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etc.) of a physical system, e.g. u(x,y,z,t) or w(r,0)

m The domain of the functions involved (usually denoted ) is
an essential detail.

m Often other conditions placed on domain boundary, denoted

o12.
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Jean-Baptiste le Rond d'Alembert Joseph Fourier Pierre-Simon Laplace

m PDEs have been around at least 250 years

m Co-evolved with physical sciences: mechanics,
electromagnetism, quantum mechanics

m Modern uses are everywhere: chemistry, ecology, finance,
image processing, big data



Name

Wave equation
Diffusion equation
Laplace's equation
Burger's equation
Cahn-Hilliard equation
Eikonal equation
Fisher's equation
Korteweg-de Vries eqn.
Schrodinger eqn.

Nonlinear Schrodinger eqn.

Swift-Hohenberg eqn.

Equation
_ 2
Uit = C” Uxx
Uy = Duyy

Uyx + ty, =0

us + uuy = Duyy,

U = (1% — U — U )
|Vu| = f(x)

Ur = U + u(l — u)

Uy +6uuy + Uy =0

iUy + Uy =0

ity + U + [ufPu=0

ur = —(0x + 1)?u + N(u)

Some famous examples

Application
Vibrating string
Heat flow
Electrostatics etc.
Fluid mechanics
Phase separation
Optics

Ecology

Water waves
Quantum mech.
Nonlinear optics
Pattern formation
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Often there are other constraints such as boundary and initial conditions.
Common types of boundary conditions:

m Dirichlet: fixes the value of the solution on the domain
u(x) = f(x), x € 92 = boundary of Q
m Neumann: fixes the derivative normal to the boundary,
Vu(x)-f=f(x), xe€d.
m In both cases, if f =0 BCs are called homogeneous.
Other common side conditions:

m If the domain is unbounded (e.g. Q = R"), useful to think of
“boundary at infinity". Far-field conditions specify some kind of
limiting behavior, e.g.

lim u(x) = 0.

|x| =00

m If time is an independent variable, there can be initial conditions as
with ODEs, e.g. requiring solution u(x, t) to satisfy u(x,0) = g(x).
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Well-posedness

In differential equations, “well-posed” problems satisfy
m Existence: there is at least one solution to equation and side
conditions. If this were not the case, the model may not tell
us anything!
m Uniqueness: there is only one solution.
m Stability: if the model changes a little, then the solution only
changes a little.
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Notation of derivatives and integrals

m Partial derivative notation
0 d
au(xv.y) = a yu(ny) = axU = Ux.
and multiple derivatives 0x0,u = uyy.
m Gradient and divergence: they generally only apply to the spatial variables
VU(X,y, t) = [UX7 u}’]7 v'[g(xaya t)? h(Xaya t)] = 8x + h}’7
m Laplace operator
V:Vu(x,y,z,t)] = tx + Uy + uz, = Au.

m Coordinate-free integral notation [ f(x)dx, where R is some set (area,
volume, curve, surface,etc.)
For example divergence thm:

/QV-F(x)dx = /an F(x) - Adx

m To actually compute integrals, sometimes go to coordinates and write as
an iterated integral.



