Two-dimensional eigenvalue problems, part 2

Find $v: D \rightarrow \mathbb{R}$

$$
\Delta v+\lambda v=0, \quad \text { plus boundary conditions. }
$$

Find $v: D \rightarrow \mathbb{R}$

$$
\Delta v+\lambda v=0, \quad \text { plus boundary conditions. }
$$

■ With suitable boundary conditions, eigenvalues are real, non-negative and eigenfunctions are orthogonal

$$
\langle u, v\rangle=\int_{D} u v d \mathbf{x} .
$$

Find $v: D \rightarrow \mathbb{R}$

$$
\Delta v+\lambda v=0, \quad \text { plus boundary conditions. }
$$

■ With suitable boundary conditions, eigenvalues are real, non-negative and eigenfunctions are orthogonal

$$
\langle u, v\rangle=\int_{D} u v d \mathbf{x} .
$$

- Difficult to write complete solution for arbitrary domain.

Find $v: D \rightarrow \mathbb{R}$

$$
\Delta v+\lambda v=0, \quad \text { plus boundary conditions. }
$$

■ With suitable boundary conditions, eigenvalues are real, non-negative and eigenfunctions are orthogonal

$$
\langle u, v\rangle=\int_{D} u v d \mathbf{x} .
$$

- Difficult to write complete solution for arbitrary domain.
- Three tractable domains: rectangle, disk, surface of a sphere.

Eigenfunctions on the rectangle

Consider domain $D=\{0<x<\pi, 0<y<\pi\}$.

Eigenfunctions on the rectangle

Consider domain $D=\{0<x<\pi, 0<y<\pi\}$.
Natural idea to solve $\Delta v+\lambda v=0$: use separation of variables!

Eigenfunctions on the rectangle

Consider domain $D=\{0<x<\pi, 0<y<\pi\}$.
Natural idea to solve $\Delta v+\lambda v=0$: use separation of variables!
Let $v(x, y)=X(x) Y(y)$, plug into eigenvalue equation

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda
$$

Eigenfunctions on the rectangle

Consider domain $D=\{0<x<\pi, 0<y<\pi\}$.
Natural idea to solve $\Delta v+\lambda v=0$: use separation of variables!
Let $v(x, y)=X(x) Y(y)$, plug into eigenvalue equation

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=-\lambda
$$

By separation principle terms on left are constants $-\lambda_{x},-\lambda_{y}$, so that

$$
X^{\prime \prime}+\lambda_{x} X=0, \quad Y^{\prime \prime}+\lambda_{y} Y=0, \quad \lambda=\lambda_{x}+\lambda_{y}
$$

Eigenfunctions on the rectangle, cont.

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$
X(0)=0=X(\pi), \quad Y(0)=0=Y(\pi)
$$

Eigenfunctions on the rectangle, cont.

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$
X(0)=0=X(\pi), \quad Y(0)=0=Y(\pi)
$$

Familiar solutions are $X=\sin (n x)$ and $Y=\sin (m y)$ for $n, m=1,2,3, \ldots$

Eigenfunctions on the rectangle, cont.

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$
X(0)=0=X(\pi), \quad Y(0)=0=Y(\pi)
$$

Familiar solutions are $X=\sin (n x)$ and $Y=\sin (m y)$ for $n, m=1,2,3, \ldots$

Therefore all possible combinations are
$v_{n m}(x, y)=\sin (n x) \sin (m y), \quad \lambda_{n m}=n^{2}+m^{2}, \quad n, m=1,2,3, \ldots$.
(these comprise a multidimensional Fourier series)

Eigenfunctions on the rectangle, cont.

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$
X(0)=0=X(\pi), \quad Y(0)=0=Y(\pi)
$$

Familiar solutions are $X=\sin (n x)$ and $Y=\sin (m y)$ for $n, m=1,2,3, \ldots$

Therefore all possible combinations are
$v_{n m}(x, y)=\sin (n x) \sin (m y), \quad \lambda_{n m}=n^{2}+m^{2}, \quad n, m=1,2,3, \ldots$.
(these comprise a multidimensional Fourier series)
Since the linear operator is self adjoint, orthogonality holds

$$
\int_{D} v_{n m} v_{n^{\prime} m^{\prime}} d x d y=0 \quad \text { unless } n=n^{\prime} \text { and } m=m^{\prime}
$$

Eigenfunctions on the rectangle, cont.

Suppose that Dirichlet boundary conditions on D were imposed; this leads to the boundary conditions

$$
X(0)=0=X(\pi), \quad Y(0)=0=Y(\pi)
$$

Familiar solutions are $X=\sin (n x)$ and $Y=\sin (m y)$ for $n, m=1,2,3, \ldots$.

