
Dealing with boundaries and the method of images

Recall for domains Ω = R2,R3, have “free space" Green’s
functions for Poisson equation

G2(x; x0) =
1

2π
ln |x− x0|

G3(x,x0) = − 1
4π|x− x0|

.

In cases where there are boundaries, these don’t satisfy
boundary conditions!

Resolution: Use free space Green’s functions as particular
solutions, or use them in conjunction with symmetric reflections
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Arbitrary bounded domains

Consider Poisson equation for u : Ω→ R

∆u = f (x , y), u = 0 on ∂Ω

where Ω is a bounded in R2.

Need Green’s function which satisfies

∆xG = δ(x− x0), G(x,x0) = 0 when x ∈ ∂Ω.

Free space Green’s function G2(x; x0) = ln |x− x0|/2π satisfies
right equation, but not boundary condition.

Idea: use G2 as a particular solution, and write
G(x,x0) = G2(x; x0) + GR(x,x0). Then GR solves

∆xGR = 0, GR(x,x0) = −G2(x; x0) when x ∈ ∂Ω.

The function GR is the regular part of the Green’s function, and
has no singular behavior.
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Method of images

Main idea: If domain has certain symmetry, can use free space
Green’s functions as building blocks.

Fundamental observation: for continuously differentiable
f (x) : R→ R,

g(x) = f (x)− f (−x) is an odd function and g(0) = 0,
h(x) = f (x) + f (−x) is an even function and h′(0) = 0.

Therefore, sums/differences of free space Green’s functions
and their reflections can get boundary conditions right!
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Example 1: upper half space

Consider problem for u : R3 ∩ {z > 0} → R

∆u = f , lim
|x|→∞

u(x) = 0, u(x , y , 0) = 0.

Can’t use free space Green’s function

G3(x , y , z; x0, y0, z0) = − 1
4π
√

(x − x0)2 + (y − y0)2 + (z − z0)2

since it is not zero where z = 0.

Using symmetry, however, suggests subtracting G from its mirror image
about z = 0:

G(x , y , z; x0, y0, z0) = G3(x , y , z; x0, y0, z0)−G3(x , y ,−z; x0, y0, z0) =

1
4π

(
1√

(x − x0)2 + (y − y0)2 + (z − z0)2
− 1√

(x − x0)2 + (y − y0)2 + (z + z0)2

)
.
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Example 1: upper half space, cont.

Check that

G(x , y , z; x0, y0, z0) =

1
4π

(
1√

(x − x0)2 + (y − y0)2 + (z − z0)2
− 1√

(x − x0)2 + (y − y0)2 + (z + z0)2

)
.

solves the right problem.

Easy to compute lim|x|→∞G = 0, and also G(x , y , 0; x0, y0, z0) = 0.

Equation formally satisfied by G is

∆x G(x, x0) = δ(x− x0)− δ(x− x∗0 ),

where x∗0 = (x0, y0,−z0) is called the image source.

Extra δ-function is not a problem, since equation for G only needs to be
satisfied in problem domain

∆x G(x, x0) = δ(x− x0), for all x ∈ R3 ∩ {z > 0} .
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Example 2: disk

Want (in polar coordinates) G(r , θ; r0, θ0) to solve ∆G = δ(x− x0) with
boundary condition G(a, θ; r0, θ0) = 0.

Using free space G-function

G2(r , θ; ro, θ0) =
1

4π
ln(r2 + r2

0 − 2rr0 cos(θ − θ0)).

Idea is to subtract G2 from its “reflection" across the boundary, using
image source at x∗

0 = a2x0/r2
0 . The difference on the boundary is not

zero, but is a constant = − ln(a/r0)/(2π).

The desired Green’s function is therefore

G(r , θ; r0, θ0) = G2(x,x0)−G2(x,x∗
0) +

1
2π

ln(a/r0)

=
1

4π
ln
(

a2

r2
0

r2 + r2
0 − 2rr0 cos(θ − θ0)

r2 + a4/r2
0 − 2ra2/r0 cos(θ − θ0)

)
.
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Example 2: disk,cont.

Check that

G(r , θ; r0, θ0) =
1

4π
ln
(

a2

r2
0

r2 + r2
0 − 2rr0 cos(θ − θ0)

r2 + a4/r2
0 − 2ra2/r0 cos(θ − θ0)

)
= G2(x,x0)−G2(x,x∗

0) +
1

2π
ln(a/r0).

satisfies the correct conditions:

Note ∆G = δ(x− x0)− δ(x− x∗
0), which is which ∆G = δ(x− x0)

when restricted to the disk.

Also, evaluating G on the boundary,

G(a, θ; ro, θ0) =
1

4π
ln
(

a2

r2
0

a2 + r2
0 − 2ar0 cos(θ − θ0)

a2 + a4/r2
0 − 2a3/r0 cos(θ − θ0)

)
=

1
4π

ln
(

a2 + r2
0 − 2ar0 cos(θ − θ0)

r2
0 + a2 − 2ar0 cos(θ − θ0)

)
= 0.
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