Elements of linear algebra

A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the *linear* combination

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k$$

is also a member of S. The set of all such linear combinations is the span of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$.

If $c \in \mathbb{R}$, get *real* vector space; if $c \in \mathbb{C}$, *complex* vector space.

A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the *linear* combination

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_k\mathbf{v}_k$$

is also a member of S. The set of all such linear combinations is the span of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$.

If $c \in \mathbb{R}$, get *real* vector space; if $c \in \mathbb{C}$, *complex* vector space.

A set of elements $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is *linearly independent* if any one element is not the linear combination of the others. Informally, this says that a *linearly dependent* set is redundant, in the sense that some subset would have exactly the same span.

Suppose **A** is a $n \times n$ matrix, and **v** is a *n*-dimensional vector. The matrix-vector product $\mathbf{y} = A\mathbf{v}$ can be regarded as a mapping

 $\mathbf{v} o A \mathbf{v}.$

Suppose **A** is a $n \times n$ matrix, and **v** is a *n*-dimensional vector. The matrix-vector product $\mathbf{y} = A\mathbf{v}$ can be regarded as a mapping

$\mathbf{v} ightarrow A \mathbf{v}.$

This mapping is a *linear transformation* or *linear operator*. Conversely, every linear mapping from $\mathbb{R}^n \to \mathbb{R}^n$ is represented by a matrix vector product.

Suppose **A** is a $n \times n$ matrix, and **v** is a *n*-dimensional vector. The matrix-vector product $\mathbf{y} = A\mathbf{v}$ can be regarded as a mapping

$\mathbf{v} ightarrow A \mathbf{v}.$

This mapping is a *linear transformation* or *linear operator*. Conversely, every linear mapping from $\mathbb{R}^n \to \mathbb{R}^n$ is represented by a matrix vector product.

Linearity property: a transformation of a linear combination is the linear combination of the linear transformations. For the matrix A this means that

$$A(c_1\mathbf{v}_1+c_2\mathbf{v}_2)=c_1A\mathbf{v}_1+c_2A\mathbf{v}_2.$$

Suppose **A** is a $n \times n$ matrix, and **v** is a *n*-dimensional vector. The matrix-vector product $\mathbf{y} = A\mathbf{v}$ can be regarded as a mapping

$$\mathbf{v} \to A \mathbf{v}.$$

This mapping is a *linear transformation* or *linear operator*. Conversely, every linear mapping from $\mathbb{R}^n \to \mathbb{R}^n$ is represented by a matrix vector product.

Linearity property: a transformation of a linear combination is the linear combination of the linear transformations. For the matrix A this means that

$$A(c_1\mathbf{v}_1+c_2\mathbf{v}_2)=c_1A\mathbf{v}_1+c_2A\mathbf{v}_2.$$

More generally: if f_1, f_2 are elements of a vector space S, then a linear operator \mathcal{L} is a mapping $S \to S'$ so that

$$\mathcal{L}(c_1f_1+c_2f_2)=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2.$$

Eigenvalues and eigenvectors in finite dimensions

Recall that $\mathbf{v}\neq\mathbf{0},\lambda$ is an eigenvector-eigenvalue pair of $n\times n$ matrix \mathbf{A} if

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}.$$

Eigenvalues and eigenvectors in finite dimensions

Recall that $\mathbf{v}\neq\mathbf{0},\lambda$ is an eigenvector-eigenvalue pair of $n\times n$ matrix \mathbf{A} if

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}.$$

Usually there are exactly *n* linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ corresponding to eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ This is useful since eigenvectors form a basis

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$
, for any $\mathbf{x} \in \mathbb{R}$

Eigenvalues and eigenvectors in finite dimensions

Recall that $\mathbf{v}\neq\mathbf{0},\lambda$ is an eigenvector-eigenvalue pair of $n\times n$ matrix \mathbf{A} if

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}.$$

Usually there are exactly *n* linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ corresponding to eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ This is useful since eigenvectors form a basis

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$
, for any $\mathbf{x} \in \mathbb{R}$

Applying \mathbf{A} to the vector \mathbf{x}

$$\mathbf{A}\mathbf{x} = \mathbf{A}(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n)$$

= $c_1\mathbf{A}\mathbf{v}_1 + c_2\mathbf{A}\mathbf{v}_2 + \ldots + c_n\mathbf{A}\mathbf{v}_n$
= $c_1\lambda_1\mathbf{v}_1 + c_2\lambda_2\mathbf{v}_2 + \ldots + c_n\lambda\mathbf{v}_n$.

