Multidimensional eigenvalue problems, example \# 1

Fourier's coffee cup: model as a disk

$$
u_{t}=D \Delta u, \quad u(a, \theta, t)=u_{a}, \quad u(r, \theta, 0)=u_{0}
$$

$u_{a}=$ air temperature at boundary, $u_{0}=$ initial coffee temperature

Multidimensional eigenvalue problems, example \# 1

Fourier's coffee cup: model as a disk

$$
u_{t}=D \Delta u, \quad u(a, \theta, t)=u_{a}, \quad u(r, \theta, 0)=u_{0}
$$

$u_{a}=$ air temperature at boundary, $u_{0}=$ initial coffee temperature
First, need to get homogeneous boundary condition. Particular solution which solves equation and boundary conditions is constant $u_{p}=u_{a}$.

Multidimensional eigenvalue problems, example \# 1

Fourier's coffee cup: model as a disk

$$
u_{t}=D \Delta u, \quad u(a, \theta, t)=u_{a}, \quad u(r, \theta, 0)=u_{0}
$$

$u_{a}=$ air temperature at boundary, $u_{0}=$ initial coffee temperature
First, need to get homogeneous boundary condition. Particular solution which solves equation and boundary conditions is constant $u_{p}=u_{a}$.

Now get problem for $w=u-u_{p}$ which we can solve:

$$
w_{t}=D \Delta w, \quad w(a, \theta, t)=0, \quad w(r, \theta, 0)=u_{0}-u_{a} .
$$

Multidimensional eigenvalue problems, example \# 1

Fourier's coffee cup: model as a disk

$$
u_{t}=D \Delta u, \quad u(a, \theta, t)=u_{a}, \quad u(r, \theta, 0)=u_{0}
$$

$u_{a}=$ air temperature at boundary, $u_{0}=$ initial coffee temperature
First, need to get homogeneous boundary condition. Particular solution which solves equation and boundary conditions is constant $u_{p}=u_{a}$.

Now get problem for $w=u-u_{p}$ which we can solve:

$$
w_{t}=D \Delta w, \quad w(a, \theta, t)=0, \quad w(r, \theta, 0)=u_{0}-u_{a} .
$$

Most general solution to this is just superposition of separated solutions

$$
w=\sum_{n=0}^{\infty} \sum_{m=1}^{\infty}\left[A_{n m} \cos (n \theta)+B_{n m} \sin (n \theta)\right] J_{n}\left(\beta_{n m} r / a\right) e^{-D \beta_{n m}^{2} t / a^{2}}
$$

Fourier's coffee cup, cont.

Notice initial condition does not depend on θ, so simplifies to

$$
w=\sum_{m=1}^{\infty} A_{0 m} J_{0}\left(\beta_{0 m} r / a\right) e^{-D \beta_{0 m}^{2} t / a^{2}}
$$

Fourier's coffee cup, cont.

Notice initial condition does not depend on θ, so simplifies to

$$
w=\sum_{m=1}^{\infty} A_{0 m} J_{0}\left(\beta_{0 m} r / a\right) e^{-D \beta_{0 m}^{2} t / a^{2}}
$$

Impose initial conditions

$$
\sum_{m=1}^{\infty} A_{0 m} J_{0}\left(\beta_{0 m} r / a\right)=u_{0}-u_{a}
$$

Fourier's coffee cup, cont.

Notice initial condition does not depend on θ, so simplifies to

$$
w=\sum_{m=1}^{\infty} A_{0 m} J_{0}\left(\beta_{0 m} r / a\right) e^{-D \beta_{0 m}^{2} t / a^{2}}
$$

Impose initial conditions

$$
\sum_{m=1}^{\infty} A_{0 m} J_{0}\left(\beta_{0 m} r / a\right)=u_{0}-u_{a}
$$

Recall $J_{0}\left(\beta_{0 m} r / a\right)$ are orthogonal (with respect to weighted inner product) for different m, thus

$$
A_{0 m}=\frac{\int_{0}^{a} J_{0}\left(\beta_{0 m} r / a\right)\left(u_{0}-u_{a}\right) r d r}{\int_{0}^{a} J_{0}^{2}\left(\beta_{0 m} r / a\right) r d r}
$$

Fourier's coffee cup, cont.

