$\Delta v + \lambda v = 0$, plus boundary conditions.

 $\Delta v + \lambda v = 0$, plus boundary conditions.

 With suitable boundary conditions, eigenvalues are real, non-negative and eigenfunctions are orthogonal

$$\langle u,v\rangle = \int_D uv\,d\mathbf{x}.$$

 $\Delta v + \lambda v = 0$, plus boundary conditions.

 With suitable boundary conditions, eigenvalues are real, non-negative and eigenfunctions are orthogonal

$$\langle u,v\rangle = \int_D uv\,d\mathbf{x}.$$

Difficult to write complete solution for arbitrary domain.

 $\Delta v + \lambda v = 0$, plus boundary conditions.

 With suitable boundary conditions, eigenvalues are real, non-negative and eigenfunctions are orthogonal

$$\langle u,v\rangle = \int_D uv\,d\mathbf{x}.$$

- Difficult to write complete solution for arbitrary domain.
- Three tractable domains: rectangle, disk, surface of a sphere.

Natural idea to solve $\Delta v + \lambda v = 0$: use separation of variables!

Natural idea to solve $\Delta v + \lambda v = 0$: use separation of variables!

Let v(x, y) = X(x)Y(y), plug into eigenvalue equation

$$\frac{X''}{X} + \frac{Y''}{Y} = -\lambda$$

Natural idea to solve $\Delta v + \lambda v = 0$: use separation of variables!

Let v(x, y) = X(x)Y(y), plug into eigenvalue equation

$$\frac{X''}{X} + \frac{Y''}{Y} = -\lambda$$

By separation principle terms on left are constants $-\lambda_x, -\lambda_y$, so that

$$X'' + \lambda_x X = 0, \quad Y'' + \lambda_y Y = 0, \quad \lambda = \lambda_x + \lambda_y.$$

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$X(0) = 0 = X(\pi), \quad Y(0) = 0 = Y(\pi).$$

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$X(0) = 0 = X(\pi), \quad Y(0) = 0 = Y(\pi).$$

Familiar solutions are X = sin(nx) and Y = sin(my) for n, m = 1, 2, 3, ...

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$X(0) = 0 = X(\pi), \quad Y(0) = 0 = Y(\pi).$$

Familiar solutions are X = sin(nx) and Y = sin(my) for n, m = 1, 2, 3, ...

Therefore all possible combinations are

 $v_{nm}(x, y) = \sin(nx)\sin(my), \quad \lambda_{nm} = n^2 + m^2, \quad n, m = 1, 2, 3, \dots$

(these comprise a multidimensional Fourier series)

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$X(0) = 0 = X(\pi), \quad Y(0) = 0 = Y(\pi).$$

Familiar solutions are X = sin(nx) and Y = sin(my) for n, m = 1, 2, 3, ...

Therefore all possible combinations are

 $v_{nm}(x, y) = \sin(nx)\sin(my), \quad \lambda_{nm} = n^2 + m^2, \quad n, m = 1, 2, 3, \dots$

(these comprise a multidimensional Fourier series)

Since the linear operator is self adjoint, orthogonality holds

$$\int_D v_{nm}v_{n'm'}dxdy = 0 \quad \text{unless } n = n' \text{ and } m = m'.$$

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$X(0) = 0 = X(\pi), \quad Y(0) = 0 = Y(\pi).$$

Familiar solutions are X = sin(nx) and Y = sin(my) for n, m = 1, 2, 3, ...

Therefore all possible combinations are

 $v_{nm}(x, y) = \sin(nx)\sin(my), \quad \lambda_{nm} = n^2 + m^2, \quad n, m = 1, 2, 3, \dots$

(these comprise a multidimensional Fourier series)

Since the linear operator is self adjoint, orthogonality holds

$$\int_D v_{nm}v_{n'm'}dxdy = 0 \quad \text{unless } n = n' \text{ and } m = m'.$$

Many other possible boundary conditions; for example, Neumann leads to $\nabla v\cdot \hat{\mathbf{n}}=0$ lead to

$$v_{nm}(x, y) = \cos(nx)\cos(my), \quad \lambda_{nm} = n^2 + m^2, \quad n, m = 0, 1, 2, 3, \dots$$

Nodes of the eigenfunctions

To visualizing eigenfunctions, look at *nodes* where v = 0.

Nodes of the eigenfunctions

To visualizing eigenfunctions, look at *nodes* where v = 0.

Eigenfunctions on the disk

Consider circular domain $D = \{0 < r < a, 0 < \theta < 2\pi\}$. Using Laplacian in polar coordinates,

$$v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = -\lambda v.$$

Eigenfunctions on the disk

Consider circular domain $D = \{0 < r < a, 0 < \theta < 2\pi\}$. Using Laplacian in polar coordinates,

$$v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = -\lambda v.$$

Look for solutions $v = R(r)\Theta(\theta)$ and separate variables

$$\frac{r^2 R'' + r R' + \lambda r^2 R}{R} + \frac{\Theta''}{\Theta} = 0.$$

Each term must be a constant, so set $\Theta''/\Theta = -\lambda_{\theta}$.