Thus, eigenvectors decompose a linear operator into a linear combination.

Motivation: attach geometric ideas to vector spaces.

Motivation: attach geometric ideas to vector spaces. An *inner product* is a map $S \times S \to \mathbb{R}$ (or $S \times S \to \mathbb{C}$), written $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$, with properties

- **1** Symmetry: $\langle v, u \rangle = \langle u, v \rangle$ for every $u, v \in S$ (Complex version: $\langle v, u \rangle = \overline{\langle u, v \rangle}$)
- Linearity in first variable: for any vector v and vectors v₁, v₂,..., v_n we have

$$\langle c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_n\mathbf{v}_n,\mathbf{v}\rangle=c_1\langle \mathbf{v}_1,\mathbf{v}\rangle+c_2\langle \mathbf{v}_2,\mathbf{v}\rangle+\ldots+c_n\langle \mathbf{v}_n,\mathbf{v}\rangle.$$

3 Positivity: $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ unless $\mathbf{v} = 0$.

Motivation: attach geometric ideas to vector spaces. An *inner product* is a map $S \times S \to \mathbb{R}$ (or $S \times S \to \mathbb{C}$), written $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$, with properties

- **1** Symmetry: $\langle v, u \rangle = \langle u, v \rangle$ for every $u, v \in S$ (Complex version: $\langle v, u \rangle = \overline{\langle u, v \rangle}$)
- Linearity in first variable: for any vector v and vectors v₁, v₂,..., v_n we have

$$\langle c_1\mathbf{v}_1+c_2\mathbf{v}_2+\ldots+c_n\mathbf{v}_n,\mathbf{v}\rangle=c_1\langle \mathbf{v}_1,\mathbf{v}\rangle+c_2\langle \mathbf{v}_2,\mathbf{v}\rangle+\ldots+c_n\langle \mathbf{v}_n,\mathbf{v}\rangle.$$

3 Positivity: $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ unless $\mathbf{v} = 0$.

 $\langle \mathbf{v}, \mathbf{v} \rangle = |\mathbf{v}|^2 =$ "length" squared. $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$ means $\mathbf{v}_1, \mathbf{v}_2$ are orthogonal

$$\langle \mathcal{L} \mathbf{v}_1, \mathbf{v}_2
angle = \langle \mathbf{v}_1, \mathcal{L}^{\dagger} \mathbf{v}_2
angle, \quad \text{for all } \mathbf{v}_1, \mathbf{v}_2$$

$$\langle \mathcal{L} \mathbf{v}_1, \mathbf{v}_2
angle = \langle \mathbf{v}_1, \mathcal{L}^{\dagger} \mathbf{v}_2
angle, \quad \text{for all } \mathbf{v}_1, \mathbf{v}_2$$

Example: dot product $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_1 \cdot \mathbf{v}_2$ is an inner product. Consider linear operator be defined by a matrix $\mathcal{L}\mathbf{v} = \mathbf{A}\mathbf{v}$.

$$\langle \mathcal{L} \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathcal{L}^{\dagger} \mathbf{v}_2 \rangle, \quad \text{for all } \mathbf{v}_1, \mathbf{v}_2$$

