A partial differential equation is a relationship among partial derivatives of a function (or functions) of more than one variable.

A partial differential equation is a relationship among partial derivatives of a function (or functions) of more than one variable.

- In contrast, ordinary differential equations have only one independent variable.

A partial differential equation is a relationship among partial derivatives of a function (or functions) of more than one variable.

- In contrast, ordinary differential equations have only one independent variable.
- Often associate variables to coordinates (Cartesian, polar, etc.) of a physical system, e.g. $u(x, y, z, t)$ or $w(r, \theta)$

A partial differential equation is a relationship among partial derivatives of a function (or functions) of more than one variable.

- In contrast, ordinary differential equations have only one independent variable.
- Often associate variables to coordinates (Cartesian, polar, etc.) of a physical system, e.g. $u(x, y, z, t)$ or $w(r, \theta)$
- The domain of the functions involved (usually denoted Ω) is an essential detail.

A partial differential equation is a relationship among partial derivatives of a function (or functions) of more than one variable.

- In contrast, ordinary differential equations have only one independent variable.
- Often associate variables to coordinates (Cartesian, polar, etc.) of a physical system, e.g. $u(x, y, z, t)$ or $w(r, \theta)$
- The domain of the functions involved (usually denoted Ω) is an essential detail.
- Often other conditions placed on domain boundary, denoted $\partial \Omega$.

Jean-Baptiste le Rond d'Alembert

Joseph Fourier

Pierre-Simon Laplace

History

Jean-Baptiste le Rond d'Alembert

Joseph Fourier

Pierre-Simon Laplace

■ PDEs have been around at least 250 years

History

Jean-Baptiste le Rond d'Alembert

Joseph Fourier

Pierre-Simon Laplace

■ PDEs have been around at least 250 years
■ Co-evolved with physical sciences: mechanics, electromagnetism, quantum mechanics

History

Joseph Fourier

■ PDEs have been around at least 250 years
■ Co-evolved with physical sciences: mechanics, electromagnetism, quantum mechanics
■ Modern uses are everywhere: chemistry, ecology, finance, image processing, big data

Some famous examples

Name
Wave equation
Diffusion equation
Laplace's equation
Burger's equation
Cahn-Hilliard equation
Eikonal equation
Fisher's equation
Korteweg-de Vries eqn.
Schrödinger eqn.
Nonlinear Schrödinger eqn.
Swift-Hohenberg eqn.

Equation
$u_{t t}=c^{2} u_{x x}$
$u_{t}=D u_{x x}$
$u_{x x}+u_{y y}=0$
$u_{t}+u u_{x}=D u_{x x}$
$u_{t}=\left(u^{3}-u-u_{x x}\right)_{x x}$
$|\nabla u|=f(x)$
$u_{t}=u_{x x}+u(1-u)$
$u_{t}+6 u u_{x}+u_{x x x}=0$
$i u_{t}+u_{x x}=0$
$i u_{t}+u_{x x}+|u|^{2} u=0$
$u_{t}=-\left(\partial_{x x}+1\right)^{2} u+N(u)$

Application
Vibrating string Heat flow
Electrostatics etc.
Fluid mechanics
Phase separation
Optics

Ecology

Water waves
Quantum mech.
Nonlinear optics
Pattern formation

Side conditions

Often there are other constraints such as boundary and initial conditions.

Side conditions

Often there are other constraints such as boundary and initial conditions. Common types of boundary conditions:

- Dirichlet: fixes the value of the solution on the domain

$$
u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega=\text { boundary of } \Omega
$$

Side conditions

Often there are other constraints such as boundary and initial conditions. Common types of boundary conditions:

- Dirichlet: fixes the value of the solution on the domain

$$
u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega=\text { boundary of } \Omega
$$

- Neumann: fixes the derivative normal to the boundary,

$$
\nabla u(\mathbf{x}) \cdot \hat{\mathbf{n}}=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega .
$$

Side conditions

Often there are other constraints such as boundary and initial conditions.
Common types of boundary conditions:

- Dirichlet: fixes the value of the solution on the domain

$$
u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega=\text { boundary of } \Omega
$$

- Neumann: fixes the derivative normal to the boundary,

$$
\nabla u(\mathbf{x}) \cdot \hat{\mathbf{n}}=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega .
$$

- In both cases, if $f \equiv 0 \mathrm{BCs}$ are called homogeneous.

