Dealing with boundaries and the method of images

Recall for domains $\Omega=\mathbb{R}^{2}, \mathbb{R}^{3}$, have "free space" Green's functions for Poisson equation

$$
\begin{aligned}
& G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right)=\frac{1}{2 \pi} \ln \left|\mathbf{x}-\mathbf{x}_{0}\right| \\
& G_{3}\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}\right|} .
\end{aligned}
$$

Dealing with boundaries and the method of images

Recall for domains $\Omega=\mathbb{R}^{2}, \mathbb{R}^{3}$, have "free space" Green's functions for Poisson equation

$$
\begin{aligned}
& G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right)=\frac{1}{2 \pi} \ln \left|\mathbf{x}-\mathbf{x}_{0}\right| \\
& G_{3}\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}\right|} .
\end{aligned}
$$

In cases where there are boundaries, these don't satisfy boundary conditions!

Dealing with boundaries and the method of images

Recall for domains $\Omega=\mathbb{R}^{2}, \mathbb{R}^{3}$, have "free space" Green's functions for Poisson equation

$$
\begin{aligned}
& G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right)=\frac{1}{2 \pi} \ln \left|\mathbf{x}-\mathbf{x}_{0}\right| \\
& G_{3}\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}\right|} .
\end{aligned}
$$

In cases where there are boundaries, these don't satisfy boundary conditions!

Resolution: Use free space Green's functions as particular solutions, or use them in conjunction with symmetric reflections

Arbitrary bounded domains

Consider Poisson equation for $u: \Omega \rightarrow \mathbb{R}$

$$
\Delta u=f(x, y), \quad u=0 \text { on } \partial \Omega
$$

where Ω is a bounded in \mathbb{R}^{2}.

Arbitrary bounded domains

Consider Poisson equation for $u: \Omega \rightarrow \mathbb{R}$

$$
\Delta u=f(x, y), \quad u=0 \text { on } \partial \Omega
$$

where Ω is a bounded in \mathbb{R}^{2}.
Need Green's function which satisfies

$$
\Delta_{x} G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad G\left(\mathbf{x}, \mathbf{x}_{0}\right)=0 \text { when } x \in \partial \Omega
$$

Arbitrary bounded domains

Consider Poisson equation for $u: \Omega \rightarrow \mathbb{R}$

$$
\Delta u=f(x, y), \quad u=0 \text { on } \partial \Omega
$$

where Ω is a bounded in \mathbb{R}^{2}.
Need Green's function which satisfies

$$
\Delta_{x} G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad G\left(\mathbf{x}, \mathbf{x}_{0}\right)=0 \text { when } x \in \partial \Omega
$$

Free space Green's function $G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right)=\ln \left|\mathbf{x}-\mathbf{x}_{0}\right| / 2 \pi$ satisfies right equation, but not boundary condition.

Arbitrary bounded domains

Consider Poisson equation for $u: \Omega \rightarrow \mathbb{R}$

$$
\Delta u=f(x, y), \quad u=0 \text { on } \partial \Omega
$$

where Ω is a bounded in \mathbb{R}^{2}.
Need Green's function which satisfies

$$
\Delta_{x} G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad G\left(\mathbf{x}, \mathbf{x}_{0}\right)=0 \text { when } x \in \partial \Omega
$$

Free space Green's function $G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right)=\ln \left|\mathbf{x}-\mathbf{x}_{0}\right| / 2 \pi$ satisfies right equation, but not boundary condition.
Idea: use G_{2} as a particular solution, and write
$G\left(\mathbf{x}, \mathbf{x}_{0}\right)=G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right)+G_{R}\left(\mathbf{x}, \mathbf{x}_{0}\right)$. Then G_{R} solves

$$
\Delta_{x} G_{R}=0, \quad G_{R}\left(\mathbf{x}, \mathbf{x}_{0}\right)=-G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right) \text { when } x \in \partial \Omega
$$

Arbitrary bounded domains

Consider Poisson equation for $u: \Omega \rightarrow \mathbb{R}$

$$
\Delta u=f(x, y), \quad u=0 \text { on } \partial \Omega
$$

where Ω is a bounded in \mathbb{R}^{2}.
Need Green's function which satisfies

$$
\Delta_{x} G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad G\left(\mathbf{x}, \mathbf{x}_{0}\right)=0 \text { when } x \in \partial \Omega
$$

Free space Green's function $G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right)=\ln \left|\mathbf{x}-\mathbf{x}_{0}\right| / 2 \pi$ satisfies right equation, but not boundary condition.
Idea: use G_{2} as a particular solution, and write
$G\left(\mathbf{x}, \mathbf{x}_{0}\right)=G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right)+G_{R}\left(\mathbf{x}, \mathbf{x}_{0}\right)$. Then G_{R} solves

$$
\Delta_{x} G_{R}=0, \quad G_{R}\left(\mathbf{x}, \mathbf{x}_{0}\right)=-G_{2}\left(\mathbf{x} ; \mathbf{x}_{0}\right) \text { when } x \in \partial \Omega
$$

The function G_{R} is the regular part of the Green's function, and has no singular behavior.

