Separation of variables in two dimensions

Overview of method:
■ Consider linear, homogeneous equation for $u\left(v_{1}, v_{2}\right)$

Separation of variables in two dimensions

Overview of method:

- Consider linear, homogeneous equation for $u\left(v_{1}, v_{2}\right)$

■ Domain $\left(v_{1}, v_{2}\right) \in(a, b) \times(c, d)$ (rectangles, disks, wedges, annuli)

Separation of variables in two dimensions

Overview of method:

- Consider linear, homogeneous equation for $u\left(v_{1}, v_{2}\right)$

■ Domain $\left(v_{1}, v_{2}\right) \in(a, b) \times(c, d)$ (rectangles, disks, wedges, annuli)

- Only linear, homogeneous equations and homogeneous boundary conditions at $v_{1}=a, v_{1}=b$

Separation of variables in two dimensions

Overview of method:

- Consider linear, homogeneous equation for $u\left(v_{1}, v_{2}\right)$

■ Domain $\left(v_{1}, v_{2}\right) \in(a, b) \times(c, d)$ (rectangles, disks, wedges, annuli)

- Only linear, homogeneous equations and homogeneous boundary conditions at $v_{1}=a, v_{1}=b$
- Look for separated solutions $u=f\left(v_{1}\right) g\left(v_{2}\right)$

Separation of variables in two dimensions

Overview of method:

- Consider linear, homogeneous equation for $u\left(v_{1}, v_{2}\right)$

■ Domain $\left(v_{1}, v_{2}\right) \in(a, b) \times(c, d)$ (rectangles, disks, wedges, annuli)
■ Only linear, homogeneous equations and homogeneous boundary conditions at $v_{1}=a, v_{1}=b$
■ Look for separated solutions $u=f\left(v_{1}\right) g\left(v_{2}\right)$
■ Superpositions of separated solutions will give entire solution.

Separation of variables in two dimensions

Overview of method:

- Consider linear, homogeneous equation for $u\left(v_{1}, v_{2}\right)$

■ Domain $\left(v_{1}, v_{2}\right) \in(a, b) \times(c, d)$ (rectangles, disks, wedges, annuli)
■ Only linear, homogeneous equations and homogeneous boundary conditions at $v_{1}=a, v_{1}=b$
■ Look for separated solutions $u=f\left(v_{1}\right) g\left(v_{2}\right)$
■ Superpositions of separated solutions will give entire solution.
■ Other boundary/initial conditions will determine coefficients of superposition.

The separation principle

Suppose we have independent variables $x_{1}, x_{2}, \ldots, x_{n}$ and functions $f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots, f_{n}\left(x_{n}\right)$ of each variables separately.

The separation principle

Suppose we have independent variables $x_{1}, x_{2}, \ldots, x_{n}$ and functions $f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots, f_{n}\left(x_{n}\right)$ of each variables separately.

Suppose

$$
f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)=0, \quad \text { for all }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega
$$

Taking partial derivatives gives $f_{i}^{\prime}\left(x_{i}\right)=0$.

The separation principle

Suppose we have independent variables $x_{1}, x_{2}, \ldots, x_{n}$ and functions $f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right), \ldots, f_{n}\left(x_{n}\right)$ of each variables separately.

Suppose

$$
f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\ldots+f_{n}\left(x_{n}\right)=0, \quad \text { for all }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega
$$

Taking partial derivatives gives $f_{i}^{\prime}\left(x_{i}\right)=0$.
It follows each function is a constant: $f_{i}\left(x_{i}\right)=\lambda_{i}$; these are called separation constants.

Example: the wave equation

$$
u_{t t}=c^{2} u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)
$$

Note domain is $(x, t) \in(0, L) \times(0, \infty)$.

Example: the wave equation

$u_{t t}=c^{2} u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)$
Note domain is $(x, t) \in(0, L) \times(0, \infty)$.
■ Insert $u(x, t)=X(x) T(t)$ into equation in (3) gives $X T^{\prime \prime}=c^{2} T X^{\prime \prime}$.

Example: the wave equation

$u_{t t}=c^{2} u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)$
Note domain is $(x, t) \in(0, L) \times(0, \infty)$.
■ Insert $u(x, t)=X(x) T(t)$ into equation in (3) gives

$$
X T^{\prime \prime}=c^{2} T X^{\prime \prime}
$$

- Dividing separates variables; each side equals a constant

$$
\frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda,
$$

$u_{t t}=c^{2} u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x), \quad u_{t}(x, 0)=\psi(x)$
Note domain is $(x, t) \in(0, L) \times(0, \infty)$.

