delta v-v \Delta u d x=\int_{\partial \Omega} u \nabla v \cdot \hat{n}-v \nabla u \cdot \hat{n} d x
$$

Let G solve $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ and $G=0$ on boundary. Substituting $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ into Green's formula,

$$
\int_{\Omega} u(\mathbf{x}) \delta\left(\mathbf{x}-\mathbf{x}_{0}\right)-G\left(\mathbf{x}, \mathbf{x}_{0}\right) f(\mathbf{x}) d x=\int_{\partial \Omega} u(\mathbf{x}) \nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot \hat{n}(x)-G\left(\mathbf{x}, \mathbf{x}_{0}\right) \nabla u(\mathbf{x}) \cdot \hat{n}(x) d x
$$

Green's formula for Laplacian

Want to solve

$$
\Delta u=f \text { in } \Omega, \quad u=h \text { on } \partial \Omega,
$$

For dimensions ≥ 2, the Green's formula is just Green's identity

$$
\int_{\Omega} u \Delta v-v \Delta u d x=\int_{\partial \Omega} u \nabla v \cdot \hat{n}-v \nabla u \cdot \hat{n} d x
$$

Let G solve $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ and $G=0$ on boundary. Substituting $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ into Green's formula,
$\int_{\Omega} u(\mathbf{x}) \delta\left(\mathbf{x}-\mathbf{x}_{0}\right)-G\left(\mathbf{x}, \mathbf{x}_{0}\right) f(\mathbf{x}) d x=\int_{\partial \Omega} u(\mathbf{x}) \nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot \hat{n}(x)-G\left(\mathbf{x}, \mathbf{x}_{0}\right) \nabla u(\mathbf{x}) \cdot \hat{n}(x) d x$
Simplifies to

$$
u\left(\mathbf{x}_{0}\right)=\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{0}\right) f(\mathbf{x}) d x+\int_{\partial \Omega} h(\mathbf{x}) \nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot \hat{n}(x) d x
$$

Example: the Poisson integral formula revisited

In the case that Ω is a disk of radius a, Green's function is

$$
G\left(r, \theta ; r_{0}, \theta_{0}\right)=\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+a^{4} / r_{0}^{2}-2 r a^{2} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right) .
$$

Example: the Poisson integral formula revisited

In the case that Ω is a disk of radius a, Green's function is

$$
G\left(r, \theta ; r_{0}, \theta_{0}\right)=\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+a^{4} / r_{0}^{2}-2 r a^{2} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right)
$$

The boundary value problem

$$
\Delta u=0, \quad u(a, \theta)=h(\theta)
$$

has a solution

$$
u\left(\mathbf{x}_{0}\right)=\int_{\partial \Omega} h(\mathbf{x}) \nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot \hat{n}(\mathbf{x}) d x .
$$

Example: the Poisson integral formula revisited

In the case that Ω is a disk of radius a, Green's function is

$$
G\left(r, \theta ; r_{0}, \theta_{0}\right)=\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+a^{4} / r_{0}^{2}-2 r a^{2} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right)
$$

The boundary value problem

$$
\Delta u=0, \quad u(a, \theta)=h(\theta)
$$

has a solution

$$
u\left(\mathbf{x}_{0}\right)=\int_{\partial \Omega} h(\mathbf{x}) \nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot \hat{n}(\mathbf{x}) d x
$$

Need normal derivative of G

$$
\begin{aligned}
\nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot & \hat{n}(\mathbf{x})=G_{r}\left(r, \theta ; r_{0}, \theta_{0}\right) \\
& =\frac{1}{4 \pi}\left(\frac{2 r-2 r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}-\frac{2 r r_{0}^{2}-2 r_{0} a^{2} \cos \left(\theta-\theta_{0}\right)}{r^{2} r_{0}^{2}+a^{4}-2 r r_{0} a^{2} \cos \left(\theta-\theta_{0}\right)}\right)
\end{aligned}
$$

which at $r=a$ is

$$
\frac{a}{2 \pi}\left(\frac{1-(r / a)^{2}}{r^{2}+a^{2}-2 \operatorname{arcos}\left(\theta-\theta_{0}\right)}\right)
$$