Therefore all possible combinations are
$v_{n m}(x, y)=\sin (n x) \sin (m y), \quad \lambda_{n m}=n^{2}+m^{2}, \quad n, m=1,2,3, \ldots$
(these comprise a multidimensional Fourier series)
Since the linear operator is self adjoint, orthogonality holds

$$
\int_{D} v_{n m} v_{n^{\prime} m^{\prime}} d x d y=0 \quad \text { unless } n=n^{\prime} \text { and } m=m^{\prime}
$$

Many other possible boundary conditions; for example, Neumann leads to $\nabla v \cdot \hat{\mathbf{n}}=0$ lead to

$$
v_{n m}(x, y)=\cos (n x) \cos (m y), \quad \lambda_{n m}=n^{2}+m^{2}, \quad n, m=0,1,2,3, \ldots .
$$

Nodes of the eigenfunctions

To visualizing eigenfunctions, look at nodes where $v=0$.

Nodes of the eigenfunctions

To visualizing eigenfunctions, look at nodes where $v=0$.

$\mathrm{n}=3, \mathrm{~m}=1$

$n=3, m=2$

$n=3, m=3$

Eigenfunctions on the disk

Consider circular domain $D=\{0<r<a, 0<\theta<2 \pi\}$. Using Laplacian in polar coordinates,

$$
v_{r r}+\frac{1}{r} v_{r}+\frac{1}{r^{2}} v_{\theta \theta}=-\lambda v .
$$

Eigenfunctions on the disk

Consider circular domain $D=\{0<r<a, 0<\theta<2 \pi\}$. Using Laplacian in polar coordinates,

$$
v_{r r}+\frac{1}{r} v_{r}+\frac{1}{r^{2}} v_{\theta \theta}=-\lambda v .
$$

Look for solutions $v=R(r) \Theta(\theta)$ and separate variables

$$
\frac{r^{2} R^{\prime \prime}+r R^{\prime}+\lambda r^{2} R}{R}+\frac{\Theta^{\prime \prime}}{\Theta}=0
$$

Each term must be a constant, so set $\Theta^{\prime \prime} / \Theta=-\lambda_{\theta}$.

Eigenfunctions on the disk

Consider circular domain $D=\{0<r<a, 0<\theta<2 \pi\}$. Using Laplacian in polar coordinates,

$$
v_{r r}+\frac{1}{r} v_{r}+\frac{1}{r^{2}} v_{\theta \theta}=-\lambda v .
$$

Look for solutions $v=R(r) \Theta(\theta)$ and separate variables

$$
\frac{r^{2} R^{\prime \prime}+r R^{\prime}+\lambda r^{2} R}{R}+\frac{\Theta^{\prime \prime}}{\Theta}=0
$$

Each term must be a constant, so set $\Theta^{\prime \prime} / \Theta=-\lambda_{\theta}$.
Boundary conditions for Θ are 2π-periodic, so $\lambda_{\theta}=n^{2}$ and

$$
\Theta= \begin{cases}\cos (n \theta), & n=0,1,2, \ldots \\ \sin (n \theta), & n=1,2,3, \ldots\end{cases}
$$

Eigenfunctions on the disk,cont.

Using $\lambda_{\theta}=n^{2}$, equation for radial part $R(r)$ is

$$
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda r^{2}-n^{2}\right) R=0 .
$$

Using $\lambda_{\theta}=n^{2}$, equation for radial part $R(r)$ is

$$
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda r^{2}-n^{2}\right) R=0 .
$$

If $\lambda=0$, get Euler's equation. For the Dirichlet boundary condition, no non-zero solutions; for Neumann, get constant valued solution.

Eigenfunctions on the disk,cont.

Using $\lambda_{\theta}=n^{2}$, equation for radial part $R(r)$ is

$$
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda r^{2}-n^{2}\right) R=0 .
$$

If $\lambda=0$, get Euler's equation. For the Dirichlet boundary condition, no non-zero solutions; for Neumann, get constant valued solution.
If $\lambda>0$, simplify using change of variables $\rho=\sqrt{\lambda} r$ so $R=R(\rho)$ solves

$$
\rho^{2} R^{\prime \prime}+\rho R^{\prime}+\left(\rho^{2}-n^{2}\right) R=0, \quad \text { (Bessel's equation). }
$$

Eigenfunctions on the disk,cont.

