Problems with three independent variables

Consider

$$
\begin{array}{rll}
u_{t} & =\Delta u & \text { (Diffusion) } \\
u_{t t} & =\Delta u & \text { (Wave) } \\
-u_{z z} & =\Delta u & \text { (Laplace) }
\end{array}
$$

where $\Delta u=u_{x x}+u_{y y}$

Problems with three independent variables

Consider

$$
\begin{array}{rll}
u_{t} & =\Delta u & \text { (Diffusion) } \\
u_{t t} & =\Delta u & \text { (Wave) } \\
-u_{z z} & =\Delta u \quad & \text { (Laplace })
\end{array}
$$

where $\Delta u=u_{x x}+u_{y y}$
Domain: $(x, y) \in D$, where D is bounded, open $t>0$ (diffusion/wave) or $a<z<b$ (Laplace).

Problems with three independent variables

Consider

$$
\begin{array}{rll}
u_{t} & =\Delta u & \text { (Diffusion) } \\
u_{t t} & =\Delta u & \text { (Wave) } \\
-u_{z z} & =\Delta u & \text { (Laplace })
\end{array}
$$

where $\Delta u=u_{x x}+u_{y y}$
Domain: $(x, y) \in D$, where D is bounded, open $t>0$ (diffusion/wave) or $a<z<b$ (Laplace).

Will need homogeneous boundary conditions such as

$$
\begin{array}{rlrl}
u(x, y, \cdot) & =0, & (x, y) \in \partial D & \\
\hline & (\text { Dirichlet }) \\
\nabla u(x, y, \cdot) \cdot \hat{\mathrm{n}} & =0, & (x, y) \in \partial D & \\
(\text { Neumann })
\end{array}
$$

On the other hand, conditions at $t=0$ or $z=a, b$ are arbitrary.

Separating variables

Look for solutions of form $u=T(t) v(x, y)$ or $u=Z(z) v(x, y)$

$$
\begin{gathered}
\frac{T^{\prime}}{T}=\frac{\Delta v}{v}=-\lambda \quad \text { (Diffusion) } \\
\left.\frac{T^{\prime \prime}}{T}=\frac{\Delta v}{v}=-\lambda \quad \text { (Wave }\right) \\
\frac{-Z^{\prime \prime}}{Z}=\frac{\Delta v}{v}=-\lambda \quad \text { (Laplace) }
\end{gathered}
$$

Separating variables

Look for solutions of form $u=T(t) v(x, y)$ or $u=Z(z) v(x, y)$

$$
\begin{gathered}
\frac{T^{\prime}}{T}=\frac{\Delta v}{v}=-\lambda \quad \text { (Diffusion) } \\
\frac{T^{\prime \prime}}{T}=\frac{\Delta v}{v}=-\lambda \quad(\text { Wave }) \\
\left.\frac{-Z^{\prime \prime}}{Z}=\frac{\Delta v}{v}=-\lambda \quad \text { (Laplace }\right)
\end{gathered}
$$

Resulting multidimensional eigenvalue problem: find $v: D \rightarrow \mathbb{R}$
$\Delta v+\lambda v=0, \quad$ plus boundary conditions.

Separating variables

Look for solutions of form $u=T(t) v(x, y)$ or $u=Z(z) v(x, y)$

$$
\begin{gathered}
\frac{T^{\prime}}{T}=\frac{\Delta v}{v}=-\lambda \quad \text { (Diffusion) } \\
\frac{T^{\prime \prime}}{T}=\frac{\Delta v}{v}=-\lambda \quad(\text { Wave }) \\
\left.\frac{-Z^{\prime \prime}}{Z}=\frac{\Delta v}{v}=-\lambda \quad \text { (Laplace }\right)
\end{gathered}
$$

Resulting multidimensional eigenvalue problem: find $v: D \rightarrow \mathbb{R}$

$$
\Delta v+\lambda v=0, \quad \text { plus boundary conditions. }
$$

For the time being, suppose we already know the eigenfunctions $v_{n}(x, y)$ and corresponding eigenvalues $\lambda_{n}, n=1,2,3, \ldots$.