Example: the Poisson integral formula revisited

In the case that Ω is a disk of radius a, Green's function is

$$
G\left(r, \theta ; r_{0}, \theta_{0}\right)=\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+a^{4} / r_{0}^{2}-2 r a^{2} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right)
$$

The boundary value problem

$$
\Delta u=0, \quad u(a, \theta)=h(\theta)
$$

has a solution

$$
u\left(\mathbf{x}_{0}\right)=\int_{\partial \Omega} h(\mathbf{x}) \nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot \hat{n}(\mathbf{x}) d x
$$

Need normal derivative of G

$$
\begin{aligned}
\nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) & \cdot \hat{n}(\mathbf{x})=G_{r}\left(r, \theta ; r_{0}, \theta_{0}\right) \\
= & \frac{1}{4 \pi}\left(\frac{2 r-2 r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}-\frac{2 r r_{0}^{2}-2 r_{0} a^{2} \cos \left(\theta-\theta_{0}\right)}{r^{2} r_{0}^{2}+a^{4}-2 r r_{0} a^{2} \cos \left(\theta-\theta_{0}\right)}\right),
\end{aligned}
$$

which at $r=a$ is

$$
\frac{a}{2 \pi}\left(\frac{1-(r / a)^{2}}{r^{2}+a^{2}-2 \operatorname{arcos}\left(\theta-\theta_{0}\right)}\right)
$$

Parameterize boundary integral using θ and $|d x|=a d \theta$,

$$
u\left(r_{0}, \theta_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(a^{2}-r_{0}^{2}\right) h(\theta)}{a^{2}+r_{0}^{2}-2 a r_{0} \cos \left(\theta-\theta_{0}\right)} d \theta .
$$

Neumann boundary conditions

Want to solve

$$
\Delta u=0, \quad \lim _{z \rightarrow \infty} u(x, y, z)=0, \quad u_{z}(x, y, 0)=h(x, y)
$$

in upper half space $\{(x, y, z) \mid z>0\}$.

Neumann boundary conditions

Want to solve

$$
\Delta u=0, \quad \lim _{z \rightarrow \infty} u(x, y, z)=0, \quad u_{z}(x, y, 0)=h(x, y)
$$

in upper half space $\{(x, y, z) \mid z>0\}$.
Green's formula

$$
\int_{\Omega} u \Delta v-v \Delta u d x=\int_{\partial \Omega} u \nabla v \cdot \hat{n}-v \nabla u \cdot \hat{n} d x .
$$

has both Dirichlet and Neumann boundary terms in u, but only know $\nabla u(x, y, 0) \cdot \hat{n}=-u_{z}(x, y, 0)$.

Neumann boundary conditions

Want to solve

$$
\Delta u=0, \quad \lim _{z \rightarrow \infty} u(x, y, z)=0, \quad u_{z}(x, y, 0)=h(x, y)
$$

in upper half space $\{(x, y, z) \mid z>0\}$.
Green's formula

$$
\int_{\Omega} u \Delta v-v \Delta u d x=\int_{\partial \Omega} u \nabla v \cdot \hat{n}-v \nabla u \cdot \hat{n} d x
$$

has both Dirichlet and Neumann boundary terms in u, but only know $\nabla u(x, y, 0) \cdot \hat{n}=-u_{z}(x, y, 0)$.

To make $\nabla v \cdot \hat{n}=\nabla G \cdot \hat{n}$ vanish on boundary, need Green's function to respect "boundary condition principle":

The Green's function must have the same type of boundary conditions as the problem to be solved, and they must be homogeneous.

Neumann boundary conditions,cont.

