Sturm-Liouville operators

Sturm-Liouville operators have form (given $p(x)>0, q(x)$)

$$
\mathcal{L}=\frac{d}{d x}\left(p(x) \frac{d}{d x}\right)+q(x), \quad\left(\text { notation means } \mathcal{L} f=\left(p f^{\prime}\right)^{\prime}+q f\right)
$$

Sturm-Liouville operators have form (given $p(x)>0, q(x)$)

$$
\mathcal{L}=\frac{d}{d x}\left(p(x) \frac{d}{d x}\right)+q(x), \quad\left(\text { notation means } \mathcal{L} f=\left(p f^{\prime}\right)^{\prime}+q f\right)
$$

For example,

$$
\mathcal{L}=\frac{d^{2}}{d x^{2}}-4, \quad \mathcal{L} f(x)=f^{\prime \prime}(x)-4 f(x)
$$

Therefore $\mathcal{L} \sin (k x)=\left(-k^{2}-4\right) \sin (k x)$

Sturm-Liouville operators have form (given $p(x)>0, q(x)$)

$$
\mathcal{L}=\frac{d}{d x}\left(p(x) \frac{d}{d x}\right)+q(x), \quad\left(\text { notation means } \mathcal{L} f=\left(p f^{\prime}\right)^{\prime}+q f\right)
$$

For example,

$$
\mathcal{L}=\frac{d^{2}}{d x^{2}}-4, \quad \mathcal{L} f(x)=f^{\prime \prime}(x)-4 f(x)
$$

Therefore $\mathcal{L} \sin (k x)=\left(-k^{2}-4\right) \sin (k x)$
Typical vector space of functions \mathcal{L} acts on: $C_{0}^{\infty}[a, b]$ so that $f(a)=f(b)=0$.

Inner products and self adjointness

One possible inner product for $C_{0}^{\infty}[a, b]$ is

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x, \quad L^{2} \text { inner product }
$$

Inner products and self adjointness

One possible inner product for $C_{0}^{\infty}[a, b]$ is

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x, \quad L^{2} \text { inner product }
$$

Adjoint of Sturm-Liouville operator: compute by moving operator around using integration by parts. For any two functions f, g in $C_{0}^{\infty}[a, b]$,

$$
\begin{aligned}
\langle\mathcal{L} f, g\rangle & =\int_{a}^{b} \frac{d}{d x}\left(p(x) \frac{d f}{d x}\right) g(x)+q(x) f(x) g(x) d x \\
& =\int_{a}^{b}-p(x) \frac{d f}{d x} \frac{d g}{d x}+q(x) f(x) g(x) d x \\
& =\int_{a}^{b} \frac{d}{d x}\left(p(x) \frac{d g}{d x}\right) f(x)+q(x) f(x) g(x) d x \\
& =\langle f, \mathcal{L} g\rangle
\end{aligned}
$$

Thus S-L operators are self-adjoint on $C_{0}^{\infty}[a, b]$.

More examples of operator adjoints

Example 2: Use inner product on $C_{0}^{\infty}[0, R]$

$$
\langle f, g\rangle=\int_{0}^{R} r f(r) g(r) d r
$$

More examples of operator adjoints

Example 2: Use inner product on $C_{0}^{\infty}[0, R]$

$$
\langle f, g\rangle=\int_{0}^{R} r f(r) g(r) d r
$$

For linear operator $\mathcal{L} f=r^{-1}\left(r f^{\prime}\right)^{\prime}$ integration by parts gives

$$
\begin{aligned}
\langle\mathcal{L} f, g\rangle & =\int_{0}^{R} r\left[r^{-1} \frac{d}{d r}\left(r \frac{d f}{d r}\right)\right] g(r) d r \\
& =-\int_{0}^{R} r \frac{d f}{d r} \frac{d g}{d r} d r, \quad(\mathrm{IBP}) \\
& =\int_{0}^{R} \frac{d}{d r}\left(r \frac{d g}{d r}\right) f(r) d r, \quad \text { (IBP again) } \\
& =\int_{0}^{R} r\left[r^{-1} \frac{d}{d r}\left(r \frac{d g}{d r}\right)\right] f(r) d r \\
& =\langle f, \mathcal{L} g\rangle .
\end{aligned}
$$

Thus \mathcal{L} is self adjoint with respect to the weighted inner product (but not with respect to the L^{2} one!)

More examples of operator adjoints

Example 3: $\mathcal{L}=d / d x$ acting on $C_{0}^{\infty}[a, b]$.

$$
\langle\mathcal{L} f, g\rangle=\int_{a}^{b} \frac{d f}{d x} g(x)=-\int_{a}^{b} \frac{d g}{d x} f(x) d x=\langle f,-\mathcal{L} g\rangle
$$

Therefore $\mathcal{L}^{\dagger}=-\mathcal{L}$.