Still too complicated! Only use term with slowest decay ("ground state approximation")

$$
w \approx A_{01} J_{0}\left(\beta_{01} r / a\right) e^{-D \beta_{01}^{2} t / a^{2}}
$$

It follows that temperature in center is

$$
u(0, t)=u_{a}+w(0, t) \approx u_{a}+\left(u_{0}-u_{a}\right) e^{-D \beta_{01}^{2} t / a^{2}}
$$

Fourier's coffee cup, cont.

Still too complicated! Only use term with slowest decay ("ground state approximation")

$$
w \approx A_{01} J_{0}\left(\beta_{01} r / a\right) e^{-D \beta_{01}^{2} t / a^{2}}
$$

It follows that temperature in center is

$$
u(0, t)=u_{a}+w(0, t) \approx u_{a}+\left(u_{0}-u_{a}\right) e^{-D \beta_{01}^{2} t / a^{2}}
$$

For $a=3 \mathrm{~cm}, D=.001 \mathrm{~cm}^{2} / \mathrm{sec}, \beta_{01}=2.404$, exponential decay rate is $\exp \left(-t / t_{c}\right)$ where $t_{c}=D \beta_{01}^{2} / a^{2} \approx 1000 \mathrm{sec}$.

Example \# 2: Fourier's Doughnut

Problem: find fundamental (smallest) frequency for wave equation

$$
u_{t t}=c^{2} \Delta u
$$

on an annulus $1<r<2$, subject to boundary conditions $u(1, \theta, t)=0=u(2, \theta, t)$.

Example \# 2: Fourier's Doughnut

Problem: find fundamental (smallest) frequency for wave equation

$$
u_{t t}=c^{2} \Delta u
$$

on an annulus $1<r<2$, subject to boundary conditions $u(1, \theta, t)=0=u(2, \theta, t)$.
Recall separated solutions $u=T(t) v(r, \theta)$ solve $T^{\prime \prime}=-c^{2} \lambda T$ and $\Delta v=-\lambda v$. Since $T=\cos (c \sqrt{\lambda} t)$ and $\sin (c \sqrt{\lambda} t)$, frequencies are $c \sqrt{\lambda}$. We therefore want the smallest eigenvalue.

Example \# 2: Fourier's Doughnut

Problem: find fundamental (smallest) frequency for wave equation

$$
u_{t t}=c^{2} \Delta u
$$

on an annulus $1<r<2$, subject to boundary conditions $u(1, \theta, t)=0=u(2, \theta, t)$.
Recall separated solutions $u=T(t) v(r, \theta)$ solve $T^{\prime \prime}=-c^{2} \lambda T$ and $\Delta v=-\lambda v$. Since $T=\cos (c \sqrt{\lambda} t)$ and $\sin (c \sqrt{\lambda} t)$, frequencies are $c \sqrt{\lambda}$. We therefore want the smallest eigenvalue.
Separation $v=\Theta(\theta) R(r)$ leads to $\Theta=\cos (n \theta)$ and $\sin (n \theta)$ as before. For each n, R solves the Bessel equation

$$
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda r^{2}-n^{2}\right) R=0
$$

Example \# 2: Fourier's Doughnut

Problem: find fundamental (smallest) frequency for wave equation

$$
u_{t t}=c^{2} \Delta u
$$

on an annulus $1<r<2$, subject to boundary conditions $u(1, \theta, t)=0=u(2, \theta, t)$.
Recall separated solutions $u=T(t) v(r, \theta)$ solve $T^{\prime \prime}=-c^{2} \lambda T$ and $\Delta v=-\lambda v$. Since $T=\cos (c \sqrt{\lambda} t)$ and $\sin (c \sqrt{\lambda} t)$, frequencies are $c \sqrt{\lambda}$. We therefore want the smallest eigenvalue.
Separation $v=\Theta(\theta) R(r)$ leads to $\Theta=\cos (n \theta)$ and $\sin (n \theta)$ as before. For each n, R solves the Bessel equation

$$
r^{2} R^{\prime \prime}+r R^{\prime}+\left(\lambda r^{2}-n^{2}\right) R=0
$$

In this case, we cannot omit the solutions which are singular at the origin, so

$$
R(r)=c_{1} J_{n}(\sqrt{\lambda} r)+c_{2} Y_{n}(\sqrt{\lambda} r)
$$

Example \# 2: Fourier's Doughnut

Eigenvalues are selected by imposing boundary conditions:

$$
0=c_{1} J_{n}(\sqrt{\lambda})+c_{2} Y_{n}(\sqrt{\lambda}), \quad 0=c_{1} J_{n}(2 \sqrt{\lambda})+c_{2} Y_{n}(2 \sqrt{\lambda})
$$