Example: dot product $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_1 \cdot \mathbf{v}_2$ is an inner product. Consider linear operator be defined by a matrix $\mathcal{L}\mathbf{v} = \mathbf{A}\mathbf{v}$. By the usual rules of matrix multiplication

$$\begin{aligned} \langle A \mathbf{v}_1, \mathbf{v}_2 \rangle &= (\mathbf{A} \mathbf{v}_1) \cdot \mathbf{v}_2 = \mathbf{v}_2^T \mathbf{A} \mathbf{v}_1 = (\mathbf{v}_2^T \mathbf{A} \mathbf{v}_1)^T \\ &= \mathbf{v}_1^T \mathbf{A}^T \mathbf{v}_2 = \mathbf{v}_1 \cdot (\mathbf{A}^T \mathbf{v}_2) = \langle \mathbf{v}_1, A^T \mathbf{v}_2 \rangle, \end{aligned}$$

So that A^T represents the adjoint operator.

$$\langle \mathcal{L} \mathbf{v}_1, \mathbf{v}_2
angle = \langle \mathbf{v}_1, \mathcal{L}^{\dagger} \mathbf{v}_2
angle, \quad \text{for all } \mathbf{v}_1, \mathbf{v}_2$$

Example: dot product $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_1 \cdot \mathbf{v}_2$ is an inner product. Consider linear operator be defined by a matrix $\mathcal{L}\mathbf{v} = \mathbf{A}\mathbf{v}$. By the usual rules of matrix multiplication

$$\begin{split} \langle A \mathbf{v}_1, \mathbf{v}_2 \rangle &= (\mathbf{A} \mathbf{v}_1) \cdot \mathbf{v}_2 = \mathbf{v}_2^T \mathbf{A} \mathbf{v}_1 = (\mathbf{v}_2^T \mathbf{A} \mathbf{v}_1)^T \\ &= \mathbf{v}_1^T \mathbf{A}^T \mathbf{v}_2 = \mathbf{v}_1 \cdot (\mathbf{A}^T \mathbf{v}_2) = \langle \mathbf{v}_1, A^T \mathbf{v}_2 \rangle, \end{split}$$

So that A^{T} represents the adjoint operator.

Caution: there are many different inner products, and the adjoint depends on them.

If an operator is own adjoint, it is called *self-adjoint*.

If an operator is own adjoint, it is called *self-adjoint*.

Consider a linear operator represented by a matrix A. If it is self-adjoint, then

- **1** The eigenvalues of *A* are real.
- 2 The eigenvectors of A are orthogonal to one another.

Similar statements can be made for eigenvalue problems of differential operators.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be eigenvectors of a self-adjoint matrix A. The linear combination

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$

is called an orthogonal expansion.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be eigenvectors of a self-adjoint matrix A. The linear combination

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$

is called an orthogonal expansion.

Important question: given **x**, how to find c_1, c_2, c_3, \ldots ?

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be eigenvectors of a self-adjoint matrix A. The linear combination

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$

is called an orthogonal expansion.

Important question: given **x**, how to find c_1, c_2, c_3, \ldots ?

Take inner product any particular eigenvector \mathbf{v}_k

$$\begin{aligned} \langle \mathbf{x}, \mathbf{v}_k \rangle &= \langle c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n, \mathbf{v}_k \rangle \\ &= c_1 \langle \mathbf{v}_1, \mathbf{v}_k \rangle + c_2 \langle \mathbf{v}_2, \mathbf{v}_k \rangle + \ldots + c_1 \langle \mathbf{v}_n, \mathbf{v}_k \rangle \\ &= c_k \langle \mathbf{v}_k, \mathbf{v}_k \rangle \end{aligned}$$

Thus

$$c_k = rac{\langle \mathbf{x}, \mathbf{v}_k \rangle}{\langle \mathbf{v}_k, \mathbf{v}_k
angle}.$$

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be eigenvectors of a self-adjoint matrix A. The linear combination

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$

is called an orthogonal expansion.

Important question: given **x**, how to find c_1, c_2, c_3, \ldots ?