Eigenvalue problems for differential operators

Problem: find eigenfunction $v(x)$ and eigenvalue λ solving

$$
\mathcal{L} v(x)=\lambda v(x)
$$

Eigenvalue problems for differential operators

Problem: find eigenfunction $v(x)$ and eigenvalue λ solving

$$
\mathcal{L} v(x)=\lambda v(x)
$$

Remarks:

- Sometimes written $\mathcal{L} v(x)+\lambda v(x)=0$
- Constant times $v(x)$ is also eigenfunction.
- Infinite dimensions implies infinite number of eigenvalues and eigenfunctions (usually).
- If eigenfunctions span required vector space, called complete.

Sturm-Liouville eigenvalue problems

Self-adjoint operators (like S-L) have nice properties:
1 The eigenvalues are real.
2 The eigenfunctions are orthogonal to one another (with respect to the same inner product used to define the adjoint).

Sturm-Liouville eigenvalue problems

Self-adjoint operators (like S-L) have nice properties:
1 The eigenvalues are real.
2 The eigenfunctions are orthogonal to one another (with respect to the same inner product used to define the adjoint).
Sturm-Liouville eigenvalue problem: find $v(x) \in C_{0}^{\infty}[a, b]$ so that

$$
\frac{d}{d x}\left(p(x) \frac{d v}{d x}\right)+q(x) v(x)+\lambda v(x)=0
$$

Sturm-Liouville eigenvalue problems

Self-adjoint operators (like S-L) have nice properties:
1 The eigenvalues are real.
2 The eigenfunctions are orthogonal to one another (with respect to the same inner product used to define the adjoint).
Sturm-Liouville eigenvalue problem: find $v(x) \in C_{0}^{\infty}[a, b]$ so that

$$
\frac{d}{d x}\left(p(x) \frac{d v}{d x}\right)+q(x) v(x)+\lambda v(x)=0
$$

Facts about this problem:
1 The real eigenvalues can be ordered $\lambda_{1}<\lambda_{2}<\lambda_{3} \ldots$ so that there is a smallest (but not largest) eigenvalue.
2 The eigenfunctions $v_{n}(x)$ corresponding to each eigenvalue $\lambda_{n}(x)$ form a complete set, i.e. any $f \in C_{0}^{\infty}[a, b]$, we can write f as a (infinite) linear combination

$$
f=\sum_{n=1}^{\infty} c_{n} v_{n}(x)
$$

Example: A Sturm-Liouville eigenvalue problem

Consider operator $\mathcal{L}=d^{2} / d x^{2}$ on the vector space $C_{0}^{\infty}[0, \pi]$. The eigenvalue problem reads

$$
\frac{d^{2} v}{d x^{2}}+\lambda v=0, \quad v(0)=0, \quad v(\pi)=0
$$

Example: A Sturm-Liouville eigenvalue problem

Consider operator $\mathcal{L}=d^{2} / d x^{2}$ on the vector space $C_{0}^{\infty}[0, \pi]$. The eigenvalue problem reads

$$
\frac{d^{2} v}{d x^{2}}+\lambda v=0, \quad v(0)=0, \quad v(\pi)=0
$$

If $\lambda>0$, ODE has general solution

$$
v(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)
$$

Left boundary condition implies $A \cos (0)+B \sin (0)=0$, so that $A=0$.

Example: A Sturm-Liouville eigenvalue problem

Consider operator $\mathcal{L}=d^{2} / d x^{2}$ on the vector space $C_{0}^{\infty}[0, \pi]$. The eigenvalue problem reads

$$
\frac{d^{2} v}{d x^{2}}+\lambda v=0, \quad v(0)=0, \quad v(\pi)=0
$$

If $\lambda>0$, ODE has general solution

$$
v(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)
$$

Left boundary condition implies $A \cos (0)+B \sin (0)=0$, so that $A=0$.
Then other b.c. implies $B \sin (\pi \sqrt{\lambda})=0$ so $\pi \sqrt{\lambda}$ is a multiple of π or

$$
\lambda_{n}=n^{2}, \quad n=1,2,3, \ldots
$$

The corresponding eigenfunctions are

$$
v_{n}(x)=\sin (\sqrt{\lambda} x)=\sin (n x), n=1,2,3, \ldots
$$

Case $\lambda=0$ leads to $v(x)=A x+B$, which needs $A=B=0$ to satisfy the boundary conditions.

Case $\lambda=0$ leads to $v(x)=A x+B$, which needs $A=B=0$ to satisfy the boundary conditions.

Case $\lambda<0$ gives $v(x)=A \exp (\sqrt{|\lambda|} x)+B \exp (-\sqrt{|\lambda|} x)$. Boundary conditions imply $A+B=0$ and $A \exp (\sqrt{|\lambda|} \pi)+B \exp (-\sqrt{|\lambda|} \pi)=0$ or

$$
\left(\begin{array}{cc}
1 & 1 \\
\exp (\sqrt{|\lambda|} \pi) & \exp (-\sqrt{|\lambda|} \pi)
\end{array}\right)\binom{A}{B}=\binom{0}{0}
$$

Case $\lambda=0$ leads to $v(x)=A x+B$, which needs $A=B=0$ to satisfy the boundary conditions.