- Insert $u(x, t)=X(x) T(t)$ into equation in (3) gives $X T^{\prime \prime}=c^{2} T X^{\prime \prime}$.
- Dividing separates variables; each side equals a constant

$$
\frac{T^{\prime \prime}}{c^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda,
$$

■ Inserting $u(x, t)=X(x) T(t)$ into homogeneous boundary conditions

$$
X(0)=0=X(L) .
$$

■ Get two ODEs:

$$
\begin{gathered}
X^{\prime \prime}+\lambda X=0, \quad X(0)=0=X(L), \\
T^{\prime \prime}+c^{2} \lambda T=0 .
\end{gathered}
$$

Solution of eigenvalue problem:

$$
X_{n}=\sin \left(\frac{n \pi x}{L}\right), \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2,3, \ldots
$$

Solution of eigenvalue problem:

$$
X_{n}=\sin \left(\frac{n \pi x}{L}\right), \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2,3, \ldots
$$

Solutions for time equation are $T=\sin (c \sqrt{\lambda} t)$ or $T=\cos (c \sqrt{\lambda} t)$, so for each n get two solutions

$$
\sin (c n \pi t / L), \quad \cos (c n \pi t / L)
$$

Solution of eigenvalue problem:

$$
x_{n}=\sin \left(\frac{n \pi x}{L}\right), \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2,3, \ldots
$$

Solutions for time equation are $T=\sin (c \sqrt{\lambda} t)$ or $T=\cos (c \sqrt{\lambda} t)$, so for each n get two solutions

$$
\sin (c n \pi t / L), \quad \cos (c n \pi t / L)
$$

Therefore all possible separated solutions are $\sin (c n \pi t / L) \sin (n \pi x / L), \quad \cos (c n \pi t / L) \sin (n \pi x / L), \quad n=1,2,3, \ldots$

Example: the wave equation cont.

Superposition of separated solutions:

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos (n \pi c t / L)+B_{n} \sin (n \pi c t / L)\right] \sin \left(\frac{n \pi x}{L}\right) .
$$

Superposition of separated solutions:

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \cos (n \pi c t / L)+B_{n} \sin (n \pi c t / L)\right] \sin \left(\frac{n \pi x}{L}\right) .
$$

Invoking the initial conditions

$$
\phi(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{L}\right), \quad \psi(x)=\sum_{n=1}^{\infty}\left(\frac{n \pi c}{L}\right) B_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

These are orthogonal expansions, so coefficients are found by taking inner products with each eigenfunctions $X_{n}=\sin (n \pi x / L)$:

$$
A_{n}=\frac{\left\langle\phi, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}, \quad B_{n}=\left(\frac{L}{n \pi c}\right) \frac{\left\langle\psi, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle} .
$$

Example: the wave equation cont.

Meaning of solution:

- Solution is composed of standing waves

Meaning of solution:

- Solution is composed of standing waves
- Often most important feature: characteristic frequencies

$$
\omega_{n}=\frac{n \pi c}{L}, \quad n=1,2,3, \ldots
$$

- These special frequencies form basis for sound waves, atomic spectra, elastic vibrations, etc.

Example: the wave equation cont.

Meaning of solution:
■ Solution is composed of standing waves

- Often most important feature: characteristic frequencies

$$
\omega_{n}=\frac{n \pi c}{L}, \quad n=1,2,3, \ldots
$$

- These special frequencies form basis for sound waves, atomic spectra, elastic vibrations, etc.
- Notice longer strings have smaller frequencies.

Example 2: the diffusion equation

$$
u_{t}=D u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x)
$$

$$
u_{t}=D u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x)
$$

■ Insert $u(x, t)=X(x) T(t)$ into equation gives

$$
T^{\prime} /(D T)=X^{\prime \prime} / X=-\lambda
$$

$$
u_{t}=D u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x)
$$

■ Insert $u(x, t)=X(x) T(t)$ into equation gives $T^{\prime} /(D T)=X^{\prime \prime} / X=-\lambda$

- Same eigenvalue problem but now equation for T is $T^{\prime}=-D \lambda T$, whose solutions are $T=\exp (-D \lambda t)$.

$$
u_{t}=D u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x)
$$

■ Insert $u(x, t)=X(x) T(t)$ into equation gives $T^{\prime} /(D T)=X^{\prime \prime} / X=-\lambda$
■ Same eigenvalue problem but now equation for T is $T^{\prime}=-D \lambda T$, whose solutions are $T=\exp (-D \lambda t)$.

- Separated solutions are therefore $\exp \left(-D(n \pi / L)^{2} t\right) \sin (n \pi x / L)$

$$
u_{t}=D u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x)
$$

■ Insert $u(x, t)=X(x) T(t)$ into equation gives

$$
T^{\prime} /(D T)=X^{\prime \prime} / X=-\lambda
$$

- Same eigenvalue problem but now equation for T is $T^{\prime}=-D \lambda T$, whose solutions are $T=\exp (-D \lambda t)$.
- Separated solutions are therefore $\exp \left(-D(n \pi / L)^{2} t\right) \sin (n \pi x / L)$
\square Superposition of separated solutions is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \exp \left(-D(n \pi / L)^{2} t\right) \sin \left(\frac{n \pi x}{L}\right) .
$$

$$
u_{t}=D u_{x x}, \quad u(0, t)=0=u(L, t), \quad u(x, 0)=\phi(x)
$$

■ Insert $u(x, t)=X(x) T(t)$ into equation gives $T^{\prime} /(D T)=X^{\prime \prime} / X=-\lambda$