Eigenfunctions on the disk

Consider circular domain $D = \{0 < r < a, 0 < \theta < 2\pi\}$. Using Laplacian in polar coordinates,

$$v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = -\lambda v.$$

Look for solutions $v = R(r)\Theta(\theta)$ and separate variables

$$\frac{r^2 R'' + r R' + \lambda r^2 R}{R} + \frac{\Theta''}{\Theta} = 0.$$

Each term must be a constant, so set $\Theta''/\Theta = -\lambda_{\theta}$.

Boundary conditions for Θ are 2π -periodic, so $\lambda_{ heta} = n^2$ and

$$\Theta = \begin{cases} \cos(n\theta), & n = 0, 1, 2, \dots \\ \sin(n\theta), & n = 1, 2, 3, \dots \end{cases}$$

Using $\lambda_{\theta} = n^2$, equation for radial part R(r) is

$$r^{2}R'' + rR' + (\lambda r^{2} - n^{2})R = 0.$$

Using $\lambda_{\theta} = n^2$, equation for radial part R(r) is

$$r^2 R'' + r R' + (\lambda r^2 - n^2) R = 0.$$

If $\lambda = 0$, get Euler's equation. For the Dirichlet boundary condition, no non-zero solutions; for Neumann, get constant valued solution.

Using $\lambda_{\theta} = n^2$, equation for radial part R(r) is

$$r^{2}R'' + rR' + (\lambda r^{2} - n^{2})R = 0.$$

If $\lambda = 0$, get Euler's equation. For the Dirichlet boundary condition, no non-zero solutions; for Neumann, get constant valued solution.

If $\lambda > 0$, simplify using change of variables $\rho = \sqrt{\lambda}r$ so $R = R(\rho)$ solves

$$ho^2 R'' +
ho R' + (
ho^2 - n^2) R = 0, \quad ({ t Bessel's equation}).$$

Approximate for ρ small gives Euler's equation

$$\rho^2 R'' + \rho R' - n^2 R = 0$$

Therefore for each *n* expect two linearly independent solutions $J_n(\rho), Y_n(\rho)$

$$J_n(\rho) \sim \begin{cases} \rho^n & n > 0\\ 1 & n = 0, \end{cases} \qquad Y_n(\rho) \sim \begin{cases} \rho^{-n} & n > 0\\ \ln \rho & n = 0, \end{cases}$$

Approximate for ρ small gives Euler's equation

$$\rho^2 R'' + \rho R' - n^2 R = 0$$

Therefore for each *n* expect two linearly independent solutions $J_n(\rho), Y_n(\rho)$

$$J_n(\rho) \sim \begin{cases} \rho^n & n > 0\\ 1 & n = 0, \end{cases} \qquad Y_n(\rho) \sim \begin{cases} \rho^{-n} & n > 0\\ \ln \rho & n = 0, \end{cases}$$

• $J_n(\rho)$ and $Y_n(\rho)$ are the Bessel functions.

Approximate for ρ small gives Euler's equation

$$\rho^2 R'' + \rho R' - n^2 R = 0$$

Therefore for each *n* expect two linearly independent solutions $J_n(\rho), Y_n(\rho)$

$$J_n(\rho) \sim \begin{cases} \rho^n & n > 0\\ 1 & n = 0, \end{cases} \qquad Y_n(\rho) \sim \begin{cases} \rho^{-n} & n > 0\\ \ln \rho & n = 0, \end{cases}$$

• $J_n(\rho)$ and $Y_n(\rho)$ are the Bessel functions.

Bessel functions have an infinite number of zeros; label them

$$\beta_{nm} = m$$
th positive zero of $J_n(\rho)$.

Now assume Dirichlet boundary conditions. Eigenvalues are determined by imposing boundary condition

$$R(r=a)=J_n(\sqrt{\lambda}a)=0,$$

Now assume Dirichlet boundary conditions. Eigenvalues are determined by imposing boundary condition

$$R(r=a)=J_n(\sqrt{\lambda}a)=0,$$

This means that for each *n*, $\sqrt{\lambda}a$ must be a zero of J_n , or

$$\lambda_{nm} = \left(rac{eta_{nm}}{a}
ight)^2, \quad 0 \leq n < \infty, \qquad 1 \leq m < \infty.$$

Now assume Dirichlet boundary conditions. Eigenvalues are determined by imposing boundary condition

$$R(r=a)=J_n(\sqrt{\lambda}a)=0,$$

This means that for each *n*, $\sqrt{\lambda}a$ must be a zero of J_n , or

$$\lambda_{nm} = \left(\frac{\beta_{nm}}{a}\right)^2, \quad 0 \le n < \infty, \qquad 1 \le m < \infty.$$