Method of images

Main idea: If domain has certain symmetry, can use free space Green's functions as building blocks.

Method of images

Main idea: If domain has certain symmetry, can use free space Green's functions as building blocks.

Fundamental observation: for continuously differentiable $f(x): \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& g(x)=f(x)-f(-x) \text { is an odd function and } g(0)=0 \\
& h(x)=f(x)+f(-x) \text { is an even function and } h^{\prime}(0)=0
\end{aligned}
$$

Method of images

Main idea: If domain has certain symmetry, can use free space Green's functions as building blocks.

Fundamental observation: for continuously differentiable $f(x): \mathbb{R} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
& g(x)=f(x)-f(-x) \text { is an odd function and } g(0)=0 \\
& h(x)=f(x)+f(-x) \text { is an even function and } h^{\prime}(0)=0
\end{aligned}
$$

Therefore, sums/differences of free space Green's functions and their reflections can get boundary conditions right!

Example 1: upper half space

Consider problem for $u: \mathbb{R}^{3} \cap\{z>0\} \rightarrow \mathbb{R}$

$$
\Delta u=f, \quad \lim _{|\mathbf{x}| \rightarrow \infty} u(\mathbf{x})=0, \quad u(x, y, 0)=0
$$

Can't use free space Green's function

$$
G_{3}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=-\frac{1}{4 \pi \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}
$$

since it is not zero where $z=0$.

Example 1: upper half space

Consider problem for $u: \mathbb{R}^{3} \cap\{z>0\} \rightarrow \mathbb{R}$

$$
\Delta u=f, \quad \lim _{|\mathbf{x}| \rightarrow \infty} u(\mathbf{x})=0, \quad u(x, y, 0)=0
$$

Can't use free space Green's function

$$
G_{3}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=-\frac{1}{4 \pi \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}
$$

since it is not zero where $z=0$.
Using symmetry, however, suggests subtracting G from its mirror image about $z=0$:
$G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=G_{3}\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)-G_{3}\left(x, y,-z ; x_{0}, y_{0}, z_{0}\right)=$
$\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}-\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right)$.

Example 1: upper half space, cont.

Check that
$G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=$
$\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}-\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right)$.
solves the right problem.

Example 1: upper half space, cont.

Check that
$G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=$
$\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}-\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right)$.
solves the right problem.
Easy to compute $\lim _{|\mathbf{x}| \rightarrow \infty} G=0$, and also $G\left(x, y, 0 ; x_{0}, y_{0}, z_{0}\right)=0$.

Example 1: upper half space, cont.

Check that
$G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)=$
$\frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}-\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right)$.
solves the right problem.
Easy to compute $\lim _{|\mathbf{x}| \rightarrow \infty} G=0$, and also $G\left(x, y, 0 ; x_{0}, y_{0}, z_{0}\right)=0$.
Equation formally satisfied by G is

$$
\Delta_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)-\delta\left(\mathbf{x}-\mathbf{x}_{0}^{*}\right),
$$

where $\mathbf{x}_{0}^{*}=\left(x_{0}, y_{0},-z_{0}\right)$ is called the image source.

Example 1: upper half space, cont.

Check that

$$
\begin{aligned}
& G\left(x, y, z ; x_{0}, y_{0}, z_{0}\right)= \\
& \frac{1}{4 \pi}\left(\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}}-\frac{1}{\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z+z_{0}\right)^{2}}}\right) .
\end{aligned}
$$

solves the right problem.
Easy to compute $\lim _{|\mathbf{x}| \rightarrow \infty} G=0$, and also $G\left(x, y, 0 ; x_{0}, y_{0}, z_{0}\right)=0$.
Equation formally satisfied by G is

$$
\Delta_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)-\delta\left(\mathbf{x}-\mathbf{x}_{0}^{*}\right),
$$

where $\mathbf{x}_{0}^{*}=\left(x_{0}, y_{0},-z_{0}\right)$ is called the image source.
Extra δ-function is not a problem, since equation for G only needs to be satisfied in problem domain

$$
\Delta_{x} G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad \text { for all } \mathbf{x} \in \mathbb{R}^{3} \cap\{z>0\}
$$

Want (in polar coordinates) $G\left(r, \theta ; r_{0}, \theta_{0}\right)$ to solve $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ with boundary condition $G\left(a, \theta ; r_{0}, \theta_{0}\right)=0$.
Using free space G-function

$$
G_{2}\left(r, \theta ; r_{0}, \theta_{0}\right)=\frac{1}{4 \pi} \ln \left(r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)\right)
$$

Idea is to subtract G_{2} from its "reflection" across the boundary, using image source at $\mathbf{x}_{0}^{*}=a^{2} \mathbf{x}_{0} / r_{0}^{2}$. The difference on the boundary is not zero, but is a constant $=-\ln \left(a / r_{0}\right) /(2 \pi)$.

