
Two-dimensional eigenvalue problems, part 2

Find v : D → R

∆v + λv = 0, plus boundary conditions.

With suitable boundary conditions, eigenvalues are real,
non-negative and eigenfunctions are orthogonal

〈u, v〉 =

∫
D
uv dx.

Difficult to write complete solution for arbitrary domain.

Three tractable domains: rectangle, disk, surface of a sphere.
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Eigenfunctions on the rectangle

Consider domain D = {0 < x < π, 0 < y < π}.

Natural idea to solve ∆v + λv = 0: use separation of variables!

Let v(x , y) = X (x)Y (y), plug into eigenvalue equation

X ′′

X
+

Y ′′

Y
= −λ

By separation principle terms on left are constants −λx ,−λy , so
that

X ′′ + λxX = 0, Y ′′ + λyY = 0, λ = λx + λy .
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Eigenfunctions on the rectangle, cont.

Suppose that Dirichlet boundary conditions on D were imposed;
this leads to the boundary conditions

X (0) = 0 = X (π), Y (0) = 0 = Y (π).

Familiar solutions are X = sin(nx) and Y = sin(my) for
n,m = 1, 2, 3, . . ..

Therefore all possible combinations are

vnm(x , y) = sin(nx) sin(my), λnm = n2+m2, n,m = 1, 2, 3, . . . .

(these comprise a multidimensional Fourier series)

Since the linear operator is self adjoint, orthogonality holds∫
D
vnmvn′m′dxdy = 0 unless n = n′ and m = m′.

Many other possible boundary conditions; for example, Neumann
leads to ∇v · n̂ = 0 lead to

vnm(x , y) = cos(nx) cos(my), λnm = n2+m2, n,m = 0, 1, 2, 3, . . . .
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Nodes of the eigenfunctions

To visualizing eigenfunctions, look at nodes where v = 0.

Figure : Nodal sets (level curves where v = 0) for the first several
eigenfunctions on a square domain with Dirichlet boundary conditions.
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Eigenfunctions on the disk

Consider circular domain D = {0 < r < a, 0 < θ < 2π}.
Using Laplacian in polar coordinates,

vrr +
1

r
vr +

1

r2
vθθ = −λv .

Look for solutions v = R(r)Θ(θ) and separate variables

r2R ′′ + rR ′ + λr2R

R
+

Θ′′

Θ
= 0.

Each term must be a constant, so set Θ′′/Θ = −λθ.

Boundary conditions for Θ are 2π-periodic, so λθ = n2 and

Θ =

{
cos(nθ), n = 0, 1, 2, . . .

sin(nθ), n = 1, 2, 3, . . . .
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Eigenfunctions on the disk,cont.

Using λθ = n2, equation for radial part R(r) is

r2R ′′ + rR ′ + (λr2 − n2)R = 0.

If λ = 0, get Euler’s equation. For the Dirichlet boundary
condition, no non-zero solutions; for Neumann, get constant valued
solution.

If λ > 0, simplify using change of variables ρ =
√
λr so R = R(ρ)

solves

ρ2R ′′ + ρR ′ + (ρ2 − n2)R = 0, (Bessel’s equation).
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Eigenfunctions on the disk,cont.

Approximate for ρ small gives Euler’s equation

ρ2R ′′ + ρR ′ − n2R = 0

Therefore for each n expect two linearly independent solutions
Jn(ρ),Yn(ρ)

Jn(ρ) ∼

{
ρn n > 0

1 n = 0,
Yn(ρ) ∼

{
ρ−n n > 0

ln ρ n = 0,

Jn(ρ) and Yn(ρ) are the Bessel functions.

Bessel functions have an infinite number of zeros; label them

βnm = mth positive zero of Jn(ρ).
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Eigenfunctions on the disk,cont.

Now assume Dirichlet boundary conditions. Eigenvalues are
determined by imposing boundary condition

R(r = a) = Jn(
√
λa) = 0,

This means that for each n,
√
λa must be a zero of Jn, or

λnm =

(
βnm
a

)2

, 0 ≤ n <∞, 1 ≤ m <∞.

The corresponding eigenfunctions are

vnm(x , y) =

{
J0(β0mr/a) n = 0

Jn(βnmr/a) cos(nθ), Jn(βnmr/a) sin(mθ), n > 0.
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What are the Bessel functions?

To find a solution to Bessel’s equation, use “method of Frobenius”:

R = ρα
∞∑
k=0

akρ
k , a0 6= 0

Plugging in

ρα

{ ∞∑
k=0

[(α + k)(α + k − 1) + (α + k)− n2]akρ
k−2 +

∞∑
k=2

ak−2ρ
k−2

}
= 0.

Idea: each coefficient of ρk must be zero.

For k = 0, 1,

[α2 − n2]a0 = 0, [(α + 1)2 − n2]a1 = 0.

Thus α = ±n and a1 = 0 (this leads to a3, a5, a7, . . . = 0).
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What are the Bessel functions?

Other coefficients solve recursion relation ak = − ak−2

(α+k)2−n2 ; with

α = n and a0 = 2−n/n!, giving

ak = (−1)k
(1/2)2k

k!(n + k)!
, k = 0, 2, 4, . . .

Finally, get convergent (for all ρ) power series

Jn(ρ) =
∞∑
k=0

(−1)k
(ρ/2)n+2k

k!(n + k)!
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Bessel functions in pictures



Orthogonality of Bessel functions

Bessel functions Jn(βnmr/a) are themselves eigenfunctions of a
differential operator, d2/dr2 + (1/r)d/dr − n2/r2 (n fixed).

This operator is self-adjoint with respect to inner product

〈u, v〉 =

∫ a

0
u(r)v(r)rdr .

Thus the eigenfunctions (for each n) are orthogonal:

〈Jn(βnmr/a), Jn(βnk r/a)〉 = 0, m 6= k.
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Nodes of the eigenfunctions on a disk

vnm(r , θ) =

{
J0(β0mr/a) n = 0

Jn(βnmr/a) cos(nθ), Jn(βnmr/a) sin(mθ), n > 0.

Figure : Nodal sets for the Laplacian eigenvalues on the disk with
Dirichlet boundary conditions.
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