Elements of linear algebra

A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}
$$

is also a member of S. The set of all such linear combinations is the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.
If $c \in \mathbb{R}$, get real vector space; if $c \in \mathbb{C}$, complex vector space.

A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{k} \mathbf{v}_{k}
$$

is also a member of S. The set of all such linear combinations is the span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$.
If $c \in \mathbb{R}$, get real vector space; if $c \in \mathbb{C}$, complex vector space.

A set of elements $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ is linearly independent if any one element is not the linear combination of the others. Informally, this says that a linearly dependent set is redundant, in the sense that some subset would have exactly the same span.

Linear operators in finite dimensions.

Suppose \mathbf{A} is a $n \times n$ matrix, and \mathbf{v} is a n-dimensional vector. The matrix-vector product $\mathbf{y}=A \mathbf{v}$ can be regarded as a mapping

$$
\mathbf{v} \rightarrow A \mathbf{v} .
$$

Linear operators in finite dimensions.

Suppose \mathbf{A} is a $n \times n$ matrix, and \mathbf{v} is a n-dimensional vector. The matrix-vector product $\mathbf{y}=A \mathbf{v}$ can be regarded as a mapping

$$
\mathbf{v} \rightarrow A \mathbf{v}
$$

This mapping is a linear transformation or linear operator. Conversely, every linear mapping from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is represented by a matrix vector product.

Linear operators in finite dimensions.

Suppose \mathbf{A} is a $n \times n$ matrix, and \mathbf{v} is a n-dimensional vector. The matrix-vector product $\mathbf{y}=A \mathbf{v}$ can be regarded as a mapping

$$
\mathbf{v} \rightarrow A \mathbf{v} .
$$

This mapping is a linear transformation or linear operator. Conversely, every linear mapping from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is represented by a matrix vector product.

Linearity property: a transformation of a linear combination is the linear combination of the linear transformations. For the matrix A this means that

$$
A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}\right)=c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}
$$

Linear operators in finite dimensions.

Suppose \mathbf{A} is a $n \times n$ matrix, and \mathbf{v} is a n-dimensional vector. The matrix-vector product $\mathbf{y}=A \mathbf{v}$ can be regarded as a mapping

$$
\mathbf{v} \rightarrow A \mathbf{v} .
$$

This mapping is a linear transformation or linear operator.
Conversely, every linear mapping from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is represented by a matrix vector product.

Linearity property: a transformation of a linear combination is the linear combination of the linear transformations. For the matrix A this means that

$$
A\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}\right)=c_{1} A \mathbf{v}_{1}+c_{2} A \mathbf{v}_{2}
$$

More generally: if f_{1}, f_{2} are elements of a vector space S, then a linear operator \mathcal{L} is a mapping $S \rightarrow S^{\prime}$ so that

$$
\mathcal{L}\left(c_{1} f_{1}+c_{2} f_{2}\right)=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2}
$$

Eigenvalues and eigenvectors in finite dimensions

Recall that $\mathbf{v} \neq 0, \lambda$ is an eigenvector-eigenvalue pair of $n \times n$ matrix \mathbf{A} if

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} .
$$

Eigenvalues and eigenvectors in finite dimensions

Recall that $\mathbf{v} \neq 0, \lambda$ is an eigenvector-eigenvalue pair of $n \times n$ matrix \mathbf{A} if

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

Usually there are exactly n linearly independent eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ This is useful since eigenvectors form a basis

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}, \quad \text { for any } \mathbf{x} \in \mathbb{R}
$$

Eigenvalues and eigenvectors in finite dimensions

Recall that $\mathbf{v} \neq 0, \lambda$ is an eigenvector-eigenvalue pair of $n \times n$ matrix \mathbf{A} if

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} .
$$

Usually there are exactly n linearly independent eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ This is useful since eigenvectors form a basis

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}, \quad \text { for any } \mathbf{x} \in \mathbb{R}
$$

Applying \mathbf{A} to the vector \mathbf{x}

$$
\begin{aligned}
\mathbf{A} \mathbf{x} & =\mathbf{A}\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}\right) \\
& =c_{1} \mathbf{A} \mathbf{v}_{1}+c_{2} \mathbf{A} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{A} \mathbf{v}_{n} \\
& =c_{1} \lambda_{1} \mathbf{v}_{1}+c_{2} \lambda_{2} \mathbf{v}_{2}+\ldots+c_{n} \lambda \mathbf{v}_{n} .
\end{aligned}
$$

Thus, eigenvectors decompose a linear operator into a linear combination.