Side conditions

Often there are other constraints such as boundary and initial conditions.
Common types of boundary conditions:

- Dirichlet: fixes the value of the solution on the domain

$$
u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega=\text { boundary of } \Omega
$$

- Neumann: fixes the derivative normal to the boundary,

$$
\nabla u(\mathbf{x}) \cdot \hat{\mathbf{n}}=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega .
$$

- In both cases, if $f \equiv 0 \mathrm{BCs}$ are called homogeneous.

Other common side conditions:

- If the domain is unbounded (e.g. $\Omega=\mathbb{R}^{n}$), useful to think of "boundary at infinity". Far-field conditions specify some kind of limiting behavior, e.g.

$$
\lim _{|x| \rightarrow \infty} u(\mathbf{x})=0
$$

Side conditions

Often there are other constraints such as boundary and initial conditions. Common types of boundary conditions:

- Dirichlet: fixes the value of the solution on the domain

$$
u(\mathbf{x})=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega=\text { boundary of } \Omega
$$

- Neumann: fixes the derivative normal to the boundary,

$$
\nabla u(\mathbf{x}) \cdot \hat{\mathbf{n}}=f(\mathbf{x}), \quad \mathbf{x} \in \partial \Omega .
$$

- In both cases, if $f \equiv 0$ BCs are called homogeneous.

Other common side conditions:

- If the domain is unbounded (e.g. $\Omega=\mathbb{R}^{n}$), useful to think of "boundary at infinity". Far-field conditions specify some kind of limiting behavior, e.g.

$$
\lim _{|x| \rightarrow \infty} u(\mathbf{x})=0
$$

- If time is an independent variable, there can be initial conditions as with ODEs, e.g. requiring solution $u(x, t)$ to satisfy $u(x, 0)=g(x)$.

Well-posedness

In differential equations, "well-posed" problems satisfy
■ Existence: there is at least one solution to equation and side conditions. If this were not the case, the model may not tell us anything!

Well-posedness

In differential equations, "well-posed" problems satisfy
■ Existence: there is at least one solution to equation and side conditions. If this were not the case, the model may not tell us anything!

- Uniqueness: there is only one solution.

Well-posedness

In differential equations, "well-posed" problems satisfy
■ Existence: there is at least one solution to equation and side conditions. If this were not the case, the model may not tell us anything!
■ Uniqueness: there is only one solution.

- Stability: if the model changes a little, then the solution only changes a little.

Notation of derivatives and integrals

- Partial derivative notation

$$
\frac{\partial}{\partial x} u(x, y)=\left.\frac{d}{d x}\right|_{y} u(x, y)=\partial_{x} u=u_{x}
$$

and multiple derivatives $\partial_{x} \partial_{y} u=u_{x y}$.

Notation of derivatives and integrals

- Partial derivative notation

$$
\frac{\partial}{\partial x} u(x, y)=\left.\frac{d}{d x}\right|_{y} u(x, y)=\partial_{x} u=u_{x}
$$

and multiple derivatives $\partial_{x} \partial_{y} u=u_{x y}$.
■ Gradient and divergence: they generally only apply to the spatial variables

$$
\nabla u(x, y, t)=\left[u_{x}, u_{y}\right], \quad \nabla \cdot[g(x, y, t), h(x, y, t)]=g_{x}+h_{y}
$$