Example \# 2: Fourier's Doughnut

Eigenvalues are selected by imposing boundary conditions:

$$
0=c_{1} J_{n}(\sqrt{\lambda})+c_{2} Y_{n}(\sqrt{\lambda}), \quad 0=c_{1} J_{n}(2 \sqrt{\lambda})+c_{2} Y_{n}(2 \sqrt{\lambda})
$$

This linear system has nonzero solutions if determinant is zero:

$$
J_{n}(\sqrt{\lambda}) Y_{n}(2 \sqrt{\lambda})=J_{n}(2 \sqrt{\lambda}) Y_{n}(\sqrt{\lambda})
$$

which is better written as intersection point of graphs

$$
Q_{n}(\sqrt{\lambda})=Q_{n}(2 \sqrt{\lambda}), \quad Q_{n}(x)=\frac{J_{n}(x)}{Y_{n}(x)}
$$

Example \# 2: Fourier's Doughnut

Eigenvalues are selected by imposing boundary conditions:

$$
0=c_{1} J_{n}(\sqrt{\lambda})+c_{2} Y_{n}(\sqrt{\lambda}), \quad 0=c_{1} J_{n}(2 \sqrt{\lambda})+c_{2} Y_{n}(2 \sqrt{\lambda})
$$

This linear system has nonzero solutions if determinant is zero:

$$
J_{n}(\sqrt{\lambda}) Y_{n}(2 \sqrt{\lambda})=J_{n}(2 \sqrt{\lambda}) Y_{n}(\sqrt{\lambda})
$$

which is better written as intersection point of graphs

$$
Q_{n}(\sqrt{\lambda})=Q_{n}(2 \sqrt{\lambda}), \quad Q_{n}(x)=\frac{J_{n}(x)}{Y_{n}(x)}
$$

We anticipate $n=0$ corresponds to smallest λ, so plot $Q_{0}(x)$ versus $Q_{0}(2 x)$ to find intersection:

Example \# 2: Fourier's Doughnut

Eigenvalues are selected by imposing boundary conditions:

$$
0=c_{1} J_{n}(\sqrt{\lambda})+c_{2} Y_{n}(\sqrt{\lambda}), \quad 0=c_{1} J_{n}(2 \sqrt{\lambda})+c_{2} Y_{n}(2 \sqrt{\lambda})
$$

This linear system has nonzero solutions if determinant is zero:

$$
J_{n}(\sqrt{\lambda}) Y_{n}(2 \sqrt{\lambda})=J_{n}(2 \sqrt{\lambda}) Y_{n}(\sqrt{\lambda})
$$

which is better written as intersection point of graphs

$$
Q_{n}(\sqrt{\lambda})=Q_{n}(2 \sqrt{\lambda}), \quad Q_{n}(x)=\frac{J_{n}(x)}{Y_{n}(x)}
$$

We anticipate $n=0$ corresponds to smallest λ, so plot $Q_{0}(x)$ versus $Q_{0}(2 x)$ to find intersection:

Thus smallest eigenvalue is therefore $\lambda \approx 3.4^{2}$.

Consider wave equation with forcing

$$
u_{t t}=c^{2} \Delta u+\cos \left(\omega_{0} t\right)
$$

Example \# 3: Resonance in forced oscillations

Consider wave equation with forcing

$$
u_{t t}=c^{2} \Delta u+\cos \left(\omega_{0} t\right)
$$

Suppose for some given domain Ω and boundary conditions, we already know eigenfunctions $v_{k}(x, y)$ and eigenvalues λ_{k}, for $k=1,2,3, \ldots$

Consider wave equation with forcing

$$
u_{t t}=c^{2} \Delta u+\cos \left(\omega_{0} t\right)
$$

Suppose for some given domain Ω and boundary conditions, we already know eigenfunctions $v_{k}(x, y)$ and eigenvalues λ_{k}, for $k=1,2,3, \ldots$.