Motivation: attach geometric ideas to vector spaces.

Motivation: attach geometric ideas to vector spaces.
An inner product is a map $S \times S \rightarrow \mathbb{R}$ (or $S \times S \rightarrow \mathbb{C}$), written $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$, with properties
1 Symmetry: $\langle v, u\rangle=\langle u, v\rangle$ for every $u, v \in S$
(Complex version: $\langle v, u\rangle=\overline{\langle u, v\rangle}$)
2 Linearity in first variable: for any vector \mathbf{v} and vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ we have

$$
\left\langle c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}, \mathbf{v}\right\rangle=c_{1}\left\langle\mathbf{v}_{1}, \mathbf{v}\right\rangle+c_{2}\left\langle\mathbf{v}_{2}, \mathbf{v}\right\rangle+\ldots+c_{n}\left\langle\mathbf{v}_{n}, \mathbf{v}\right\rangle .
$$

3 Positivity: $\langle\mathbf{v}, \mathbf{v}\rangle>0$ unless $\mathbf{v}=0$.

Motivation: attach geometric ideas to vector spaces.
An inner product is a map $S \times S \rightarrow \mathbb{R}$ (or $S \times S \rightarrow \mathbb{C}$), written
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$, with properties
1 Symmetry: $\langle v, u\rangle=\langle u, v\rangle$ for every $u, v \in S$
(Complex version: $\langle v, u\rangle=\overline{\langle u, v\rangle}$)
2 Linearity in first variable: for any vector \mathbf{v} and vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ we have

$$
\left\langle c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}, \mathbf{v}\right\rangle=c_{1}\left\langle\mathbf{v}_{1}, \mathbf{v}\right\rangle+c_{2}\left\langle\mathbf{v}_{2}, \mathbf{v}\right\rangle+\ldots+c_{n}\left\langle\mathbf{v}_{n}, \mathbf{v}\right\rangle .
$$

3 Positivity: $\langle\mathbf{v}, \mathbf{v}\rangle>0$ unless $\mathbf{v}=0$.
$\langle\mathbf{v}, \mathbf{v}\rangle=|\mathbf{v}|^{2}=$ "length" squared.
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=0$ means $\mathbf{v}_{1}, \mathbf{v}_{2}$ are orthogonal

Adjoint operators

For a linear operator \mathcal{L}, the adjoint \mathcal{L} with respect to a given inner product is some other operator \mathcal{L}^{\dagger} so that

$$
\left\langle\mathcal{L} \mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\left\langle\mathbf{v}_{1}, \mathcal{L}^{\dagger} \mathbf{v}_{2}\right\rangle, \quad \text { for all } \mathbf{v}_{1}, \mathbf{v}_{2}
$$

Adjoint operators

For a linear operator \mathcal{L}, the adjoint \mathcal{L} with respect to a given inner product is some other operator \mathcal{L}^{\dagger} so that

$$
\left\langle\mathcal{L} \mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\left\langle\mathbf{v}_{1}, \mathcal{L}^{\dagger} \mathbf{v}_{2}\right\rangle, \quad \text { for all } \mathbf{v}_{1}, \mathbf{v}_{2}
$$

Example: dot product $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$ is an inner product. Consider linear operator be defined by a matrix $\mathcal{L} \mathbf{v}=\mathbf{A} \mathbf{v}$.