Method of images prescribes even reflection so $G_{z}=0$ when $z=0$:

$$
\begin{aligned}
& G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=G_{3}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)+G_{3}\left(x, y, z ; x_{0}, y_{0},-z_{0}\right) \\
& =\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}+\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right)
\end{aligned}
$$

Neumann boundary conditions,cont.

Method of images prescribes even reflection so $G_{z}=0$ when $z=0$:

$$
\begin{aligned}
& G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=G_{3}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)+G_{3}\left(x, y, z ; x_{0}, y_{0},-z_{0}\right) \\
& =\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}+\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right)
\end{aligned}
$$

Substituting $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ into Green's formula and collapsing the δ-function integral,

$$
u\left(\mathbf{x}_{0}\right)=-\int_{\partial \Omega} G\left(\mathbf{x} ; \mathbf{x}_{0}\right) \nabla u(\mathbf{x}) \cdot \hat{n}(x) d \mathbf{x}
$$

Neumann boundary conditions,cont.

Method of images prescribes even reflection so $G_{z}=0$ when $z=0$:

$$
\begin{aligned}
& G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=G_{3}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)+G_{3}\left(x, y, z ; x_{0}, y_{0},-z_{0}\right) \\
& =\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}+\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right)
\end{aligned}
$$

Substituting $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ into Green's formula and collapsing the δ-function integral,

$$
u\left(\mathbf{x}_{0}\right)=-\int_{\partial \Omega} G\left(\mathbf{x} ; \mathbf{x}_{0}\right) \nabla u(\mathbf{x}) \cdot \hat{n}(x) d \mathbf{x}
$$

Boundary $\partial \Omega$ is both $x y$-plane and the effective boundary at infinity, but integrand vanishes on the latter.

Neumann boundary conditions,cont.

Method of images prescribes even reflection so $G_{z}=0$ when $z=0$:

$$
\begin{aligned}
& G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=G_{3}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)+G_{3}\left(x, y, z ; x_{0}, y_{0},-z_{0}\right) \\
& =\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}+\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right)
\end{aligned}
$$

Substituting $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ into Green's formula and collapsing the δ-function integral,

$$
u\left(\mathbf{x}_{0}\right)=-\int_{\partial \Omega} G\left(\mathbf{x} ; \mathbf{x}_{0}\right) \nabla u(\mathbf{x}) \cdot \hat{n}(x) d \mathbf{x}
$$

Boundary $\partial \Omega$ is both $x y$-plane and the effective boundary at infinity, but integrand vanishes on the latter.
Since \hat{n} is directed outward, $\nabla u(\mathbf{x}) \cdot \hat{n}(x)=-u_{z}(x, y, 0)$, and

$$
u\left(x_{0}, y_{0}, z_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{h(x, y)}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+z_{0}^{2}}} d x d y
$$

Symmetry (reciprocity) of the Green's function

If \mathcal{L} is self-adjoint, might expect that its inverse to also be:

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=G\left(\mathbf{x}_{0}, \mathbf{x}\right), \quad \text { "Reciprocity" }
$$

Symmetry (reciprocity) of the Green's function

If \mathcal{L} is self-adjoint, might expect that its inverse to also be:

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=G\left(\mathbf{x}_{0}, \mathbf{x}\right), \quad \text { "Reciprocity" }
$$

Proof: Insert $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{1}\right), u(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{2}\right), \mathcal{L} v=\delta\left(\mathbf{x}-\mathbf{x}_{1}\right)$ and $\mathcal{L} u=\delta\left(\mathbf{x}-\mathbf{x}_{2}\right)$ into Green's formula:

$$
\int_{\Omega} \delta\left(\mathbf{x}-\mathbf{x}_{1}\right) G\left(\mathbf{x}, \mathbf{x}_{2}\right) d \mathbf{x}-\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{1}\right) \delta\left(\mathbf{x}-\mathbf{x}_{2}\right) d \mathbf{x}=0
$$

which simplifies to $G\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-G\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)=0$.

