
Problems with three independent variables

Consider

ut = ∆u (Diffusion)

utt = ∆u (Wave)

−uzz = ∆u (Laplace)

where ∆u = uxx + uyy

Domain: (x , y) ∈ D, where D is bounded, open
t > 0 (diffusion/wave) or a < z < b (Laplace).

Will need homogeneous boundary conditions such as

u(x , y , ·) = 0, (x , y) ∈ ∂D (Dirichlet)

∇u(x , y , ·) · n̂ = 0, (x , y) ∈ ∂D (Neumann)

On the other hand, conditions at t = 0 or z = a, b are arbitrary.
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Separating variables

Look for solutions of form u = T (t)v(x , y) or u = Z (z)v(x , y)

T ′

T
= ∆v

v = −λ (Diffusion)

T ′′

T
= ∆v

v = −λ (Wave)

−Z ′′

Z
= ∆v

v = −λ (Laplace)

Resulting multidimensional eigenvalue problem: find v : D → R

∆v + λv = 0, plus boundary conditions.

For the time being, suppose we already know the eigenfunctions
vn(x , y) and corresponding eigenvalues λn, n = 1, 2, 3, . . ..

With suitable boundary conditions

eigenvalues are real, non-negative

Eigenfunctions are orthogonal w.r.t. inner product
〈u, v〉 =

∫
D uv dx.
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Solution in terms of eigenfunctions and eigenvalues

Solving the ODEs for the T and Z variables and taking a
superposition, we arrive at the general solutions

u(x , y , t) =
∞∑
n=1

An exp(−λnt)vn(x , y) (Diffusion)

u(x , y , t) =
∞∑
n=1

[An cos(
√
λnt) + Bn sin(

√
λnt)]vn(x , y) (Wave)

u(x , y , z) =
∞∑
n=1

[An exp(
√
λnz) + Bn exp(−

√
λnz)]vn(x , y) (Laplace)

Main issue: solve the eigenvalue problem.

Difficult to write complete solution for arbitrary domain D.

Three tractable cases are where D is a rectangle, a disk, and
the surface of a sphere.
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Green’s identity

Let u, v : D → R be smooth functions. Apply the divergence
theorem to u∇v ,∫

D
∇·(u∇v)dx =

∫
∂D

u∇v · n̂dx.

Use ∇·(u∇v) = ∇u · ∇v + u∆v ,∫
D

u∆vdx = −
∫
D
∇u · ∇vdx +

∫
∂D

u∇v · n̂dx.

gives Green’s identity.

Remark: just like integration by parts in higher dimensions.
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Self-adjointness of the Laplacian

Consider space of smooth functions with domain D, satisfying
either Dirichlet or Neumann homogeneous boundary conditions.
Use inner product

〈u, v〉 =

∫
D

uv dx.

To compute adjoint of ∆, using Green’s identity twice:

〈∆u, v〉 =

∫
D

v∆u dx = −
∫
D
∇v · ∇udx +

∫
∂D

v∇u · n̂dx =

=

∫
D

u∆v dx−
∫
∂D

u∇v · n̂dx = 〈u,∆v〉.

The integrals on the boundary ∂D vanish because of the
boundary conditions.

It follows Laplacian is self-adjoint.
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Non-negativity of the eigenvalues

Take inner product of an eigenfunction v with both sides of the
the eigenvalue equation Lv + λv = 0, leading to

λ = −〈Lv , v〉
〈v , v〉

, “Rayleigh quotient”

Does not determine λ, but can be used to estimate it!

Specialize to our situation (with homogeneous boundary
conditions)

λ = −
∫
D v∆v dx∫
D v 2 dx

=

∫
D |∇v |2 dx∫
D v 2 dx

,

Expression on the right is non-negative.

λ = 0 can be zero only with Neumann boundary conditions.
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