Adjoint operators

For a linear operator \mathcal{L}, the adjoint \mathcal{L} with respect to a given inner product is some other operator \mathcal{L}^{\dagger} so that

$$
\left\langle\mathcal{L} \mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\left\langle\mathbf{v}_{1}, \mathcal{L}^{\dagger} \mathbf{v}_{2}\right\rangle, \quad \text { for all } \mathbf{v}_{1}, \mathbf{v}_{2}
$$

Example: dot product $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$ is an inner product. Consider linear operator be defined by a matrix $\mathcal{L} \mathbf{v}=\mathbf{A} \mathbf{v}$. By the usual rules of matrix multiplication

$$
\begin{aligned}
\left\langle A \mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle & =\left(\mathbf{A} \mathbf{v}_{1}\right) \cdot \mathbf{v}_{2}=\mathbf{v}_{2}^{T} \mathbf{A} \mathbf{v}_{1}=\left(\mathbf{v}_{2}^{T} \mathbf{A} \mathbf{v}_{1}\right)^{T} \\
& =\mathbf{v}_{1}^{T} \mathbf{A}^{T} \mathbf{v}_{2}=\mathbf{v}_{1} \cdot\left(\mathbf{A}^{T} \mathbf{v}_{2}\right)=\left\langle\mathbf{v}_{1}, A^{T} \mathbf{v}_{2}\right\rangle
\end{aligned}
$$

So that A^{T} represents the adjoint operator.

Adjoint operators

For a linear operator \mathcal{L}, the adjoint \mathcal{L} with respect to a given inner product is some other operator \mathcal{L}^{\dagger} so that

$$
\left\langle\mathcal{L} \mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\left\langle\mathbf{v}_{1}, \mathcal{L}^{\dagger} \mathbf{v}_{2}\right\rangle, \quad \text { for all } \mathbf{v}_{1}, \mathbf{v}_{2}
$$

Example: dot product $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$ is an inner product.
Consider linear operator be defined by a matrix $\mathcal{L} \mathbf{v}=\mathbf{A} \mathbf{v}$.
By the usual rules of matrix multiplication

$$
\begin{aligned}
\left\langle A \mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle & =\left(\mathbf{A} \mathbf{v}_{1}\right) \cdot \mathbf{v}_{2}=\mathbf{v}_{2}^{T} \mathbf{A} \mathbf{v}_{1}=\left(\mathbf{v}_{2}^{T} \mathbf{A} \mathbf{v}_{1}\right)^{T} \\
& =\mathbf{v}_{1}^{T} \mathbf{A}^{T} \mathbf{v}_{2}=\mathbf{v}_{1} \cdot\left(\mathbf{A}^{T} \mathbf{v}_{2}\right)=\left\langle\mathbf{v}_{1}, A^{T} \mathbf{v}_{2}\right\rangle
\end{aligned}
$$

So that A^{T} represents the adjoint operator.
Caution: there are many different inner products, and the adjoint depends on them.

Self-adjointness

If an operator is own adjoint, it is called self-adjoint.

If an operator is own adjoint, it is called self-adjoint.
Consider a linear operator represented by a matrix A. If it is self-adjoint, then
1 The eigenvalues of A are real.
2 The eigenvectors of A are orthogonal to one another.
Similar statements can be made for eigenvalue problems of differential operators.

Orthogonal expansions

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be eigenvectors of a self-adjoint matrix A. The linear combination

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}
$$

is called an orthogonal expansion.

Orthogonal expansions

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be eigenvectors of a self-adjoint matrix A. The linear combination

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}
$$

is called an orthogonal expansion.
Important question: given \mathbf{x}, how to find $c_{1}, c_{2}, c_{3}, \ldots$?

