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Fourier's coffee cup: model as a disk
ur = DAu, u(a,0,t) =u, u(r,0,0) = u,
u, = air temperature at boundary, ug = initial coffee temperature

First, need to get homogeneous boundary condition. Particular
solution which solves equation and boundary conditions is constant
Up = U,.

Now get problem for w = u — u, which we can solve:
we = DAw, w(a,0,t)=0, w(r,0,0)=uy— u,.

Most general solution to this is just superposition of separated
solutions

oo o0

w = Z Z[Anm cos(nf) + Bnm sin(ng)]Jn(Bnmr/a)e—Dﬁgmt/az

n=0 m=1
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Fourier’'s coffee cup, cont.

Notice initial condition does not depend on 6, so simplifies to
> 2 2
w = Z AomJo(ﬂomr/a)e_Dﬁomt/a .
m=1

Impose initial conditions

Z AomJo(Bomr/a) = up — ua,
m=1

Recall Jo(Bomr/a) are orthogonal (with respect to weighted inner

product) for different m, thus

A _ foa JO(ﬂOmr/a)(UO — ua)r dr
e foa Jg(ﬁomf/a)r dr




Fourier’'s coffee cup, cont.

Still too complicated! Only use term with slowest decay ( “ground
state approximation”)

2 2
w A01J0(B01r/a)e_D501t/a .
It follows that temperature in center is
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Fourier’'s coffee cup, cont.

Still too complicated! Only use term with slowest decay ( “ground
state approximation”)

w R A01J0(B01r/a)e_D5§1t/32.
It follows that temperature in center is
U(O, t) = Uy + W(07 t) Uyt (Uo — U‘-‘,)e_DBglt/a2

For a=3cm, D = .OOlcmZ/sec, Bo1 = 2.404, exponential decay
rate is exp(—t/tc) where t. = Df33;/a® ~ 1000sec.
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Example # 2: Fourier’s Doughnut

Problem: find fundamental (smallest) frequency for wave equation
U = CZAU

on an annulus 1 < r < 2, subject to boundary conditions

u(1,0,t) =0=u(2,0,t).

Recall separated solutions u = T(t)v(r,0) solve T"" = —c?\T and

Av = —\v. Since T = cos(cv/At) and sin(cv/At), frequencies are
cvV/X. We therefore want the smallest eigenvalue.

Separation v = ©(0)R(r) leads to © = cos(nf) and sin(nf) as
before. For each n, R solves the Bessel equation

PR’ + R + (Ar* — n)R = 0.

In this case, we cannot omit the solutions which are singular at the
origin, so

R(r) = c1dn(VAr) + &2 Ya(VAr)
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Example # 2: Fourier’s Doughnut

Eigenvalues are selected by imposing boundary conditions:
0= cdn(VX) + @ Ya(VA), 0=cidu(2VA) + 2 Ya(2VN).
This linear system has nonzero solutions if determinant is zero:
J(VA)Ya(2VA) = J(2VA) Ya(VN)

which is better written as intersection point of graphs

Qu(V2) = Qu(2VR),  Qu(x) = i((’;))

We anticipate n = 0 corresponds to smallest A, so plot Qo(x) versus Qo(2x) to
find intersection:

Thus smallest eigenvalue is therefore A & 3.42.
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Example # 3: Resonance in forced oscillations

Consider wave equation with forcing

Uy = 2Au+ cos(wot),

Suppose for some given domain € and boundary conditions, we
already know eigenfunctions vk (x,y) and eigenvalues Ak, for
k=1,2,3,....

Look for particular solution which has spatial dependence
expanded in eigenfunctions

up = cos(wot) ZAk vk(x,y)
k=1
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Resonance in forced oscillations, cont.

Plug into equation (using the fact that Av, = —\cvi) to get

DA = wh)vi(x,y) = 1.
k=1

Just an orthogonal expansion of eigenfunctions, so taking inner
products with each eigenfunction gives

_ 1 <Vk71>
N )\kC2 - UJ% <Vk, vk)'

Ak

If wg # cv/ Ak, then can find all Ag; but what if wg — wk where
wk = C\/ Ak is one the “natural” frequencies?

Resonance: A system forced with an oscillation near one of its
internal frequencies results in a large amplitude response.

In this case, this means that the particular solution is approximately
up =~ Ak cos(wot)vk(x, y).

Resonance “picks out” eigenfunction w/ frequency near wyp.



Resonance in forced oscillations, cont.

Resonance for a disk: Video demonstration

Resonance for a square plate: Video demonstration


https://www.youtube.com/watch?v=CGiiSlMFFlI&feature=youtu.be
https://www.youtube.com/watch?v=wvJAgrUBF4w&feature=youtu.be

