
Sturm-Liouville operators

Sturm-Liouville operators have form (given p(x) > 0, q(x))

L =
d

dx

(
p(x)

d

dx

)
+ q(x), (notation means Lf = (pf ′)′ + qf )

For example,

L =
d2

dx2
− 4, Lf (x) = f ′′(x)− 4f (x).

Therefore L sin(kx) = (−k2 − 4) sin(kx)

Typical vector space of functions L acts on: C∞0 [a, b] so that
f (a) = f (b) = 0.
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Inner products and self adjointness

One possible inner product for C∞0 [a, b] is

〈f , g〉 =

∫ b

a
f (x)g(x)dx , L2 inner product

Adjoint of Sturm-Liouville operator: compute by moving operator
around using integration by parts. For any two functions f , g in
C∞0 [a, b],

〈Lf , g〉 =

∫ b

a

d

dx

(
p(x)

df

dx

)
g(x) + q(x)f (x)g(x)dx

=

∫ b

a
−p(x)

df

dx

dg

dx
+ q(x)f (x)g(x)dx

=

∫ b

a

d

dx

(
p(x)

dg

dx

)
f (x) + q(x)f (x)g(x)dx

= 〈f ,Lg〉.

Thus S-L operators are self-adjoint on C∞0 [a, b].
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More examples of operator adjoints

Example 2: Use inner product on C∞0 [0,R]

〈f , g〉 =

∫ R

0
rf (r)g(r)dr ,

For linear operator Lf = r−1(rf ′)′ integration by parts gives

〈Lf , g〉 =

∫ R

0
r

[
r−1 d

dr

(
r
df

dr

)]
g(r)dr

= −
∫ R

0
r
df

dr

dg

dr
dr , (IBP)

=

∫ R

0

d

dr

(
r
dg

dr

)
f (r) dr , (IBP again)

=

∫ R

0
r

[
r−1 d

dr

(
r
dg

dr

)]
f (r) dr

= 〈f ,Lg〉.
Thus L is self adjoint with respect to the weighted inner product
(but not with respect to the L2 one!)
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More examples of operator adjoints

Example 3: L = d/dx acting on C∞0 [a, b].

〈Lf , g〉 =

∫ b

a

df

dx
g(x) = −

∫ b

a

dg

dx
f (x)dx = 〈f ,−Lg〉.

Therefore L† = −L.



Eigenvalue problems for differential operators

Problem: find eigenfunction v(x) and eigenvalue λ solving

Lv(x) = λv(x),

Remarks:

Sometimes written Lv(x) + λv(x) = 0

Constant times v(x) is also eigenfunction.

Infinite dimensions implies infinite number of eigenvalues and
eigenfunctions (usually).

If eigenfunctions span required vector space, called complete.
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Sturm-Liouville eigenvalue problems

Self-adjoint operators (like S-L) have nice properties:

1 The eigenvalues are real.

2 The eigenfunctions are orthogonal to one another (with
respect to the same inner product used to define the adjoint).

Sturm-Liouville eigenvalue problem: find v(x) ∈ C∞0 [a, b] so that

d

dx

(
p(x)

dv

dx

)
+ q(x)v(x) + λv(x) = 0,

Facts about this problem:

1 The real eigenvalues can be ordered λ1 < λ2 < λ3 . . . so that
there is a smallest (but not largest) eigenvalue.

2 The eigenfunctions vn(x) corresponding to each eigenvalue
λn(x) form a complete set, i.e. any f ∈ C∞0 [a, b], we can
write f as a (infinite) linear combination

f =
∞∑
n=1

cnvn(x).
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Example: A Sturm-Liouville eigenvalue problem

Consider operator L = d2/dx2 on the vector space C∞0 [0, π]. The
eigenvalue problem reads

d2v

dx2
+ λv = 0, v(0) = 0, v(π) = 0,

If λ > 0, ODE has general solution

v(x) = A cos(
√
λx) + B sin(

√
λx).

Left boundary condition implies A cos(0) + B sin(0) = 0, so that
A = 0.
Then other b.c. implies B sin(π

√
λ) = 0 so π

√
λ is a multiple of π

or
λn = n2, n = 1, 2, 3, . . . .

The corresponding eigenfunctions are

vn(x) = sin(
√
λx) = sin(nx), n = 1, 2, 3, . . .
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Example: A Sturm-Liouville eigenvalue problem, cont.

Case λ = 0 leads to v(x) = Ax + B, which needs A = B = 0 to
satisfy the boundary conditions.