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be eigenvectors of a self-adjoint matrix A. The linear combination

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}
$$

is called an orthogonal expansion.
Important question: given \mathbf{x}, how to find $c_{1}, c_{2}, c_{3}, \ldots$?
Take inner product any particular eigenvector \mathbf{v}_{k}

$$
\begin{aligned}
\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle & =\left\langle c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}, \mathbf{v}_{k}\right\rangle \\
& =c_{1}\left\langle\mathbf{v}_{1}, \mathbf{v}_{k}\right\rangle+c_{2}\left\langle\mathbf{v}_{2}, \mathbf{v}_{k}\right\rangle+\ldots+c_{1}\left\langle\mathbf{v}_{n}, \mathbf{v}_{k}\right\rangle \\
& =c_{k}\left\langle\mathbf{v}_{k}, \mathbf{v}_{k}\right\rangle
\end{aligned}
$$

Thus

$$
c_{k}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle}{\left\langle\mathbf{v}_{k}, \mathbf{v}_{k}\right\rangle}
$$

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be eigenvectors of a self-adjoint matrix A. The linear combination

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}
$$

is called an orthogonal expansion.
Important question: given \mathbf{x}, how to find $c_{1}, c_{2}, c_{3}, \ldots$?
Take inner product any particular eigenvector \mathbf{v}_{k}

$$
\begin{aligned}
\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle & =\left\langle c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}, \mathbf{v}_{k}\right\rangle \\
& =c_{1}\left\langle\mathbf{v}_{1}, \mathbf{v}_{k}\right\rangle+c_{2}\left\langle\mathbf{v}_{2}, \mathbf{v}_{k}\right\rangle+\ldots+c_{1}\left\langle\mathbf{v}_{n}, \mathbf{v}_{k}\right\rangle \\
& =c_{k}\left\langle\mathbf{v}_{k}, \mathbf{v}_{k}\right\rangle
\end{aligned}
$$

Thus

$$
c_{k}=\frac{\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle}{\left\langle\mathbf{v}_{k}, \mathbf{v}_{k}\right\rangle}
$$

Remark: If eigenvectors are normalized, $\left\langle\mathbf{v}_{k}, \mathbf{v}_{k}\right\rangle=1$ and $c_{k}=\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle$

Differential linear operators

A differential operator is a linear operator composed of derivatives, which acts on a vector space of functions.

Differential linear operators

A differential operator is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: $d^{2} / d x^{2}$ maps $f(x)$ to $f^{\prime \prime}(x)$, and satisfies linearity

$$
\frac{d^{2}}{d x^{2}}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=c_{1} \frac{d^{2} f_{1}(x)}{d x^{2}}+c_{2} \frac{d^{2} f_{2}(x)}{d x^{2}}=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2} .
$$

Differential linear operators

A differential operator is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: $d^{2} / d x^{2}$ maps $f(x)$ to $f^{\prime \prime}(x)$, and satisfies linearity

$$
\frac{d^{2}}{d x^{2}}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=c_{1} \frac{d^{2} f_{1}(x)}{d x^{2}}+c_{2} \frac{d^{2} f_{2}(x)}{d x^{2}}=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2} .
$$

Example 2: $\mathcal{L} f=\left(g(x) f^{\prime}(x)\right)^{\prime}$ is linear, since

$$
\mathcal{L}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=\left(g(x)\left[c_{1} f_{1}(x)+c_{2} f_{2}(x)\right]^{\prime}\right)^{\prime}
$$

Differential linear operators

A differential operator is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: $d^{2} / d x^{2}$ maps $f(x)$ to $f^{\prime \prime}(x)$, and satisfies linearity

$$
\frac{d^{2}}{d x^{2}}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=c_{1} \frac{d^{2} f_{1}(x)}{d x^{2}}+c_{2} \frac{d^{2} f_{2}(x)}{d x^{2}}=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2} .
$$

Example 2: $\mathcal{L} f=\left(g(x) f^{\prime}(x)\right)^{\prime}$ is linear, since

$$
\begin{gathered}
\mathcal{L}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=\left(g(x)\left[c_{1} f_{1}(x)+c_{2} f_{2}(x)\right]^{\prime}\right)^{\prime} \\
=\left(g(x)\left[c_{1} f_{1}^{\prime}(x)+c_{2} f_{2}^{\prime}(x)\right]\right)^{\prime}=c_{1}\left(g(x) f_{1}^{\prime}(x)\right)^{\prime}+c_{2}\left(g(x) f_{2}^{\prime}(x)\right)^{\prime} .
\end{gathered}
$$

