
Elements of linear algebra

A vector space S is a set (numbers, vectors, functions) which has
addition and scalar multiplication defined, so that the linear
combination

c1v1 + c2v2 + . . .+ ckvk

is also a member of S . The set of all such linear combinations is
the span of v1, v2, . . . , vk .

If c ∈ R, get real vector space; if c ∈ C, complex vector space.

A set of elements v1, v2, . . . , vk is linearly independent if any one
element is not the linear combination of the others. Informally, this
says that a linearly dependent set is redundant, in the sense that
some subset would have exactly the same span.
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Linear operators in finite dimensions.

Suppose A is a n × n matrix, and v is a n-dimensional vector. The
matrix-vector product y = Av can be regarded as a mapping

v→ Av.

This mapping is a linear transformation or linear operator.
Conversely, every linear mapping from Rn → Rn is represented by a
matrix vector product.

Linearity property: a transformation of a linear combination is the
linear combination of the linear transformations. For the matrix A
this means that

A(c1v1 + c2v2) = c1Av1 + c2Av2.

More generally: if f1, f2 are elements of a vector space S , then a
linear operator L is a mapping S → S ′ so that

L(c1f1 + c2f2) = c1Lf1 + c2Lf2.
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Eigenvalues and eigenvectors in finite dimensions

Recall that v 6= 0, λ is an eigenvector-eigenvalue pair of n × n
matrix A if

Av = λv.

Usually there are exactly n linearly independent eigenvectors
v1, v2, . . . , vn corresponding to eigenvalues λ1, λ2, . . . , λn This is
useful since eigenvectors form a basis

x = c1v1 + c2v2 + . . .+ cnvn, for any x ∈ R

Applying A to the vector x

Ax =A(c1v1 + c2v2 + . . .+ cnvn)

=c1Av1 + c2Av2 + . . .+ cnAvn

=c1λ1v1 + c2λ2v2 + . . .+ cnλvn.

Thus, eigenvectors decompose a linear operator into a linear
combination.



Eigenvalues and eigenvectors in finite dimensions

Recall that v 6= 0, λ is an eigenvector-eigenvalue pair of n × n
matrix A if

Av = λv.

Usually there are exactly n linearly independent eigenvectors
v1, v2, . . . , vn corresponding to eigenvalues λ1, λ2, . . . , λn This is
useful since eigenvectors form a basis

x = c1v1 + c2v2 + . . .+ cnvn, for any x ∈ R

Applying A to the vector x

Ax =A(c1v1 + c2v2 + . . .+ cnvn)

=c1Av1 + c2Av2 + . . .+ cnAvn

=c1λ1v1 + c2λ2v2 + . . .+ cnλvn.

Thus, eigenvectors decompose a linear operator into a linear
combination.



Eigenvalues and eigenvectors in finite dimensions

Recall that v 6= 0, λ is an eigenvector-eigenvalue pair of n × n
matrix A if

Av = λv.

Usually there are exactly n linearly independent eigenvectors
v1, v2, . . . , vn corresponding to eigenvalues λ1, λ2, . . . , λn This is
useful since eigenvectors form a basis

x = c1v1 + c2v2 + . . .+ cnvn, for any x ∈ R

Applying A to the vector x

Ax =A(c1v1 + c2v2 + . . .+ cnvn)

=c1Av1 + c2Av2 + . . .+ cnAvn

=c1λ1v1 + c2λ2v2 + . . .+ cnλvn.

Thus, eigenvectors decompose a linear operator into a linear
combination.



Inner products

Motivation: attach geometric ideas to vector spaces.

An inner product is a map S × S → R (or S × S → C), written
〈v1, v2〉, with properties

1 Symmetry: 〈v , u〉 = 〈u, v〉 for every u, v ∈ S
(Complex version: 〈v , u〉 = 〈u, v〉 )

2 Linearity in first variable: for any vector v and vectors
v1, v2, . . . , vn we have

〈c1v1+c2v2+. . .+cnvn, v〉 = c1〈v1, v〉+c2〈v2, v〉+. . .+cn〈vn, v〉.