Case $\lambda<0$ gives $v(x)=A \exp (\sqrt{|\lambda|} x)+B \exp (-\sqrt{|\lambda|} x)$. Boundary conditions imply $A+B=0$ and $A \exp (\sqrt{|\lambda|} \pi)+B \exp (-\sqrt{|\lambda|} \pi)=0$ or

$$
\left(\begin{array}{cc}
1 & 1 \\
\exp (\sqrt{|\lambda|} \pi) & \exp (-\sqrt{|\lambda|} \pi)
\end{array}\right)\binom{A}{B}=\binom{0}{0}
$$

Determinant is $\exp (\sqrt{|\lambda|} \pi)-\exp (-\sqrt{|\lambda|} \pi) \neq 0$ so that the only solution is $A=B=0$.

Fourier series

Big payoff: completeness of eigenfunctions means that any smooth function with $f(0)=0=f(\pi)$ can be written

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin (n x), \quad \text { "Fourier sine series" }
$$

Fourier series

Big payoff: completeness of eigenfunctions means that any smooth function with $f(0)=0=f(\pi)$ can be written

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin (n x), \quad \text { "Fourier sine series" }
$$

Computing coefficients in an orthogonal expansion is just a matter of taking inner products:

$$
B_{n}=\frac{\langle f(x), \sin (n x)\rangle}{\langle\sin (n x), \sin (n x)\rangle}=\frac{\int_{0}^{\pi} f(x) \sin (n x) d x}{\int_{0}^{\pi} \sin ^{2}(n x) d x}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x
$$

Other Fourier series

Series type
Space of functions

Orthogonal expansion for $f(x)$

Fourier

$$
\begin{array}{lll}
f(x):[-L, L] \rightarrow \mathbb{R} & \frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right) & A_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
f(-L)=f(L) & +\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right) & B_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \\
f^{\prime}(-L)=f^{\prime}(L) & &
\end{array}
$$

Sine

$$
\begin{aligned}
& f(x):[0, L] \rightarrow \mathbb{R} \\
& f(0)=0=f(L)
\end{aligned}
$$

$\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)$
$B_{n}=\frac{2}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x$

Cosine

$$
\begin{aligned}
& f(x):[0, L] \rightarrow \mathbb{R} \\
& f^{\prime}(0)=0=f^{\prime}(L)
\end{aligned}
$$

$\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi x}{L}\right)$
$A_{n}=\frac{2}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x$

Complex

$$
\begin{aligned}
& f(x):[-L, L] \rightarrow \mathbb{C} \\
& f(-L)=f(L) \\
& f^{\prime}(-L)=f^{\prime}(L)
\end{aligned}
$$

Linear integral operators

"Hilbert-Schmidt" integral operators

$$
\mathcal{L} u(x)=\int_{\Omega} k(x, y) u(x) d x
$$

obey linearity

$$
\begin{aligned}
\mathcal{L}\left(c_{1} u_{1}+c_{2} u_{2}\right) & =c_{1} \int_{\Omega} k(x, y) u_{1}(x) d x+c_{2} \int_{\Omega} k(x, y) u_{2}(x) d x \\
& =c_{1} \mathcal{L} u_{1}+c_{2} \mathcal{L} u_{2} .
\end{aligned}
$$

"Hilbert-Schmidt" integral operators

$$
\mathcal{L} u(x)=\int_{\Omega} k(x, y) u(x) d x
$$

obey linearity

$$
\begin{aligned}
\mathcal{L}\left(c_{1} u_{1}+c_{2} u_{2}\right) & =c_{1} \int_{\Omega} k(x, y) u_{1}(x) d x+c_{2} \int_{\Omega} k(x, y) u_{2}(x) d x \\
& =c_{1} \mathcal{L} u_{1}+c_{2} \mathcal{L} u_{2} .
\end{aligned}
$$

- Often inverses of differential operators: $\mathcal{L} u=g$ has solution $u=\mathcal{L}^{-1} g$ where \mathcal{L}^{-1} is HS type
"Hilbert-Schmidt" integral operators

$$
\mathcal{L} u(x)=\int_{\Omega} k(x, y) u(x) d x
$$

obey linearity

$$
\begin{aligned}
\mathcal{L}\left(c_{1} u_{1}+c_{2} u_{2}\right) & =c_{1} \int_{\Omega} k(x, y) u_{1}(x) d x+c_{2} \int_{\Omega} k(x, y) u_{2}(x) d x \\
& =c_{1} \mathcal{L} u_{1}+c_{2} \mathcal{L} u_{2}
\end{aligned}
$$

■ Often inverses of differential operators: $\mathcal{L} u=g$ has solution $u=\mathcal{L}^{-1} g$ where \mathcal{L}^{-1} is HS type

- Adjoints are similar. Example: using the L^{2} inner product

$$
\begin{aligned}
\langle\mathcal{L} u, v\rangle & =\int_{\Omega} v(y) \int_{\Omega} k(x, y) u(x) d x d y \\
& =\int_{\Omega} u(x) \int_{\Omega} k(x, y) v(y) d y d x=\left\langle u, \mathcal{L}^{\dagger} v\right\rangle
\end{aligned}
$$

where \mathcal{L}^{\dagger} is an integral operator with kernel $k(y, x)$.