Differential linear operators

A differential operator is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: $d^{2} / d x^{2}$ maps $f(x)$ to $f^{\prime \prime}(x)$, and satisfies linearity

$$
\frac{d^{2}}{d x^{2}}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=c_{1} \frac{d^{2} f_{1}(x)}{d x^{2}}+c_{2} \frac{d^{2} f_{2}(x)}{d x^{2}}=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2} .
$$

Example 2: $\mathcal{L} f=\left(g(x) f^{\prime}(x)\right)^{\prime}$ is linear, since

$$
\begin{gathered}
\mathcal{L}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=\left(g(x)\left[c_{1} f_{1}(x)+c_{2} f_{2}(x)\right]^{\prime}\right)^{\prime} \\
=\left(g(x)\left[c_{1} f_{1}^{\prime}(x)+c_{2} f_{2}^{\prime}(x)\right]\right)^{\prime}=c_{1}\left(g(x) f_{1}^{\prime}(x)\right)^{\prime}+c_{2}\left(g(x) f_{2}^{\prime}(x)\right)^{\prime} .
\end{gathered}
$$

Technical point: Set of functions which constitute a vector space matters. For example, adjoints, eigenvalues, etc. depend on boundary conditions which define which space is being used.

Differential linear operators

A differential operator is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: $d^{2} / d x^{2}$ maps $f(x)$ to $f^{\prime \prime}(x)$, and satisfies linearity

$$
\frac{d^{2}}{d x^{2}}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=c_{1} \frac{d^{2} f_{1}(x)}{d x^{2}}+c_{2} \frac{d^{2} f_{2}(x)}{d x^{2}}=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2} .
$$

Example 2: $\mathcal{L} f=\left(g(x) f^{\prime}(x)\right)^{\prime}$ is linear, since

$$
\begin{gathered}
\mathcal{L}\left(c_{1} f_{1}(x)+c_{2} f_{2}(x)\right)=\left(g(x)\left[c_{1} f_{1}(x)+c_{2} f_{2}(x)\right]^{\prime}\right)^{\prime} \\
=\left(g(x)\left[c_{1} f_{1}^{\prime}(x)+c_{2} f_{2}^{\prime}(x)\right]\right)^{\prime}=c_{1}\left(g(x) f_{1}^{\prime}(x)\right)^{\prime}+c_{2}\left(g(x) f_{2}^{\prime}(x)\right)^{\prime} .
\end{gathered}
$$

Technical point: Set of functions which constitute a vector space matters. For example, adjoints, eigenvalues, etc. depend on boundary conditions which define which space is being used.

Some function space notation: $C^{k}(\Omega)=$ space of k-times continuously differentiable functions with domain Ω.
$C_{0}^{\infty}(\Omega)=$ space of infinitely differentiable functions whose value on the boundary of Ω are zero.

The superposition principle

All linear differential equations for unknown f have form

$$
\begin{aligned}
& \mathcal{L} f=0, \quad \text { (homogeneous equations) } \\
& \mathcal{L} f=g, \quad \text { (inhomogeneous equations) }
\end{aligned}
$$

The superposition principle

All linear differential equations for unknown f have form

$$
\begin{aligned}
& \mathcal{L} f=0, \quad \text { (homogeneous equations) } \\
& \mathcal{L} f=g, \quad \text { (inhomogeneous equations) }
\end{aligned}
$$

Example: The heat equation $u_{t}=D \Delta u$ can be written $(\partial / \partial t-\Delta) u=0$.