Take inner product any particular eigenvector \mathbf{v}_k

$$\begin{aligned} \langle \mathbf{x}, \mathbf{v}_k \rangle &= \langle c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n, \mathbf{v}_k \rangle \\ &= c_1 \langle \mathbf{v}_1, \mathbf{v}_k \rangle + c_2 \langle \mathbf{v}_2, \mathbf{v}_k \rangle + \ldots + c_1 \langle \mathbf{v}_n, \mathbf{v}_k \rangle \\ &= c_k \langle \mathbf{v}_k, \mathbf{v}_k \rangle \end{aligned}$$

Thus

$$c_k = rac{\langle \mathbf{x}, \mathbf{v}_k
angle}{\langle \mathbf{v}_k, \mathbf{v}_k
angle}.$$

Remark: If eigenvectors are *normalized*, $\langle \mathbf{v}_k, \mathbf{v}_k \rangle = 1$ and $c_k = \langle \mathbf{x}, \mathbf{v}_k \rangle$

A *differential operator* is a linear operator composed of derivatives, which acts on a vector space of functions.

A *differential operator* is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: d^2/dx^2 maps f(x) to f''(x), and satisfies linearity

$$\frac{d^2}{dx^2}\Big(c_1f_1(x)+c_2f_2(x)\Big)=c_1\frac{d^2f_1(x)}{dx^2}+c_2\frac{d^2f_2(x)}{dx^2}=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2.$$

A *differential operator* is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: d^2/dx^2 maps f(x) to f''(x), and satisfies linearity

$$\frac{d^2}{dx^2}\Big(c_1f_1(x)+c_2f_2(x)\Big)=c_1\frac{d^2f_1(x)}{dx^2}+c_2\frac{d^2f_2(x)}{dx^2}=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2.$$

Example 2: $\mathcal{L}f = (g(x)f'(x))'$ is linear, since

 $\mathcal{L}(c_1f_1(x) + c_2f_2(x)) = (g(x)[c_1f_1(x) + c_2f_2(x)]')'$

A *differential operator* is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: d^2/dx^2 maps f(x) to f''(x), and satisfies linearity

$$\frac{d^2}{dx^2}\Big(c_1f_1(x)+c_2f_2(x)\Big)=c_1\frac{d^2f_1(x)}{dx^2}+c_2\frac{d^2f_2(x)}{dx^2}=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2.$$

Example 2: $\mathcal{L}f = (g(x)f'(x))'$ is linear, since

$$\mathcal{L}(c_1f_1(x) + c_2f_2(x)) = (g(x)[c_1f_1(x) + c_2f_2(x)]')' = (g(x)[c_1f_1'(x) + c_2f_2'(x)])' = c_1(g(x)f_1'(x))' + c_2(g(x)f_2'(x))'.$$

A *differential operator* is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: d^2/dx^2 maps f(x) to f''(x), and satisfies linearity

$$\frac{d^2}{dx^2}\Big(c_1f_1(x)+c_2f_2(x)\Big)=c_1\frac{d^2f_1(x)}{dx^2}+c_2\frac{d^2f_2(x)}{dx^2}=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2.$$

Example 2: $\mathcal{L}f = (g(x)f'(x))'$ is linear, since

$$\mathcal{L}(c_1f_1(x) + c_2f_2(x)) = (g(x)[c_1f_1(x) + c_2f_2(x)]')' = (g(x)[c_1f_1'(x) + c_2f_2'(x)])' = c_1(g(x)f_1'(x))' + c_2(g(x)f_2'(x))'.$$

Technical point: Set of functions which constitute a vector space matters. For example, adjoints, eigenvalues, etc. depend on boundary conditions which define which space is being used.

A *differential operator* is a linear operator composed of derivatives, which acts on a vector space of functions.

Example 1: d^2/dx^2 maps f(x) to f''(x), and satisfies linearity

$$\frac{d^2}{dx^2}\Big(c_1f_1(x)+c_2f_2(x)\Big)=c_1\frac{d^2f_1(x)}{dx^2}+c_2\frac{d^2f_2(x)}{dx^2}=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2.$$

Example 2: $\mathcal{L}f = (g(x)f'(x))'$ is linear, since

$$\mathcal{L}(c_1f_1(x) + c_2f_2(x)) = (g(x)[c_1f_1(x) + c_2f_2(x)]')' = (g(x)[c_1f_1'(x) + c_2f_2'(x)])' = c_1(g(x)f_1'(x))' + c_2(g(x)f_2'(x))'.$$

Technical point: Set of functions which constitute a vector space matters. For example, adjoints, eigenvalues, etc. depend on boundary conditions which define which space is being used.