Separating variables

Look for solutions of form $u=T(t) v(x, y)$ or $u=Z(z) v(x, y)$

$$
\begin{gathered}
\frac{T^{\prime}}{T}=\frac{\Delta v}{v}=-\lambda \quad \text { (Diffusion) } \\
\frac{T^{\prime \prime}}{T}=\frac{\Delta v}{v}=-\lambda \quad(\text { Wave }) \\
\left.\frac{-Z^{\prime \prime}}{Z}=\frac{\Delta v}{v}=-\lambda \quad \text { (Laplace }\right)
\end{gathered}
$$

Resulting multidimensional eigenvalue problem: find $v: D \rightarrow \mathbb{R}$

$$
\Delta v+\lambda v=0, \quad \text { plus boundary conditions. }
$$

For the time being, suppose we already know the eigenfunctions $v_{n}(x, y)$ and corresponding eigenvalues $\lambda_{n}, n=1,2,3, \ldots$

With suitable boundary conditions
■ eigenvalues are real, non-negative
■ Eigenfunctions are orthogonal w.r.t. inner product

$$
\langle u, v\rangle=\int_{D} u v d x .
$$

Solution in terms of eigenfunctions and eigenvalues

Solving the ODEs for the T and Z variables and taking a superposition, we arrive at the general solutions

$$
\begin{aligned}
& u(x, y, t)=\sum_{n=1}^{\infty} A_{n} \exp \left(-\lambda_{n} t\right) v_{n}(x, y) \quad \text { (Diffusion) } \\
& u(x, y, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\sqrt{\lambda}_{n} t\right)+B_{n} \sin \left(\sqrt{\lambda}_{n} t\right)\right] v_{n}(x, y) \quad \text { (Wave) } \\
& u(x, y, z)=\sum_{n=1}^{\infty}\left[A_{n} \exp \left(\sqrt{\lambda}_{n} z\right)+B_{n} \exp \left(-\sqrt{\lambda}_{n} z\right)\right] v_{n}(x, y) \quad \text { (Laplace) }
\end{aligned}
$$

Solution in terms of eigenfunctions and eigenvalues

Solving the ODEs for the T and Z variables and taking a superposition, we arrive at the general solutions

$$
\begin{aligned}
& u(x, y, t)=\sum_{n=1}^{\infty} A_{n} \exp \left(-\lambda_{n} t\right) v_{n}(x, y) \quad \text { (Diffusion) } \\
& u(x, y, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\sqrt{\lambda}_{n} t\right)+B_{n} \sin \left(\sqrt{\lambda}_{n} t\right)\right] v_{n}(x, y) \quad \text { (Wave) } \\
& u(x, y, z)=\sum_{n=1}^{\infty}\left[A_{n} \exp \left(\sqrt{\lambda}_{n} z\right)+B_{n} \exp \left(-\sqrt{\lambda}_{n} z\right)\right] v_{n}(x, y) \quad \text { (Laplace) }
\end{aligned}
$$

- Main issue: solve the eigenvalue problem.
- Difficult to write complete solution for arbitrary domain D.

Solution in terms of eigenfunctions and eigenvalues

Solving the ODEs for the T and Z variables and taking a superposition, we arrive at the general solutions

$$
\begin{aligned}
& u(x, y, t)=\sum_{n=1}^{\infty} A_{n} \exp \left(-\lambda_{n} t\right) v_{n}(x, y) \quad \text { (Diffusion) } \\
& u(x, y, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\sqrt{\lambda}_{n} t\right)+B_{n} \sin \left(\sqrt{\lambda}_{n} t\right)\right] v_{n}(x, y) \quad \text { (Wave) } \\
& u(x, y, z)=\sum_{n=1}^{\infty}\left[A_{n} \exp \left(\sqrt{\lambda}_{n} z\right)+B_{n} \exp \left(-\sqrt{\lambda}_{n} z\right)\right] v_{n}(x, y) \quad \text { (Laplace) }
\end{aligned}
$$

- Main issue: solve the eigenvalue problem.
- Difficult to write complete solution for arbitrary domain D.

■ Three tractable cases are where D is a rectangle, a disk, and the surface of a sphere.

Green's identity

Let $u, v: D \rightarrow \mathbb{R}$ be smooth functions. Apply the divergence theorem to $u \nabla v$,

$$
\int_{D} \nabla \cdot(u \nabla v) d x=\int_{\partial D} u \nabla v \cdot \hat{n} d x
$$

Green's identity

Let $u, v: D \rightarrow \mathbb{R}$ be smooth functions. Apply the divergence theorem to $u \nabla v$,

$$
\int_{D} \nabla \cdot(u \nabla v) d x=\int_{\partial D} u \nabla v \cdot \hat{n} d x
$$

Use $\nabla \cdot(u \nabla v)=\nabla u \cdot \nabla v+u \Delta v$,

$$
\int_{D} u \Delta v d x=-\int_{D} \nabla u \cdot \nabla v d x+\int_{\partial D} u \nabla v \cdot \hat{n} d x
$$

gives Green's identity.