The superposition principle

All linear differential equations for unknown f have form

$$
\begin{array}{ll}
\mathcal{L} f=0, & \text { (homogeneous equations) } \\
\mathcal{L} f=g, & \text { (inhomogeneous equations) }
\end{array}
$$

Example: The heat equation $u_{t}=D \Delta u$ can be written $(\partial / \partial t-\Delta) u=0$.
Superposition principle for homogeneous equations:
If f_{1}, f_{2}, \ldots solve $\mathcal{L} f=0$, so does a linear combination since

$$
\mathcal{L}\left(c_{1} f_{1}+c_{2} f_{2}+\ldots\right)=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2}+\ldots=0
$$

The superposition principle

All linear differential equations for unknown f have form

$$
\begin{array}{ll}
\mathcal{L} f=0, & \text { (homogeneous equations) } \\
\mathcal{L} f=g, & \text { (inhomogeneous equations) }
\end{array}
$$

Example: The heat equation $u_{t}=D \Delta u$ can be written $(\partial / \partial t-\Delta) u=0$.
Superposition principle for homogeneous equations:
If f_{1}, f_{2}, \ldots solve $\mathcal{L} f=0$, so does a linear combination since

$$
\mathcal{L}\left(c_{1} f_{1}+c_{2} f_{2}+\ldots\right)=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2}+\ldots=0
$$

Superposition principle for inhomogeneous equations:
If f_{p} is a particular solution solving $\mathcal{L} f_{p}=g(x)$ then $h=f-f_{p}$ solves a homogeneous equation $\mathcal{L} h=0$.

The superposition principle

All linear differential equations for unknown f have form

$$
\begin{array}{ll}
\mathcal{L} f=0, & \text { (homogeneous equations) } \\
\mathcal{L} f=g, & \text { (inhomogeneous equations) }
\end{array}
$$

Example: The heat equation $u_{t}=D \Delta u$ can be written $(\partial / \partial t-\Delta) u=0$.
Superposition principle for homogeneous equations:
If f_{1}, f_{2}, \ldots solve $\mathcal{L} f=0$, so does a linear combination since

$$
\mathcal{L}\left(c_{1} f_{1}+c_{2} f_{2}+\ldots\right)=c_{1} \mathcal{L} f_{1}+c_{2} \mathcal{L} f_{2}+\ldots=0
$$

Superposition principle for inhomogeneous equations:
If f_{p} is a particular solution solving $\mathcal{L} f_{p}=g(x)$ then $h=f-f_{p}$ solves a homogeneous equation $\mathcal{L} h=0$.

Strategy for solving inhomogeneous equations: (1) Find particular solution, (2) find general solution $\mathcal{L} h=0$, (3) total solution is $f=f_{p}+h$.

Even for linear, homogeneous equations, not every linear combination of solution satisfies the boundary or initial conditions!

Even for linear, homogeneous equations, not every linear combination of solution satisfies the boundary or initial conditions! A side condition is linear, homogeneous if it can be written

$$
\mathcal{B} f=0, \quad \text { where } \mathcal{B} \text { is a linear operator }
$$

Even for linear, homogeneous equations, not every linear combination of solution satisfies the boundary or initial conditions! A side condition is linear, homogeneous if it can be written

$$
\mathcal{B} f=0, \quad \text { where } \mathcal{B} \text { is a linear operator }
$$

■ For Dirichlet b.c., \mathcal{B} is the "restriction" operator

Even for linear, homogeneous equations, not every linear combination of solution satisfies the boundary or initial conditions! A side condition is linear, homogeneous if it can be written

$$
\mathcal{B} f=0, \quad \text { where } \mathcal{B} \text { is a linear operator }
$$

■ For Dirichlet b.c., \mathcal{B} is the "restriction" operator
■ For Neumann b.c., \mathcal{B} takes a normal derivative before restriction

The superposition principle and boundary conditions

Even for linear, homogeneous equations, not every linear combination of solution satisfies the boundary or initial conditions! A side condition is linear, homogeneous if it can be written

$$
\mathcal{B} f=0, \quad \text { where } \mathcal{B} \text { is a linear operator }
$$

■ For Dirichlet b.c., \mathcal{B} is the "restriction" operator
■ For Neumann b.c., \mathcal{B} takes a normal derivative before restriction

Extended superposition principle:
If f_{1}, f_{2}, \ldots satisfy linear, homogeneous boundary conditions, then so does a linear combination $c_{1} f_{1}+c_{2} f_{2}+\ldots$

