
Partial differential equations

A partial differential equation is a relationship among partial
derivatives of a function (or functions) of more than one variable.

In contrast, ordinary differential equations have only one
independent variable.

Often associate variables to coordinates (Cartesian, polar,
etc.) of a physical system, e.g. u(x , y , z , t) or w(r , θ)

The domain of the functions involved (usually denoted Ω) is
an essential detail.

Often other conditions placed on domain boundary, denoted
∂Ω.
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History

PDEs have been around at least 250 years

Co-evolved with physical sciences: mechanics,
electromagnetism, quantum mechanics

Modern uses are everywhere: chemistry, ecology, finance,
image processing, big data
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Some famous examples

Name Equation Application
Wave equation utt = c2uxx Vibrating string
Diffusion equation ut = Duxx Heat flow
Laplace’s equation uxx + uyy = 0 Electrostatics etc.
Burger’s equation ut + uux = Duxx Fluid mechanics
Cahn-Hilliard equation ut = (u3 − u − uxx)xx Phase separation
Eikonal equation |∇u| = f (x) Optics
Fisher’s equation ut = uxx + u(1− u) Ecology
Korteweg-de Vries eqn. ut + 6uux + uxxx = 0 Water waves
Schrödinger eqn. iut + uxx = 0 Quantum mech.
Nonlinear Schrödinger eqn. iut + uxx + |u|2u = 0 Nonlinear optics
Swift-Hohenberg eqn. ut = −(∂xx + 1)2u + N(u) Pattern formation



Side conditions

Often there are other constraints such as boundary and initial conditions.

Common types of boundary conditions:

Dirichlet: fixes the value of the solution on the domain

u(x) = f (x), x ∈ ∂Ω = boundary of Ω

Neumann: fixes the derivative normal to the boundary,

∇u(x) · n̂ = f (x), x ∈ ∂Ω.

In both cases, if f ≡ 0 BCs are called homogeneous.

Other common side conditions:

If the domain is unbounded (e.g. Ω = Rn), useful to think of
“boundary at infinity”. Far-field conditions specify some kind of
limiting behavior, e.g.

lim
|x|→∞

u(x) = 0.

If time is an independent variable, there can be initial conditions as
with ODEs, e.g. requiring solution u(x , t) to satisfy u(x , 0) = g(x).
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Well-posedness

In differential equations, “well-posed” problems satisfy

Existence: there is at least one solution to equation and side
conditions. If this were not the case, the model may not tell
us anything!

Uniqueness: there is only one solution.

Stability: if the model changes a little, then the solution only
changes a little.
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Notation of derivatives and integrals

Partial derivative notation

∂

∂x
u(x , y) =

d

dx

∣∣∣
y
u(x , y) = ∂xu = ux .

and multiple derivatives ∂x∂yu = uxy .

Gradient and divergence: they generally only apply to the spatial variables

∇u(x , y , t) = [ux , uy ], ∇·[g(x , y , t), h(x , y , t)] = gx + hy ,

Laplace operator

∇·[∇u(x , y , z , t)] = uxx + uyy + uzz ≡ ∆u.

Coordinate-free integral notation
∫
R
f (x)dx, where R is some set (area,

volume, curve, surface,etc.)
For example divergence thm:∫

Ω

∇·F(x)dx =

∫
∂Ω

F(x) · n̂dx

To actually compute integrals, sometimes go to coordinates and write as
an iterated integral.
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