Approximate for ρ small gives Euler's equation

$$
\rho^{2} R^{\prime \prime}+\rho R^{\prime}-n^{2} R=0
$$

Therefore for each n expect two linearly independent solutions $J_{n}(\rho), Y_{n}(\rho)$

$$
J_{n}(\rho) \sim\left\{\begin{array} { l l }
{ \rho ^ { n } } & { n > 0 } \\
{ 1 } & { n = 0 , }
\end{array} \quad Y _ { n } (\rho) \sim \left\{\begin{array}{ll}
\rho^{-n} & n>0 \\
\ln \rho & n=0
\end{array}\right.\right.
$$

Eigenfunctions on the disk,cont.

Approximate for ρ small gives Euler's equation

$$
\rho^{2} R^{\prime \prime}+\rho R^{\prime}-n^{2} R=0
$$

Therefore for each n expect two linearly independent solutions $J_{n}(\rho), Y_{n}(\rho)$

$$
J_{n}(\rho) \sim\left\{\begin{array} { l l }
{ \rho ^ { n } } & { n > 0 } \\
{ 1 } & { n = 0 , }
\end{array} \quad Y _ { n } (\rho) \sim \left\{\begin{array}{ll}
\rho^{-n} & n>0 \\
\ln \rho & n=0
\end{array}\right.\right.
$$

- $J_{n}(\rho)$ and $Y_{n}(\rho)$ are the Bessel functions.

Eigenfunctions on the disk,cont.

Approximate for ρ small gives Euler's equation

$$
\rho^{2} R^{\prime \prime}+\rho R^{\prime}-n^{2} R=0
$$

Therefore for each n expect two linearly independent solutions $J_{n}(\rho), Y_{n}(\rho)$

$$
J_{n}(\rho) \sim\left\{\begin{array} { l l }
{ \rho ^ { n } } & { n > 0 } \\
{ 1 } & { n = 0 , }
\end{array} \quad Y _ { n } (\rho) \sim \left\{\begin{array}{ll}
\rho^{-n} & n>0 \\
\ln \rho & n=0
\end{array}\right.\right.
$$

- $J_{n}(\rho)$ and $Y_{n}(\rho)$ are the Bessel functions.
- Bessel functions have an infinite number of zeros; label them

$$
\beta_{n m}=m \text { th positive zero of } J_{n}(\rho) \text {. }
$$

Eigenfunctions on the disk,cont.

Now assume Dirichlet boundary conditions. Eigenvalues are determined by imposing boundary condition

$$
R(r=a)=J_{n}(\sqrt{\lambda} a)=0
$$

Eigenfunctions on the disk,cont.

Now assume Dirichlet boundary conditions. Eigenvalues are determined by imposing boundary condition

$$
R(r=a)=J_{n}(\sqrt{\lambda} a)=0
$$

This means that for each $n, \sqrt{\lambda}$ a must be a zero of J_{n}, or

$$
\lambda_{n m}=\left(\frac{\beta_{n m}}{a}\right)^{2}, \quad 0 \leq n<\infty, \quad 1 \leq m<\infty
$$

Eigenfunctions on the disk,cont.

Now assume Dirichlet boundary conditions. Eigenvalues are determined by imposing boundary condition

$$
R(r=a)=J_{n}(\sqrt{\lambda} a)=0
$$

This means that for each $n, \sqrt{\lambda}$ a must be a zero of J_{n}, or

$$
\lambda_{n m}=\left(\frac{\beta_{n m}}{a}\right)^{2}, \quad 0 \leq n<\infty, \quad 1 \leq m<\infty
$$

The corresponding eigenfunctions are

$$
v_{n m}(x, y)= \begin{cases}J_{0}\left(\beta_{0 m} r / a\right) & n=0 \\ J_{n}\left(\beta_{n m} r / a\right) \cos (n \theta), J_{n}\left(\beta_{n m} r / a\right) \sin (m \theta), & n>0\end{cases}
$$

What are the Bessel functions?

To find a solution to Bessel's equation, use "method of Frobenius":

$$
R=\rho^{\alpha} \sum_{k=0}^{\infty} a_{k} \rho^{k}, \quad a_{0} \neq 0
$$

What are the Bessel functions?

To find a solution to Bessel's equation, use "method of Frobenius":

$$
R=\rho^{\alpha} \sum_{k=0}^{\infty} a_{k} \rho^{k}, \quad a_{0} \neq 0
$$

Plugging in

$$
\rho^{\alpha}\left\{\sum_{k=0}^{\infty}\left[(\alpha+k)(\alpha+k-1)+(\alpha+k)-n^{2}\right] a_{k} \rho^{k-2}+\sum_{k=2}^{\infty} a_{k-2} \rho^{k-2}\right\}=0 .
$$

What are the Bessel functions?