Notation of derivatives and integrals

- Partial derivative notation

$$
\frac{\partial}{\partial x} u(x, y)=\left.\frac{d}{d x}\right|_{y} u(x, y)=\partial_{x} u=u_{x}
$$

and multiple derivatives $\partial_{x} \partial_{y} u=u_{x y}$.
■ Gradient and divergence: they generally only apply to the spatial variables

$$
\nabla u(x, y, t)=\left[u_{x}, u_{y}\right], \quad \nabla \cdot[g(x, y, t), h(x, y, t)]=g_{x}+h_{y}
$$

- Laplace operator

$$
\nabla \cdot[\nabla u(x, y, z, t)]=u_{x x}+u_{y y}+u_{z z} \equiv \Delta u
$$

Notation of derivatives and integrals

- Partial derivative notation

$$
\frac{\partial}{\partial x} u(x, y)=\left.\frac{d}{d x}\right|_{y} u(x, y)=\partial_{x} u=u_{x}
$$

and multiple derivatives $\partial_{x} \partial_{y} u=u_{x y}$.
■ Gradient and divergence: they generally only apply to the spatial variables

$$
\nabla u(x, y, t)=\left[u_{x}, u_{y}\right], \quad \nabla \cdot[g(x, y, t), h(x, y, t)]=g_{x}+h_{y}
$$

- Laplace operator

$$
\nabla \cdot[\nabla u(x, y, z, t)]=u_{x x}+u_{y y}+u_{z z} \equiv \Delta u
$$

- Coordinate-free integral notation $\int_{R} f(\mathbf{x}) d \mathbf{x}$, where R is some set (area, volume, curve, surface,etc.)

Notation of derivatives and integrals

- Partial derivative notation

$$
\frac{\partial}{\partial x} u(x, y)=\left.\frac{d}{d x}\right|_{y} u(x, y)=\partial_{x} u=u_{x}
$$

and multiple derivatives $\partial_{x} \partial_{y} u=u_{x y}$.
■ Gradient and divergence: they generally only apply to the spatial variables

$$
\nabla u(x, y, t)=\left[u_{x}, u_{y}\right], \quad \nabla \cdot[g(x, y, t), h(x, y, t)]=g_{x}+h_{y}
$$

- Laplace operator

$$
\nabla \cdot[\nabla u(x, y, z, t)]=u_{x x}+u_{y y}+u_{z z} \equiv \Delta u
$$

- Coordinate-free integral notation $\int_{R} f(\mathbf{x}) d \mathbf{x}$, where R is some set (area, volume, curve, surface,etc.)
For example divergence thm:

$$
\int_{\Omega} \nabla \cdot \mathbf{F}(\mathbf{x}) d \mathbf{x}=\int_{\partial \Omega} \mathbf{F}(\mathbf{x}) \cdot \hat{\mathbf{n}} d \mathbf{x}
$$

Notation of derivatives and integrals

- Partial derivative notation

$$
\frac{\partial}{\partial x} u(x, y)=\left.\frac{d}{d x}\right|_{y} u(x, y)=\partial_{x} u=u_{x}
$$

and multiple derivatives $\partial_{x} \partial_{y} u=u_{x y}$.
■ Gradient and divergence: they generally only apply to the spatial variables

$$
\nabla u(x, y, t)=\left[u_{x}, u_{y}\right], \quad \nabla \cdot[g(x, y, t), h(x, y, t)]=g_{x}+h_{y}
$$

- Laplace operator

$$
\nabla \cdot[\nabla u(x, y, z, t)]=u_{x x}+u_{y y}+u_{z z} \equiv \Delta u
$$

- Coordinate-free integral notation $\int_{R} f(\mathbf{x}) d \mathbf{x}$, where R is some set (area, volume, curve, surface,etc.)
For example divergence thm:

$$
\int_{\Omega} \nabla \cdot \mathbf{F}(\mathbf{x}) d \mathbf{x}=\int_{\partial \Omega} \mathbf{F}(\mathbf{x}) \cdot \hat{\mathbf{n}} d \mathbf{x}
$$

- To actually compute integrals, sometimes go to coordinates and write as an iterated integral.