Case λ < 0 gives v(x) = A exp(
√
|λ|x) + B exp(−

√
|λ|x).

Boundary conditions imply A + B = 0 and
A exp(

√
|λ|π) + B exp(−

√
|λ|π) = 0 or(

1 1

exp(
√
|λ|π) exp(−

√
|λ|π)

)(
A
B

)
=

(
0
0

)
.

Determinant is exp(
√
|λ|π)− exp(−

√
|λ|π) 6= 0 so that the only

solution is A = B = 0.
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Fourier series

Big payoff: completeness of eigenfunctions means that any smooth
function with f (0) = 0 = f (π) can be written

f (x) =
∞∑
n=1

Bn sin(nx), “Fourier sine series”

Computing coefficients in an orthogonal expansion is just a matter
of taking inner products:

Bn =
〈f (x), sin(nx)〉
〈sin(nx), sin(nx)〉

=

∫ π
0 f (x) sin(nx)dx∫ π

0 sin2(nx)dx
=

2

π

∫ π

0
f (x) sin(nx)dx .
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Other Fourier series

Series type Space of functions Orthogonal expansion
for f (x)

Coefficients

Fourier f (x) : [−L, L]→ R
f (−L) = f (L)
f ′(−L) = f ′(L)

A0
2

+
∑∞

n=1 An cos( nπx
L

)

+
∑∞

n=1 Bn sin( nπx
L

)

An = 1
L

∫ L
−L f (x) cos( nπx

L
)dx

Bn = 1
L

∫ L
−L f (x) sin( nπx

L
)dx

Sine f (x) : [0, L]→ R
f (0) = 0 = f (L)

∑∞
n=1 Bn sin( nπx

L
) Bn = 2

L

∫ L
−L f (x) sin( nπx

L
)dx

Cosine f (x) : [0, L]→ R
f ′(0) = 0 = f ′(L)

A0
2

+
∑∞

n=1 An cos( nπx
L

) An = 2
L

∫ L
−L f (x) cos( nπx

L
)dx

Complex f (x) : [−L, L]→ C
f (−L) = f (L)
f ′(−L) = f ′(L)

∑∞
n=−∞ cn exp( inπx

L
) cn = 1

2L

∫ L
−L f (x) exp(−inπx

L
)dx



Linear integral operators

“Hilbert-Schmidt” integral operators

Lu(x) =

∫
Ω
k(x , y)u(x)dx .

obey linearity

L(c1u1 + c2u2) = c1

∫
Ω
k(x , y)u1(x)dx + c2

∫
Ω
k(x , y)u2(x)dx

= c1Lu1 + c2Lu2.

Often inverses of differential operators: Lu = g has solution
u = L−1g where L−1 is HS type

Adjoints are similar. Example: using the L2 inner product

〈Lu, v〉 =

∫
Ω
v(y)

∫
Ω
k(x , y)u(x) dxdy

=

∫
Ω
u(x)

∫
Ω
k(x , y)v(y) dydx = 〈u,L†v〉

where L† is an integral operator with kernel k(y , x).



Linear integral operators

“Hilbert-Schmidt” integral operators

Lu(x) =

∫
Ω
k(x , y)u(x)dx .

obey linearity

L(c1u1 + c2u2) = c1

∫
Ω
k(x , y)u1(x)dx + c2

∫
Ω
k(x , y)u2(x)dx

= c1Lu1 + c2Lu2.

Often inverses of differential operators: Lu = g has solution
u = L−1g where L−1 is HS type

Adjoints are similar. Example: using the L2 inner product

〈Lu, v〉 =

∫
Ω
v(y)

∫
Ω
k(x , y)u(x) dxdy

=

∫
Ω
u(x)

∫
Ω
k(x , y)v(y) dydx = 〈u,L†v〉

where L† is an integral operator with kernel k(y , x).



Linear integral operators

“Hilbert-Schmidt” integral operators

Lu(x) =

∫
Ω
k(x , y)u(x)dx .

obey linearity

L(c1u1 + c2u2) = c1

∫
Ω
k(x , y)u1(x)dx + c2

∫
Ω
k(x , y)u2(x)dx

= c1Lu1 + c2Lu2.

Often inverses of differential operators: Lu = g has solution
u = L−1g where L−1 is HS type

Adjoints are similar. Example: using the L2 inner product

〈Lu, v〉 =

∫
Ω
v(y)

∫
Ω
k(x , y)u(x) dxdy

=

∫
Ω
u(x)

∫
Ω
k(x , y)v(y) dydx = 〈u,L†v〉

where L† is an integral operator with kernel k(y , x).


