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Two-dimensional eigenvalue problems, part 2

Findv:D —R

Av + Av =0, plus boundary conditions.

m With suitable boundary conditions, eigenvalues are real,
non-negative and eigenfunctions are orthogonal

(u, v>:/Duvdx.

m Difficult to write complete solution for arbitrary domain.
m Three tractable domains: rectangle, disk, surface of a sphere.
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Eigenfunctions on the rectangle

Consider domain D ={0 < x <7, 0<y <m}.
Natural idea to solve Av + Av = 0: use separation of variables!
Let v(x,y) = X(x)Y(y), plug into eigenvalue equation

X// Y//
- — ==\
X Y

By separation principle terms on left are constants —\,, —\,, so
that

X'+ 0X=0, Y'+XAY=0 A=A+,
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Suppose that Dirichlet boundary conditions on D were imposed;
this leads to the boundary conditions

Familiar solutions are X = sin(nx) and Y = sin(my) for
nm=1273 ...

Therefore all possible combinations are
Vam(x,y) = sin(nx) sin(my), Apm = n®+m?, n,m=1,2,3,....
(these comprise a multidimensional Fourier series)

Since the linear operator is self adjoint, orthogonality holds

/ VomVimrdxdy =0 unless n=n" and m=m'.
D

Many other possible boundary conditions; for example, Neumann
leads to Vv - i =0 lead to

Vam(X, y) = cos(nx) cos(my), Apm = n*+m?,  n,m=0,1,2,3,....
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Eigenfunctions on the disk

Consider circular domain D ={0<r < a, 0 <6 <27},
Using Laplacian in polar coordinates,

1 1
Ver + =V + S Vo0 = —Av.
r r

Look for solutions v = R(r)©(#) and separate variables

rPR" + rR' + \r?R 9” B

R +@ 0.

Each term must be a constant, so set ©”/0 = —)\y.
Boundary conditions for © are 27-periodic, so A\g = n® and

_ Jcos(nf), n=0,1,2,...
~ sin(nf), n=1,23,....



Eigenfunctions on the disk,cont.

Using A9 = n?, equation for radial part R(r) is

r’R" 4+ rR' + (A\r®* = n*)R = 0.



Eigenfunctions on the disk,cont.

Using A9 = n?, equation for radial part R(r) is

r’R" 4+ rR' + (A\r®* = n*)R = 0.

If A =0, get Euler's equation. For the Dirichlet boundary
condition, no non-zero solutions; for Neumann, get constant valued

solution.



Eigenfunctions on the disk,cont.

Using A9 = n?, equation for radial part R(r) is

r’R" 4+ rR' + (A\r®* = n*)R = 0.

If A =0, get Euler's equation. For the Dirichlet boundary
condition, no non-zero solutions; for Neumann, get constant valued
solution.

If A > 0, simplify using change of variables p = v/Ar so R = R(p)
solves

p’R" 4+ pR' 4 (p*> — n*)R =0, (Bessel's equation).
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Eigenfunctions on the disk,cont.

Approximate for p small gives Euler's equation
p2R// —I—pRl _ an -0

Therefore for each n expect two linearly independent solutions
In(p). Ya(p)

p" n>0 p~" n>0
J ~ Y ~
(p) {1 n=20, (p) {Inp n=0,

m Jy(p) and Yn(p) are the Bessel functions.

m Bessel functions have an infinite number of zeros; label them

Bnm = mth positive zero of J,(p).
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Eigenfunctions on the disk,cont.

Now assume Dirichlet boundary conditions. Eigenvalues are
determined by imposing boundary condition

R(r = a) = Jo(VXa) = 0,

This means that for each n, v/Aa must be a zero of Jn, or

2
)\nm—(ﬁ;m>, 0<n< oo, 1< m< 0.

The corresponding eigenfunctions are

Jo(Bomr/a) n=0

Vo (%, y) = {J,,(ﬂ,,mr/a) cos(nf), Jn(Bnmr/a)sin(md), n > 0.



What are the Bessel functions?

To find a solution to Bessel's equation, use “method of Frobenius”:

o0
R=p"> ap", a#0
k=0



What are the Bessel functions?

To find a solution to Bessel's equation, use “method of Frobenius”:

o0
R=p"> ap", a#0
k=0
Plugging in

P~ {Z[(a + K)o+ k—1)+ (a+ k) — n?lagp* 2 + Z ak2pk_2} =0.

k=0 k=2



What are the Bessel functions?

To find a solution to Bessel's equation, use “method of Frobenius”:
o0
R=p"Y ap, a0 #0
k=0
Plugging in
p* {Z[(a + K)o+ k—1)+ (a+ k) — n?lagp* 2 + Z ak2pk_2} =0.
k=0 k=2

Idea: each coefficient of pk must be zero.



What are the Bessel functions?

To find a solution to Bessel's equation, use “method of Frobenius”:
o0
R=p"> ap", a#0
k=0

Plugging in

P~ {Z[(a + K)o+ k—1)+ (a+ k) — n?lagp* 2 + Z ak2pk—2} =0.

k=0 k=2
Idea: each coefficient of pk must be zero.

For k=0, 1,
[@® — n’lag =0, [(a+1)>—n?la;=0.

Thus @ = +n and a; = 0 (this leads to a3, as, a7, ... = 0).
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What are the Bessel functions?

2 with

Other coefficients solve recursion relation ax = —(aj;w,

a=nand ag =27"/n!, giving

2k
a = (—1)kk!((1,{i)k)!, k=0,2,4,...

Finally, get convergent (for all p) power series



Bessel functions in pictures

Ja(x)
TN\
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Orthogonality of Bessel functions

Bessel functions J,(Bnmr/a) are themselves eigenfunctions of a
differential operator, d?/dr? + (1/r)d/dr — n?/r? (n fixed).
This operator is self-adjoint with respect to inner product

() = [ atryeteyer

Thus the eigenfunctions (for each n) are orthogonal:

(Jn(Bnmr/a), Jn(Bakr/a)) =0, m# k.



Nodes of the eigenfunctions on a disk

vom(r.0) = {Jo(ﬁo,nr/a) n=20
e In(Bnmr/a) cos(nb), Jn(Bnmr/a)sin(m@), n > 0.



Nodes of the eigenfunctions on a disk

vom(r.0) = {Jo(%mf/a) n=0

(Bnmr/a) cos(nB), Jn(Bnamr/a)sin(md), n > 0.
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