Example 2: disk

Want (in polar coordinates) $G\left(r, \theta ; r_{0}, \theta_{0}\right)$ to solve $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ with boundary condition $G\left(a, \theta ; r_{0}, \theta_{0}\right)=0$.
Using free space G-function

$$
G_{2}\left(r, \theta ; r_{0}, \theta_{0}\right)=\frac{1}{4 \pi} \ln \left(r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)\right)
$$

Idea is to subtract G_{2} from its "reflection" across the boundary, using image source at $\mathbf{x}_{0}^{*}=a^{2} \mathbf{x}_{0} / r_{0}^{2}$. The difference on the boundary is not zero, but is a constant $=-\ln \left(a / r_{0}\right) /(2 \pi)$.
The desired Green's function is therefore

$$
\begin{aligned}
G\left(r, \theta ; r_{0}, \theta_{0}\right) & =G_{2}\left(\mathbf{x}, \mathbf{x}_{0}\right)-G_{2}\left(\mathbf{x}, \mathbf{x}_{0}^{*}\right)+\frac{1}{2 \pi} \ln \left(a / r_{0}\right) \\
& =\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+a^{4} / r_{0}^{2}-2 r a^{2} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right) .
\end{aligned}
$$

Example 2: disk,cont.

Check that

$$
\begin{aligned}
G\left(r, \theta ; r_{0}, \theta_{0}\right) & =\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+a^{4} / r_{0}^{2}-2 r a^{2} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right) \\
& =G_{2}\left(\mathbf{x}, \mathbf{x}_{0}\right)-G_{2}\left(\mathbf{x}, \mathbf{x}_{0}^{*}\right)+\frac{1}{2 \pi} \ln \left(a / r_{0}\right) .
\end{aligned}
$$

satisfies the correct conditions:

Example 2: disk,cont.

Check that

$$
\begin{aligned}
G\left(r, \theta ; r_{0}, \theta_{0}\right) & =\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+a^{4} / r_{0}^{2}-2 r a^{2} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right) \\
& =G_{2}\left(\mathbf{x}, \mathbf{x}_{0}\right)-G_{2}\left(\mathbf{x}, \mathbf{x}_{0}^{*}\right)+\frac{1}{2 \pi} \ln \left(a / r_{0}\right) .
\end{aligned}
$$

satisfies the correct conditions:
Note $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)-\delta\left(\mathbf{x}-\mathbf{x}_{0}^{*}\right)$, which is which $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ when restricted to the disk.

Example 2: disk,cont.

Check that

$$
\begin{aligned}
G\left(r, \theta ; r_{0}, \theta_{0}\right) & =\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{r^{2}+r_{0}^{2}-2 r r_{0} \cos \left(\theta-\theta_{0}\right)}{r^{2}+a^{4} / r_{0}^{2}-2 r a^{2} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right) \\
& =G_{2}\left(\mathbf{x}, \mathbf{x}_{0}\right)-G_{2}\left(\mathbf{x}, \mathbf{x}_{0}^{*}\right)+\frac{1}{2 \pi} \ln \left(a / r_{0}\right) .
\end{aligned}
$$

satisfies the correct conditions:
Note $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)-\delta\left(\mathbf{x}-\mathbf{x}_{0}^{*}\right)$, which is which $\Delta G=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$ when restricted to the disk.

Also, evaluating G on the boundary,

$$
\begin{aligned}
G\left(a, \theta ; r_{0}, \theta_{0}\right) & =\frac{1}{4 \pi} \ln \left(\frac{a^{2}}{r_{0}^{2}} \frac{a^{2}+r_{0}^{2}-2 a r_{0} \cos \left(\theta-\theta_{0}\right)}{a^{2}+a^{4} / r_{0}^{2}-2 a^{3} / r_{0} \cos \left(\theta-\theta_{0}\right)}\right) \\
& =\frac{1}{4 \pi} \ln \left(\frac{a^{2}+r_{0}^{2}-2 a r_{0} \cos \left(\theta-\theta_{0}\right)}{r_{0}^{2}+a^{2}-2 a r_{0} \cos \left(\theta-\theta_{0}\right)}\right)=0 .
\end{aligned}
$$