Some function space notation: $C^{k}(\Omega) =$ space of k-times continuously differentiable functions with domain Ω .

 $C_0^{\infty}(\Omega) =$ space of infinitely differentiable functions whose value on the boundary of Ω are zero.

All linear differential equations for unknown f have form

$$\mathcal{L}f = 0$$
, (homogeneous equations)
 $\mathcal{L}f = g$, (inhomogeneous equations)

All linear differential equations for unknown f have form

$$\mathcal{L}f = 0$$
, (homogeneous equations)
 $\mathcal{L}f = g$, (inhomogeneous equations)

Example: The heat equation $u_t = D\Delta u$ can be written $(\partial/\partial t - \Delta)u = 0$.

All linear differential equations for unknown f have form

$$\mathcal{L}f = 0$$
, (homogeneous equations)
 $\mathcal{L}f = g$, (inhomogeneous equations)

Example: The heat equation $u_t = D\Delta u$ can be written $(\partial/\partial t - \Delta)u = 0$.

Superposition principle for homogeneous equations: If f_1, f_2, \ldots solve $\mathcal{L}f = 0$, so does a linear combination since

$$\mathcal{L}(c_1f_1+c_2f_2+\ldots)=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2+\ldots=0.$$

All linear differential equations for unknown f have form

$$\mathcal{L}f = 0$$
, (homogeneous equations)
 $\mathcal{L}f = g$, (inhomogeneous equations)

Example: The heat equation $u_t = D\Delta u$ can be written $(\partial/\partial t - \Delta)u = 0$.

Superposition principle for homogeneous equations: If f_1, f_2, \ldots solve $\mathcal{L}f = 0$, so does a linear combination since

$$\mathcal{L}(c_1f_1+c_2f_2+\ldots)=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2+\ldots=0.$$

Superposition principle for inhomogeneous equations:

If f_p is a particular solution solving $\mathcal{L}f_p = g(x)$ then $h = f - f_p$ solves a homogeneous equation $\mathcal{L}h = 0$.

All linear differential equations for unknown f have form

$$\mathcal{L}f = 0,$$
 (homogeneous equations)
 $\mathcal{L}f = g,$ (inhomogeneous equations)

Example: The heat equation $u_t = D\Delta u$ can be written $(\partial/\partial t - \Delta)u = 0$.

Superposition principle for homogeneous equations: If f_1, f_2, \ldots solve $\mathcal{L}f = 0$, so does a linear combination since

$$\mathcal{L}(c_1f_1+c_2f_2+\ldots)=c_1\mathcal{L}f_1+c_2\mathcal{L}f_2+\ldots=0.$$

Superposition principle for inhomogeneous equations:

If f_p is a particular solution solving $\mathcal{L}f_p = g(x)$ then $h = f - f_p$ solves a homogeneous equation $\mathcal{L}h = 0$.

Strategy for solving inhomogeneous equations: (1) Find particular solution, (2) find general solution $\mathcal{L}h = 0$, (3) total solution is $f = f_p + h$.

Even for linear, homogeneous equations, not every linear combination of solution satisfies the boundary or initial conditions!

 $\mathcal{B}f = 0$, where \mathcal{B} is a linear operator

 $\mathcal{B}f = 0$, where \mathcal{B} is a linear operator

For Dirichlet b.c., \mathcal{B} is the "restriction" operator

 $\mathcal{B}f = 0$, where \mathcal{B} is a linear operator

- For Dirichlet b.c., \mathcal{B} is the "restriction" operator
- For Neumann b.c., B takes a normal derivative before restriction

 $\mathcal{B}f = 0$, where \mathcal{B} is a linear operator

- For Dirichlet b.c., \mathcal{B} is the "restriction" operator
- For Neumann b.c., *B* takes a normal derivative before restriction

Extended superposition principle:

If f_1, f_2, \ldots satisfy linear, homogeneous boundary conditions, then so does a linear combination $c_1f_1 + c_2f_2 + \ldots$