To find a solution to Bessel's equation, use "method of Frobenius":

$$
R=\rho^{\alpha} \sum_{k=0}^{\infty} a_{k} \rho^{k}, \quad a_{0} \neq 0
$$

Plugging in
$\rho^{\alpha}\left\{\sum_{k=0}^{\infty}\left[(\alpha+k)(\alpha+k-1)+(\alpha+k)-n^{2}\right] a_{k} \rho^{k-2}+\sum_{k=2}^{\infty} a_{k-2} \rho^{k-2}\right\}=0$.
Idea: each coefficient of ρ^{k} must be zero.

To find a solution to Bessel's equation, use "method of Frobenius":

$$
R=\rho^{\alpha} \sum_{k=0}^{\infty} a_{k} \rho^{k}, \quad a_{0} \neq 0
$$

Plugging in
$\rho^{\alpha}\left\{\sum_{k=0}^{\infty}\left[(\alpha+k)(\alpha+k-1)+(\alpha+k)-n^{2}\right] a_{k} \rho^{k-2}+\sum_{k=2}^{\infty} a_{k-2} \rho^{k-2}\right\}=0$.
Idea: each coefficient of ρ^{k} must be zero.
For $k=0,1$,

$$
\left[\alpha^{2}-n^{2}\right] a_{0}=0, \quad\left[(\alpha+1)^{2}-n^{2}\right] a_{1}=0
$$

Thus $\alpha= \pm n$ and $a_{1}=0$ (this leads to $a_{3}, a_{5}, a_{7}, \ldots=0$).

What are the Bessel functions?

Other coefficients solve recursion relation $a_{k}=-\frac{a_{k-2}}{(\alpha+k)^{2}-n^{2}}$; with $\alpha=n$ and $a_{0}=2^{-n} / n!$, giving

$$
a_{k}=(-1)^{k} \frac{(1 / 2)^{2 k}}{k!(n+k)!}, \quad k=0,2,4, \ldots
$$

What are the Bessel functions?

Other coefficients solve recursion relation $a_{k}=-\frac{a_{k-2}}{(\alpha+k)^{2}-n^{2}}$; with $\alpha=n$ and $a_{0}=2^{-n} / n!$, giving

$$
a_{k}=(-1)^{k} \frac{(1 / 2)^{2 k}}{k!(n+k)!}, \quad k=0,2,4, \ldots
$$

Finally, get convergent (for all ρ) power series

$$
J_{n}(\rho)=\sum_{k=0}^{\infty}(-1)^{k} \frac{(\rho / 2)^{n+2 k}}{k!(n+k)!}
$$

Bessel functions in pictures

Bessel functions $J_{n}\left(\beta_{n m} r / a\right)$ are themselves eigenfunctions of a differential operator, $d^{2} / d r^{2}+(1 / r) d / d r-n^{2} / r^{2}(n$ fixed $)$.

Bessel functions $J_{n}\left(\beta_{n m} r / a\right)$ are themselves eigenfunctions of a differential operator, $d^{2} / d r^{2}+(1 / r) d / d r-n^{2} / r^{2}(n$ fixed). This operator is self-adjoint with respect to inner product

$$
\langle u, v\rangle=\int_{0}^{a} u(r) v(r) r d r
$$

Bessel functions $J_{n}\left(\beta_{n m} r / a\right)$ are themselves eigenfunctions of a differential operator, $d^{2} / d r^{2}+(1 / r) d / d r-n^{2} / r^{2}(n$ fixed). This operator is self-adjoint with respect to inner product

$$
\langle u, v\rangle=\int_{0}^{a} u(r) v(r) r d r .
$$

Thus the eigenfunctions (for each n) are orthogonal:

$$
\left\langle J_{n}\left(\beta_{n m} r / a\right), J_{n}\left(\beta_{n k} r / a\right)\right\rangle=0, \quad m \neq k
$$

Nodes of the eigenfunctions on a disk

$$
v_{n m}(r, \theta)= \begin{cases}J_{0}\left(\beta_{0 m} r / a\right) & n=0 \\ J_{n}\left(\beta_{n m} r / a\right) \cos (n \theta), J_{n}\left(\beta_{n m} r / a\right) \sin (m \theta), & n>0\end{cases}
$$

Nodes of the eigenfunctions on a disk

$$
v_{n m}(r, \theta)= \begin{cases}J_{0}\left(\beta_{0 m} r / a\right) & n=0 \\ J_{n}\left(\beta_{n m} r / a\right) \cos (n \theta), J_{n}\left(\beta_{n m} r / a\right) \sin (m \theta), & n>0\end{cases}
$$