Look for particular solution which has spatial dependence expanded in eigenfunctions

$$
u_{p}=\cos \left(\omega_{0} t\right) \sum_{k=1}^{\infty} A_{k} v_{k}(x, y)
$$

Resonance in forced oscillations, cont.

Plug into equation (using the fact that $\Delta v_{k}=-\lambda_{k} v_{k}$) to get

$$
\sum_{k=1}^{\infty} A_{k}\left(\lambda_{k} c^{2}-\omega_{0}^{2}\right) v_{k}(x, y)=1
$$

Resonance in forced oscillations, cont.

Plug into equation (using the fact that $\Delta v_{k}=-\lambda_{k} v_{k}$) to get

$$
\sum_{k=1}^{\infty} A_{k}\left(\lambda_{k} c^{2}-\omega_{0}^{2}\right) v_{k}(x, y)=1
$$

Just an orthogonal expansion of eigenfunctions, so taking inner products with each eigenfunction gives

$$
A_{k}=\frac{1}{\lambda_{k} c^{2}-\omega_{0}^{2}} \frac{\left\langle v_{k}, 1\right\rangle}{\left\langle v_{k}, v_{k}\right\rangle}
$$

Resonance in forced oscillations, cont.

Plug into equation (using the fact that $\Delta v_{k}=-\lambda_{k} v_{k}$) to get

$$
\sum_{k=1}^{\infty} A_{k}\left(\lambda_{k} c^{2}-\omega_{0}^{2}\right) v_{k}(x, y)=1
$$

Just an orthogonal expansion of eigenfunctions, so taking inner products with each eigenfunction gives

$$
A_{k}=\frac{1}{\lambda_{k} c^{2}-\omega_{0}^{2}} \frac{\left\langle v_{k}, 1\right\rangle}{\left\langle v_{k}, v_{k}\right\rangle}
$$

If $\omega_{0} \neq c \sqrt{\lambda_{k}}$, then can find all A_{k}; but what if $\omega_{0} \rightarrow \omega_{K}$ where $\omega_{K}=c \sqrt{\lambda_{K}}$ is one the "natural" frequencies?

Resonance in forced oscillations, cont.

Plug into equation (using the fact that $\Delta v_{k}=-\lambda_{k} v_{k}$) to get

$$
\sum_{k=1}^{\infty} A_{k}\left(\lambda_{k} c^{2}-\omega_{0}^{2}\right) v_{k}(x, y)=1
$$

Just an orthogonal expansion of eigenfunctions, so taking inner products with each eigenfunction gives

$$
A_{k}=\frac{1}{\lambda_{k} c^{2}-\omega_{0}^{2}} \frac{\left\langle v_{k}, 1\right\rangle}{\left\langle v_{k}, v_{k}\right\rangle}
$$

If $\omega_{0} \neq c \sqrt{\lambda_{k}}$, then can find all A_{k}; but what if $\omega_{0} \rightarrow \omega_{K}$ where $\omega_{K}=c \sqrt{\lambda_{K}}$ is one the "natural" frequencies?
Resonance: A system forced with an oscillation near one of its internal frequencies results in a large amplitude response.

Resonance in forced oscillations, cont.

Plug into equation (using the fact that $\Delta v_{k}=-\lambda_{k} v_{k}$) to get

$$
\sum_{k=1}^{\infty} A_{k}\left(\lambda_{k} c^{2}-\omega_{0}^{2}\right) v_{k}(x, y)=1
$$

Just an orthogonal expansion of eigenfunctions, so taking inner products with each eigenfunction gives

$$
A_{k}=\frac{1}{\lambda_{k} c^{2}-\omega_{0}^{2}} \frac{\left\langle v_{k}, 1\right\rangle}{\left\langle v_{k}, v_{k}\right\rangle} .
$$

If $\omega_{0} \neq c \sqrt{\lambda_{k}}$, then can find all A_{k}; but what if $\omega_{0} \rightarrow \omega_{K}$ where $\omega_{K}=c \sqrt{\lambda_{K}}$ is one the "natural" frequencies?
Resonance: A system forced with an oscillation near one of its internal frequencies results in a large amplitude response.
In this case, this means that the particular solution is approximately

$$
u_{p} \approx A_{K} \cos \left(\omega_{0} t\right) v_{K}(x, y)
$$

Resonance "picks out" eigenfunction w/ frequency near ω_{0}.

Resonance for a disk: Video demonstration

Resonance for a square plate: Video demonstration