Symmetry (reciprocity) of the Green's function

If \mathcal{L} is self-adjoint, might expect that its inverse to also be:

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=G\left(\mathbf{x}_{0}, \mathbf{x}\right), \quad \text { "Reciprocity" }
$$

Proof: Insert $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{1}\right), u(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{2}\right), \mathcal{L} v=\delta\left(\mathbf{x}-\mathbf{x}_{1}\right)$ and $\mathcal{L} u=\delta\left(\mathbf{x}-\mathbf{x}_{2}\right)$ into Green's formula:

$$
\int_{\Omega} \delta\left(\mathbf{x}-\mathbf{x}_{1}\right) G\left(\mathbf{x}, \mathbf{x}_{2}\right) d \mathbf{x}-\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{1}\right) \delta\left(\mathbf{x}-\mathbf{x}_{2}\right) d \mathbf{x}=0
$$

which simplifies to $G\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-G\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)=0$.
Also: can interchange arguments of partial derivatives, e.g.

$$
\begin{aligned}
\partial_{x} G\left(x, x_{0}\right) & =\lim _{h \rightarrow 0}\left(G\left(x+h, x_{0}\right)-G\left(x, x_{0}\right)\right) / h \\
& =\lim _{h \rightarrow 0}\left(G\left(x_{0}, x+h\right)-G\left(x_{0}, x\right)\right) / h \\
& =\partial_{x_{0}} G\left(x_{0}, x\right) .
\end{aligned}
$$

Symmetry (reciprocity) of the Green's function

If \mathcal{L} is self-adjoint, might expect that its inverse to also be:

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=G\left(\mathbf{x}_{0}, \mathbf{x}\right), \quad \text { "Reciprocity" }
$$

Proof: Insert $v(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{1}\right), u(\mathbf{x})=G\left(\mathbf{x}, \mathbf{x}_{2}\right), \mathcal{L} v=\delta\left(\mathbf{x}-\mathbf{x}_{1}\right)$ and $\mathcal{L} u=\delta\left(\mathbf{x}-\mathbf{x}_{2}\right)$ into Green's formula:

$$
\int_{\Omega} \delta\left(\mathbf{x}-\mathbf{x}_{1}\right) G\left(\mathbf{x}, \mathbf{x}_{2}\right) d \mathbf{x}-\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{1}\right) \delta\left(\mathbf{x}-\mathbf{x}_{2}\right) d \mathbf{x}=0
$$

which simplifies to $G\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)-G\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)=0$.
Also: can interchange arguments of partial derivatives, e.g.

$$
\begin{aligned}
\partial_{x} G\left(x, x_{0}\right) & =\lim _{h \rightarrow 0}\left(G\left(x+h, x_{0}\right)-G\left(x, x_{0}\right)\right) / h \\
& =\lim _{h \rightarrow 0}\left(G\left(x_{0}, x+h\right)-G\left(x_{0}, x\right)\right) / h \\
& =\partial_{x_{0}} G\left(x_{0}, x\right) .
\end{aligned}
$$

For example, representation formula

$$
u\left(\mathbf{x}_{0}\right)=\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{0}\right) f(\mathbf{x}) d x+\int_{\partial \Omega} h(\mathbf{x}) \nabla_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot \hat{n}(x) d x
$$

can be rewritten by exchanging the notation for \mathbf{x} and \mathbf{x}_{0} and using reciprocity,

$$
u(\mathbf{x})=\int_{\Omega} G\left(\mathbf{x}, \mathbf{x}_{0}\right) f\left(\mathbf{x}_{0}\right) d x_{0}+\int_{\partial \Omega} h\left(\mathbf{x}_{0}\right) \nabla_{x_{0}} G\left(\mathbf{x}, \mathbf{x}_{0}\right) \cdot \hat{n}\left(\mathbf{x}_{0}\right) d x_{0}
$$