3 Positivity: 〈v, v〉 > 0 unless v = 0.

〈v, v〉 = |v|2 = “length” squared.
〈v1, v2〉 = 0 means v1, v2 are orthogonal
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Adjoint operators

For a linear operator L, the adjoint L with respect to a given inner
product is some other operator L† so that

〈Lv1, v2〉 = 〈v1,L†v2〉, for all v1, v2

Example: dot product 〈v1, v2〉 = v1 · v2 is an inner product.
Consider linear operator be defined by a matrix Lv = Av.
By the usual rules of matrix multiplication

〈Av1, v2〉 = (Av1) · v2 = vT2 Av1 = (vT2 Av1)T

= vT1 ATv2 = v1 · (ATv2) = 〈v1,ATv2〉,

So that AT represents the adjoint operator.

Caution: there are many different inner products, and the adjoint
depends on them.
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Self-adjointness

If an operator is own adjoint, it is called self-adjoint.

Consider a linear operator represented by a matrix A. If it is
self-adjoint, then

1 The eigenvalues of A are real.

2 The eigenvectors of A are orthogonal to one another.

Similar statements can be made for eigenvalue problems of
differential operators.
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Orthogonal expansions

Let v1, v2, . . . , vn be eigenvectors of a self-adjoint matrix A.
The linear combination

x = c1v1 + c2v2 + . . .+ cnvn

is called an orthogonal expansion.

Important question: given x, how to find c1, c2, c3, . . .?

Take inner product any particular eigenvector vk

〈x, vk〉 = 〈c1v1 + c2v2 + . . .+ cnvn, vk〉
= c1〈v1, vk〉+ c2〈v2, vk〉+ . . .+ c1〈vn, vk〉
= ck〈vk , vk〉

Thus

ck =
〈x, vk〉
〈vk , vk〉

.

Remark: If eigenvectors are normalized, 〈vk , vk〉 = 1 and ck = 〈x, vk〉
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Differential linear operators

A differential operator is a linear operator composed of derivatives, which
acts on a vector space of functions.

Example 1: d2/dx2 maps f (x) to f ′′(x), and satisfies linearity

d2

dx2

(
c1f1(x) + c2f2(x)

)
= c1

d2f1(x)

dx2
+ c2

d2f2(x)

dx2
= c1Lf1 + c2Lf2.

Example 2: Lf =
(
g(x)f ′(x)

)′
is linear, since

L(c1f1(x) + c2f2(x)) = (g(x)[c1f1(x) + c2f2(x)]′)′

= (g(x)[c1f ′
1 (x) + c2f ′

2 (x)])′ = c1(g(x)f ′
1 (x))′ + c2(g(x)f ′

2 (x))′.

Technical point: Set of functions which constitute a vector space
matters. For example, adjoints, eigenvalues, etc. depend on boundary
conditions which define which space is being used.

Some function space notation: C k(Ω) = space of k-times continuously
differentiable functions with domain Ω.
C∞
0 (Ω) = space of infinitely differentiable functions whose value on the

boundary of Ω are zero.
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The superposition principle

All linear differential equations for unknown f have form

Lf = 0, (homogeneous equations)

Lf = g , (inhomogeneous equations)

Example: The heat equation ut = D∆u can be written (∂/∂t −∆)u = 0.

Superposition principle for homogeneous equations:
If f1, f2, . . . solve Lf = 0, so does a linear combination since

L(c1f1 + c2f2 + . . .) = c1Lf1 + c2Lf2 + . . . = 0.

Superposition principle for inhomogeneous equations:
If fp is a particular solution solving Lfp = g(x) then h = f − fp solves a
homogeneous equation Lh = 0.

Strategy for solving inhomogeneous equations: (1) Find particular
solution, (2) find general solution Lh = 0, (3) total solution is f = fp + h.
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The superposition principle and boundary conditions

Even for linear, homogeneous equations, not every linear
combination of solution satisfies the boundary or initial conditions!

A side condition is linear, homogeneous if it can be written

Bf = 0, where B is a linear operator

For Dirichlet b.c., B is the “restriction” operator

For Neumann b.c., B takes a normal derivative before
restriction

Extended superposition principle:
If f1, f2, . . . satisfy linear, homogeneous boundary conditions, then
so does a linear combination c1f1 + c2f2 + . . .
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