- Same eigenvalue problem but now equation for T is $T^{\prime}=-D \lambda T$, whose solutions are $T=\exp (-D \lambda t)$.
- Separated solutions are therefore $\exp \left(-D(n \pi / L)^{2} t\right) \sin (n \pi x / L)$
\square Superposition of separated solutions is

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \exp \left(-D(n \pi / L)^{2} t\right) \sin \left(\frac{n \pi x}{L}\right) .
$$

- Invoking the initial condition

$$
\phi(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{L}\right), \quad A_{n}=\frac{\left\langle\phi, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle},
$$

Example 3: the Laplace equation

$$
u_{x x}+u_{y y}=0, u(0, y)=0=u(L, y), u(x, 0)=h(x), u(x, H)=g(x)
$$

Example 3: the Laplace equation

$$
u_{x x}+u_{y y}=0, u(0, y)=0=u(L, y), u(x, 0)=h(x), u(x, H)=g(x)
$$

■ Separating $u=X(x) Y(y)$ leads to $-Y^{\prime \prime} / Y=X^{\prime \prime} / X=-\lambda$.

Example 3: the Laplace equation

$$
u_{x x}+u_{y y}=0, u(0, y)=0=u(L, y), u(x, 0)=h(x), u(x, H)=g(x)
$$

■ Separating $u=X(x) Y(y)$ leads to $-Y^{\prime \prime} / Y=X^{\prime \prime} / X=-\lambda$.
■ Same eigenvalue problem for X, and $Y^{\prime \prime}=\lambda Y$.

$$
u_{x x}+u_{y y}=0, u(0, y)=0=u(L, y), u(x, 0)=h(x), u(x, H)=g(x)
$$

■ Separating $u=X(x) Y(y)$ leads to $-Y^{\prime \prime} / Y=X^{\prime \prime} / X=-\lambda$.
■ Same eigenvalue problem for X, and $Y^{\prime \prime}=\lambda Y$.

- Two linearly independent solutions $Y=\exp (\sqrt{\lambda} y)$ and

$$
Y=\exp (-\sqrt{\lambda} y)
$$

$$
u_{x x}+u_{y y}=0, u(0, y)=0=u(L, y), u(x, 0)=h(x), u(x, H)=g(x)
$$

■ Separating $u=X(x) Y(y)$ leads to $-Y^{\prime \prime} / Y=X^{\prime \prime} / X=-\lambda$.
■ Same eigenvalue problem for X, and $Y^{\prime \prime}=\lambda Y$.

- Two linearly independent solutions $Y=\exp (\sqrt{\lambda} y)$ and $Y=\exp (-\sqrt{\lambda} y)$.
■ Separated solutions are therefore $\exp (n \pi y / L) \sin (n \pi x / L)$ and $\exp (-n \pi y / L) \sin (n \pi x / L)$

$$
u_{x x}+u_{y y}=0, u(0, y)=0=u(L, y), u(x, 0)=h(x), u(x, H)=g(x)
$$

■ Separating $u=X(x) Y(y)$ leads to $-Y^{\prime \prime} / Y=X^{\prime \prime} / X=-\lambda$.
■ Same eigenvalue problem for X, and $Y^{\prime \prime}=\lambda Y$.
■ Two linearly independent solutions $Y=\exp (\sqrt{\lambda} y)$ and $Y=\exp (-\sqrt{\lambda} y)$.
■ Separated solutions are therefore $\exp (n \pi y / L) \sin (n \pi x / L)$ and $\exp (-n \pi y / L) \sin (n \pi x / L)$
\square Superposition of these is

$$
u(x, y)=\sum_{n=1}^{\infty}\left[A_{n} \exp (n \pi y / L)+B_{n} \exp (-n \pi y / L)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

Example 3, cont.

■ Satisfy the inhomogeneous boundary conditions by setting $y=0$ and $y=H$,

$$
h(x)=\sum_{n=1}^{\infty}\left(A_{n}+B_{n}\right) \sin \left(\frac{n \pi x}{L}\right)
$$

$$
g(x)=\sum_{n=1}^{\infty}\left[A_{n} \exp (n \pi H / L)+B_{n} \exp (-n \pi H / L)\right] \sin \left(\frac{n \pi x}{L}\right) .
$$

Example 3, cont.

■ Satisfy the inhomogeneous boundary conditions by setting $y=0$ and $y=H$,

$$
h(x)=\sum_{n=1}^{\infty}\left(A_{n}+B_{n}\right) \sin \left(\frac{n \pi x}{L}\right)
$$

$$
g(x)=\sum_{n=1}^{\infty}\left[A_{n} \exp (n \pi H / L)+B_{n} \exp (-n \pi H / L)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

■ Taking inner products with the eigenfunctions $X_{n}=\sin (n \pi x / L)$, one gets a system of two equations for each pair A_{n}, B_{n}

$$
A_{n}+B_{n}=\frac{\left\langle h, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}, \quad A_{n} \exp (n \pi H / L)+B_{n} \exp (-n \pi H / L)=\frac{\left\langle g, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}
$$

