
Multidimensional eigenvalue problems, example # 1

Fourier’s coffee cup: model as a disk

ut = D∆u, u(a, θ, t) = ua, u(r , θ, 0) = u0,

ua = air temperature at boundary, u0 = initial coffee temperature

First, need to get homogeneous boundary condition. Particular
solution which solves equation and boundary conditions is constant
up = ua.

Now get problem for w = u − up which we can solve:

wt = D∆w , w(a, θ, t) = 0, w(r , θ, 0) = u0 − ua.

Most general solution to this is just superposition of separated
solutions

w =
∞∑
n=0

∞∑
m=1

[Anm cos(nθ) + Bnm sin(nθ)]Jn(βnmr/a)e−Dβ
2
nmt/a

2
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Fourier’s coffee cup, cont.

Notice initial condition does not depend on θ, so simplifies to

w =
∞∑

m=1

A0mJ0(β0mr/a)e−Dβ
2
0mt/a

2
.

Impose initial conditions

∞∑
m=1

A0mJ0(β0mr/a) = u0 − ua,

Recall J0(β0mr/a) are orthogonal (with respect to weighted inner

product) for different m, thus

A0m =

∫ a
0 J0(β0mr/a)(u0 − ua)r dr∫ a

0 J20 (β0mr/a)r dr
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Fourier’s coffee cup, cont.

Still too complicated! Only use term with slowest decay (“ground
state approximation”)

w ≈ A01J0(β01r/a)e−Dβ
2
01t/a

2
.

It follows that temperature in center is

u(0, t) = ua + w(0, t) ≈ ua + (u0 − ua)e−Dβ
2
01t/a

2

For a = 3cm, D = .001cm2/sec , β01 = 2.404, exponential decay
rate is exp(−t/tc) where tc = Dβ201/a

2 ≈ 1000sec .
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Example # 2: Fourier’s Doughnut

Problem: find fundamental (smallest) frequency for wave equation

utt = c2∆u

on an annulus 1 < r < 2, subject to boundary conditions
u(1, θ, t) = 0 = u(2, θ, t).

Recall separated solutions u = T (t)v(r , θ) solve T ′′ = −c2λT and
∆v = −λv . Since T = cos(c

√
λt) and sin(c

√
λt), frequencies are

c
√
λ. We therefore want the smallest eigenvalue.

Separation v = Θ(θ)R(r) leads to Θ = cos(nθ) and sin(nθ) as
before. For each n, R solves the Bessel equation

r2R ′′ + rR ′ + (λr2 − n2)R = 0.

In this case, we cannot omit the solutions which are singular at the
origin, so

R(r) = c1Jn(
√
λr) + c2Yn(

√
λr)
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Example # 2: Fourier’s Doughnut

Eigenvalues are selected by imposing boundary conditions:

0 = c1Jn(
√
λ) + c2Yn(

√
λ), 0 = c1Jn(2

√
λ) + c2Yn(2

√
λ).

This linear system has nonzero solutions if determinant is zero:

Jn(
√
λ)Yn(2

√
λ) = Jn(2

√
λ)Yn(

√
λ)

which is better written as intersection point of graphs

Qn(
√
λ) = Qn(2

√
λ), Qn(x) =

Jn(x)

Yn(x)

We anticipate n = 0 corresponds to smallest λ, so plot Q0(x) versus Q0(2x) to
find intersection:

Thus smallest eigenvalue is therefore λ ≈ 3.42.
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Example # 3: Resonance in forced oscillations

Consider wave equation with forcing

utt = c2∆u + cos(ω0t),

Suppose for some given domain Ω and boundary conditions, we
already know eigenfunctions vk(x , y) and eigenvalues λk , for
k = 1, 2, 3, . . ..

Look for particular solution which has spatial dependence
expanded in eigenfunctions

up = cos(ω0t)
∞∑
k=1

Akvk(x , y)
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Resonance in forced oscillations, cont.

Plug into equation (using the fact that ∆vk = −λkvk) to get

∞∑
k=1

Ak(λkc
2 − ω2

0)vk(x , y) = 1.

Just an orthogonal expansion of eigenfunctions, so taking inner
products with each eigenfunction gives

Ak =
1

λkc2 − ω2
0

〈vk , 1〉
〈vk , vk〉

.

If ω0 6= c
√
λk , then can find all Ak ; but what if ω0 → ωK where

ωK = c
√
λK is one the “natural” frequencies?

Resonance: A system forced with an oscillation near one of its
internal frequencies results in a large amplitude response.

In this case, this means that the particular solution is approximately

up ≈ AK cos(ω0t)vK (x , y).

Resonance “picks out” eigenfunction w/ frequency near ω0.
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Resonance in forced oscillations, cont.

Resonance for a disk: Video demonstration

Resonance for a square plate: Video demonstration

https://www.youtube.com/watch?v=CGiiSlMFFlI&feature=youtu.be
https://www.youtube.com/watch?v=wvJAgrUBF4w&feature=youtu.be