Green's identity

Let $u, v: D \rightarrow \mathbb{R}$ be smooth functions. Apply the divergence theorem to $u \nabla v$,

$$
\int_{D} \nabla \cdot(u \nabla v) d x=\int_{\partial D} u \nabla v \cdot \hat{n} d x
$$

Use $\nabla \cdot(u \nabla v)=\nabla u \cdot \nabla v+u \Delta v$,

$$
\int_{D} u \Delta v d x=-\int_{D} \nabla u \cdot \nabla v d x+\int_{\partial D} u \nabla v \cdot \hat{n} d x .
$$

gives Green's identity.
Remark: just like integration by parts in higher dimensions.

Self-adjointness of the Laplacian

Consider space of smooth functions with domain D, satisfying either Dirichlet or Neumann homogeneous boundary conditions. Use inner product

$$
\langle u, v\rangle=\int_{D} u v d x .
$$

Self-adjointness of the Laplacian

Consider space of smooth functions with domain D, satisfying either Dirichlet or Neumann homogeneous boundary conditions. Use inner product

$$
\langle u, v\rangle=\int_{D} u v d x
$$

To compute adjoint of Δ, using Green's identity twice:

$$
\begin{aligned}
\langle\Delta u, v\rangle & =\int_{D} v \Delta u d \mathrm{x}=-\int_{D} \nabla v \cdot \nabla u d \mathrm{x}+\int_{\partial D} v \nabla u \cdot \hat{\mathrm{n} d \mathrm{x}}= \\
& =\int_{D} u \Delta v d \mathrm{x}-\int_{\partial D} u \nabla v \cdot \hat{\mathrm{n}} d \mathrm{x}=\langle u, \Delta v\rangle
\end{aligned}
$$

Self-adjointness of the Laplacian

Consider space of smooth functions with domain D, satisfying either Dirichlet or Neumann homogeneous boundary conditions. Use inner product

$$
\langle u, v\rangle=\int_{D} u v d x
$$

To compute adjoint of Δ, using Green's identity twice:

$$
\begin{aligned}
\langle\Delta u, v\rangle & =\int_{D} v \Delta u d \mathrm{x}=-\int_{D} \nabla v \cdot \nabla u d \mathrm{x}+\int_{\partial D} v \nabla u \cdot \hat{\mathrm{n} d \mathrm{x}}= \\
& =\int_{D} u \Delta v d \mathrm{x}-\int_{\partial D} u \nabla v \cdot \hat{\mathrm{n}} d \mathrm{x}=\langle u, \Delta v\rangle
\end{aligned}
$$

- The integrals on the boundary ∂D vanish because of the boundary conditions.
- It follows Laplacian is self-adjoint.

Non-negativity of the eigenvalues

Take inner product of an eigenfunction v with both sides of the the eigenvalue equation $\mathcal{L} v+\lambda v=0$, leading to

$$
\lambda=-\frac{\langle\mathcal{L} v, v\rangle}{\langle v, v\rangle}, \quad \text { "Rayleigh quotient" }
$$

Does not determine λ, but can be used to estimate it!

Non-negativity of the eigenvalues

Take inner product of an eigenfunction v with both sides of the the eigenvalue equation $\mathcal{L} v+\lambda v=0$, leading to

$$
\lambda=-\frac{\langle\mathcal{L} v, v\rangle}{\langle v, v\rangle}, \quad \text { "Rayleigh quotient" }
$$

Does not determine λ, but can be used to estimate it! Specialize to our situation (with homogeneous boundary conditions)

$$
\lambda=-\frac{\int_{D} v \Delta v d x}{\int_{D} v^{2} d x}=\frac{\int_{D}|\nabla v|^{2} d x}{\int_{D} v^{2} d x}
$$

Non-negativity of the eigenvalues

Take inner product of an eigenfunction v with both sides of the the eigenvalue equation $\mathcal{L} v+\lambda v=0$, leading to

$$
\lambda=-\frac{\langle\mathcal{L} v, v\rangle}{\langle v, v\rangle}, \quad \text { "Rayleigh quotient" }
$$

Does not determine λ, but can be used to estimate it! Specialize to our situation (with homogeneous boundary conditions)

$$
\lambda=-\frac{\int_{D} v \Delta v d x}{\int_{D} v^{2} d x}=\frac{\int_{D}|\nabla v|^{2} d x}{\int_{D} v^{2} d x}
$$

- Expression on the right is non-negative.
- $\lambda=0$ can be zero only with Neumann boundary conditions.

