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A vector space S is a set (numbers, vectors, functions) which has
addition and scalar multiplication defined, so that the /inear
combination

C1V1 + CoVo + ... + CkVgk

is also a member of S. The set of all such linear combinations is
the span of vi,vo, ..., V.

If c € R, get real vector space; if ¢ € C, complex vector space.

A set of elements vi,vo, ..., vk is linearly independent if any one
element is not the linear combination of the others. Informally, this
says that a linearly dependent set is redundant, in the sense that
some subset would have exactly the same span.
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Linear operators in finite dimensions.

Suppose A is a n X n matrix, and v is a n-dimensional vector. The
matrix-vector product y = Av can be regarded as a mapping

v — Av.

This mapping is a linear transformation or linear operator.
Conversely, every linear mapping from R” — R” is represented by a
matrix vector product.

Linearity property: a transformation of a linear combination is the
linear combination of the linear transformations. For the matrix A
this means that

A(civi + cv2) = c1Avy + G Av,.

More generally: if fi, f> are elements of a vector space S, then a
linear operator £ is a mapping S — S’ so that

L(cah+ ah)=alh+ alh.
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Eigenvalues and eigenvectors in finite dimensions

Recall that v # 0, X is an eigenvector-eigenvalue pair of n x n
matrix A if
Av = ).

Usually there are exactly n linearly independent eigenvectors
V1,Vo2,...,V, corresponding to eigenvalues A1, A2, ..., A, This is
useful since eigenvectors form a basis

X=ocCVi+ Vo + ...+ cyv,, forany x € R
Applying A to the vector x

Ax =A(civi + Vo + ...+ cpVp)
=c1Avi + coAvy + ... + c,Av,
=C1A1V1 + ©AaVvo + ... + ChAV,.

Thus, eigenvectors decompose a linear operator into a linear
combination.
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Motivation: attach geometric ideas to vector spaces.
An inner product isa map S x S — R (or S x S — C), written
(v1,v2), with properties
Symmetry: (v, u) = (u,v) for every u,v € S
(Complex version: (v,u) = (u,v) )

A Linearity in first variable: for any vector v and vectors
V1,V2,...,V, we have

(civit+cvot. . .4cpvp, v) = cr(vi, v)+ca(va, V) +. . .4+Cp(Vp, V).

Positivity: (v,v) > 0 unless v = 0.

(v,v) = |v|?> = “length” squared.
(v1,v2) = 0 means vy, vy are orthogonal
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Adjoint operators

For a linear operator L, the adjoint £ with respect to a given inner
product is some other operator £ so that

(Lvy,v2) = (vl,/ij2>, for all vi,v>

Example: dot product (vi,v2) = vy - vz is an inner product.
Consider linear operator be defined by a matrix Lv = Av.
By the usual rules of matrix multiplication

(Avi,va) = (Avi) - vo = vJ Avy = (vd Avy) T
=v/ATv, =v; - (ATv) = (v, ATvy),
So that AT represents the adjoint operator.

Caution: there are many different inner products, and the adjoint
depends on them.
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Self-adjointness

If an operator is own adjoint, it is called self-adjoint.
Consider a linear operator represented by a matrix A. If it is
self-adjoint, then

The eigenvalues of A are real.

H The eigenvectors of A are orthogonal to one another.

Similar statements can be made for eigenvalue problems of
differential operators.



Orthogonal expansions

Let vi,vo,..., v, be eigenvectors of a self-adjoint matrix A.
The linear combination

X = C1V1 + CVo + ...+ CpVp

is called an orthogonal expansion.



Orthogonal expansions

Let vi,vo,..., v, be eigenvectors of a self-adjoint matrix A.
The linear combination

X = C1V1 + CVo + ...+ CpVp

is called an orthogonal expansion.

Important question: given x, how to find ¢1, ¢, c3,...7



Orthogonal expansions

Let vi,vo,..., v, be eigenvectors of a self-adjoint matrix A.
The linear combination

X = C1V1 + CVo + ...+ CpVp

is called an orthogonal expansion.
Important question: given x, how to find ¢1, ¢, c3,...7

Take inner product any particular eigenvector vy

(X,vk) = (c1vi + V2 + ... + CaVp, Vi)
= c1(v1,Vk) + c2(Vo, Vi) + ... + c1(Vn, Vi)
= ¢ Vi, Vi)
Thus
(X,Vk>

Ci = .
(Vie, Vi)



Orthogonal expansions

Let vi,vo,..., v, be eigenvectors of a self-adjoint matrix A.
The linear combination

X = C1V1 + CVo + ...+ CpVp

is called an orthogonal expansion.

Important question: given x, how to find ¢1, ¢, c3,...7

Take inner product any particular eigenvector vy
<X7Vk> = <C1V1 + v +...+ CnVn,Vk>

= c1(v1,Vk) + c2(Vo, Vi) + ... + c1(Vn, Vi)
= (Vi Vi)

Thus

(X,Vk>

(Vs Vi)

Remark: If eigenvectors are normalized, (vi,vk) =1 and cx = (X, vi)

Ck =
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Differential linear operators

A differential operator is a linear operator composed of derivatives, which
acts on a vector space of functions.

Example 1: d?/dx?® maps f(x) to f”(x), and satisfies linearity

d? d?f; d?f,
) (lel( )-|- C2f2(X)> =qC d>1<(2X) + o d>2<(2X) =qlfi+ clh.

Example 2: Lf = (g(x (x) )/ is linear, since

L{ah(x) + ah(x) = (g(x)[ah(x) + ah(x)])
= (g()af/(x) + @B (x)]) = alg(x)f (X)) + c(s(x)(x))"

Technical point: Set of functions which constitute a vector space
matters. For example, adjoints, eigenvalues, etc. depend on boundary
conditions which define which space is being used.

Some function space notation: CX(Q) = space of k-times continuously
differentiable functions with domain €.

C5°(82) = space of infinitely differentiable functions whose value on the
boundary of Q are zero.
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The superposition principle

All linear differential equations for unknown f have form

Lf =0, (homogeneous equations)
Lf =g, (inhomogeneous equations)

Example: The heat equation u; = DAu can be written (0/0t — A)u = 0.

Superposition principle for homogeneous equations:
If fi,f,...solve Lf =0, so does a linear combination since

Lah+abh+...)=alfl+olh+...=0.

Superposition principle for inhomogeneous equations:
If f, is a particular solution solving Lf, = g(x) then h = f — f, solves a
homogeneous equation Lh = 0.

Strategy for solving inhomogeneous equations: (1) Find particular
solution, (2) find general solution £h = 0, (3) total solution is f = f, + h.
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The superposition principle and boundary conditions

Even for linear, homogeneous equations, not every linear
combination of solution satisfies the boundary or initial conditions!
A side condition is linear, homogeneous if it can be written

Bf =0, where B is a linear operator

m For Dirichlet b.c., B is the "restriction” operator

m For Neumann b.c., B takes a normal derivative before
restriction

Extended superposition principle:
If f1, f>,... satisfy linear, homogeneous boundary conditions, then
so does a linear combination c1fi + cofo + ...



