
Separation of variables in two dimensions

Overview of method:
Consider linear, homogeneous equation for u(v1, v2)

Domain (v1, v2) ∈ (a,b)× (c,d) (rectangles, disks,
wedges, annuli)
Only linear, homogeneous equations and homogeneous
boundary conditions at v1 = a, v1 = b
Look for separated solutions u = f (v1)g(v2)

Superpositions of separated solutions will give entire
solution.
Other boundary/initial conditions will determine coefficients
of superposition.
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The separation principle

Suppose we have independent variables x1, x2, . . . , xn and
functions f1(x1), f2(x2), . . . , fn(xn) of each variables separately.

Suppose

f1(x1) + f2(x2) + . . .+ fn(xn) = 0, for all (x1, x2, . . . , xn) ∈ Ω

Taking partial derivatives gives f ′i (xi) = 0.

It follows each function is a constant: fi(xi) = λi ; these are
called separation constants.



The separation principle

Suppose we have independent variables x1, x2, . . . , xn and
functions f1(x1), f2(x2), . . . , fn(xn) of each variables separately.

Suppose

f1(x1) + f2(x2) + . . .+ fn(xn) = 0, for all (x1, x2, . . . , xn) ∈ Ω

Taking partial derivatives gives f ′i (xi) = 0.

It follows each function is a constant: fi(xi) = λi ; these are
called separation constants.



The separation principle

Suppose we have independent variables x1, x2, . . . , xn and
functions f1(x1), f2(x2), . . . , fn(xn) of each variables separately.

Suppose

f1(x1) + f2(x2) + . . .+ fn(xn) = 0, for all (x1, x2, . . . , xn) ∈ Ω

Taking partial derivatives gives f ′i (xi) = 0.

It follows each function is a constant: fi(xi) = λi ; these are
called separation constants.



Example: the wave equation

utt = c2uxx , u(0, t) = 0 = u(L, t), u(x ,0) = φ(x), ut (x ,0) = ψ(x).

Note domain is (x , t) ∈ (0,L)× (0,∞).

Insert u(x , t) = X (x)T (t) into equation in (3) gives
XT ′′ = c2TX ′′.
Dividing separates variables; each side equals a constant

T ′′

c2T
=

X ′′

X
= −λ,

Inserting u(x , t) = X (x)T (t) into homogeneous boundary
conditions

X (0) = 0 = X (L).

Get two ODEs:

X ′′ + λX = 0, X (0) = 0 = X (L),

T ′′ + c2λT = 0.
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Example: the wave equation cont.

Solution of eigenvalue problem:

Xn = sin
(nπx

L

)
, λn =

(nπ
L

)2
, n = 1,2,3, . . .

Solutions for time equation are T = sin(c
√
λt) or

T = cos(c
√
λt), so for each n get two solutions

sin(cnπt/L), cos(cnπt/L)

Therefore all possible separated solutions are

sin(cnπt/L) sin(nπx/L), cos(cnπt/L) sin(nπx/L), n = 1,2,3, . . . .
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Example: the wave equation cont.

Superposition of separated solutions:

u(x , t) =
∞∑

n=1

[An cos(nπct/L) + Bn sin(nπct/L)] sin
(nπx

L

)
.

Invoking the initial conditions

φ(x) =
∞∑

n=1

An sin
(nπx

L

)
, ψ(x) =

∞∑
n=1

(nπc
L

)
Bn sin

(nπx
L

)
.

These are orthogonal expansions, so coefficients are found by
taking inner products with each eigenfunctions
Xn = sin(nπx/L):

An =
〈φ,Xn〉
〈Xn,Xn〉

, Bn =

(
L

nπc

)
〈ψ,Xn〉
〈Xn,Xn〉

.
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Example: the wave equation cont.

Meaning of solution:
Solution is composed of standing waves

Often most important feature: characteristic frequencies

ωn =
nπc

L
, n = 1,2,3, . . .

These special frequencies form basis for sound waves,
atomic spectra, elastic vibrations, etc.
Notice longer strings have smaller frequencies.
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Example 2: the diffusion equation

ut = Duxx , u(0, t) = 0 = u(L, t), u(x ,0) = φ(x)

Insert u(x , t) = X (x)T (t) into equation gives
T ′/(DT ) = X ′′/X = −λ
Same eigenvalue problem but now equation for T is
T ′ = −DλT , whose solutions are T = exp(−Dλt).
Separated solutions are therefore
exp(−D(nπ/L)2t) sin(nπx/L)
Superposition of separated solutions is

u(x , t) =
∞∑

n=1

An exp(−D(nπ/L)2t) sin
(nπx

L

)
.

Invoking the initial condition

φ(x) =
∞∑

n=1

An sin
(nπx

L

)
, An =

〈φ,Xn〉
〈Xn,Xn〉

,
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Example 3: the Laplace equation

uxx +uyy = 0, u(0, y) = 0 = u(L, y), u(x ,0) = h(x), u(x ,H) = g(x)

Separating u = X (x)Y (y) leads to −Y ′′/Y = X ′′/X = −λ.
Same eigenvalue problem for X , and Y ′′ = λY .
Two linearly independent solutions Y = exp(

√
λy) and

Y = exp(−
√
λy).

Separated solutions are therefore exp(nπy/L) sin(nπx/L)
and exp(−nπy/L) sin(nπx/L)

Superposition of these is

u(x , y) =
∞∑

n=1

[An exp(nπy/L)+Bn exp(−nπy/L)] sin
(nπx

L

)
.
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Example 3, cont.

Satisfy the inhomogeneous boundary conditions by setting
y = 0 and y = H,

h(x) =
∞∑

n=1

(An + Bn) sin
(nπx

L

)

g(x) =
∞∑

n=1

[An exp(nπH/L) + Bn exp(−nπH/L)] sin
(nπx

L

)
.

Taking inner products with the eigenfunctions
Xn = sin(nπx/L), one gets a system of two equations for
each pair An,Bn

An+Bn =
〈h,Xn〉
〈Xn,Xn〉

, An exp(nπH/L)+Bn exp(−nπH/L) =
〈g,Xn〉
〈Xn,Xn〉
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