The corresponding eigenfunctions are

$$v_{nm}(x,y) = \begin{cases} J_0(\beta_{0m}r/a) & n = 0\\ J_n(\beta_{nm}r/a)\cos(n\theta), \ J_n(\beta_{nm}r/a)\sin(m\theta), & n > 0. \end{cases}$$

To find a solution to Bessel's equation, use "method of Frobenius":

$$R = \rho^{\alpha} \sum_{k=0}^{\infty} a_k \rho^k, \quad a_0 \neq 0$$

To find a solution to Bessel's equation, use "method of Frobenius":

$$R=
ho^{lpha}\sum_{k=0}^{\infty}a_k
ho^k,\quad a_0
eq 0$$

$$\rho^{\alpha} \left\{ \sum_{k=0}^{\infty} [(\alpha+k)(\alpha+k-1) + (\alpha+k) - n^2] a_k \rho^{k-2} + \sum_{k=2}^{\infty} a_{k-2} \rho^{k-2} \right\} = 0.$$

To find a solution to Bessel's equation, use "method of Frobenius":

$$R=
ho^{lpha}\sum_{k=0}^{\infty}a_k
ho^k,\quad a_0
eq 0$$

$$\rho^{\alpha}\left\{\sum_{k=0}^{\infty}[(\alpha+k)(\alpha+k-1)+(\alpha+k)-n^{2}]a_{k}\rho^{k-2}+\sum_{k=2}^{\infty}a_{k-2}\rho^{k-2}\right\}=0.$$

Idea: each coefficient of ρ^k must be zero.

To find a solution to Bessel's equation, use "method of Frobenius":

$$R =
ho^{lpha} \sum_{k=0}^{\infty} a_k
ho^k, \quad a_0
eq 0$$

$$\rho^{\alpha}\left\{\sum_{k=0}^{\infty}[(\alpha+k)(\alpha+k-1)+(\alpha+k)-n^{2}]a_{k}\rho^{k-2}+\sum_{k=2}^{\infty}a_{k-2}\rho^{k-2}\right\}=0.$$

Idea: each coefficient of ρ^k must be zero.

For k = 0, 1,

$$[\alpha^2 - n^2]a_0 = 0, \quad [(\alpha + 1)^2 - n^2]a_1 = 0.$$

Thus $\alpha = \pm n$ and $a_1 = 0$ (this leads to $a_3, a_5, a_7, \ldots = 0$).

Other coefficients solve recursion relation $a_k = -\frac{a_{k-2}}{(\alpha+k)^2 - n^2}$; with $\alpha = n$ and $a_0 = 2^{-n}/n!$, giving

$$a_k = (-1)^k \frac{(1/2)^{2k}}{k!(n+k)!}, \quad k = 0, 2, 4, \dots$$

Other coefficients solve recursion relation $a_k = -\frac{a_{k-2}}{(\alpha+k)^2 - n^2}$; with $\alpha = n$ and $a_0 = 2^{-n}/n!$, giving

$$a_k = (-1)^k \frac{(1/2)^{2k}}{k!(n+k)!}, \quad k = 0, 2, 4, \dots$$

Finally, get convergent (for all ρ) power series

$$J_n(\rho) = \sum_{k=0}^{\infty} (-1)^k \frac{(\rho/2)^{n+2k}}{k!(n+k)!}$$

Bessel functions in pictures

Bessel functions $J_n(\beta_{nm}r/a)$ are themselves eigenfunctions of a differential operator, $d^2/dr^2 + (1/r)d/dr - n^2/r^2$ (*n* fixed).

Bessel functions $J_n(\beta_{nm}r/a)$ are themselves eigenfunctions of a differential operator, $d^2/dr^2 + (1/r)d/dr - n^2/r^2$ (*n* fixed). This operator is self-adjoint with respect to inner product

$$\langle u,v\rangle = \int_0^a u(r)v(r)rdr.$$

Bessel functions $J_n(\beta_{nm}r/a)$ are themselves eigenfunctions of a differential operator, $d^2/dr^2 + (1/r)d/dr - n^2/r^2$ (*n* fixed). This operator is self-adjoint with respect to inner product

$$\langle u,v\rangle = \int_0^a u(r)v(r)rdr.$$

Thus the eigenfunctions (for each n) are orthogonal:

$$\langle J_n(\beta_{nm}r/a), J_n(\beta_{nk}r/a) \rangle = 0, \quad m \neq k.$$

Nodes of the eigenfunctions on a disk

$$v_{nm}(r,\theta) = \begin{cases} J_0(\beta_{0m}r/a) & n = 0\\ J_n(\beta_{nm}r/a)\cos(n\theta), \ J_n(\beta_{nm}r/a)\sin(m\theta), & n > 0. \end{cases}$$

Nodes of the eigenfunctions on a disk

$$v_{nm}(r,\theta) = \begin{cases} J_0(\beta_{0m}r/a) & n = 0\\ J_n(\beta_{nm}r/a)\cos(n\theta), \ J_n(\beta_{nm}r/a)\sin(m\theta), & n > 0. \end{cases}$$

