
Laplace’s equation in polar coordinates

Boundary value problem for disk:

∆u = urr +
ur

r
+

uθθ

r2 = 0, u(a, θ) = h(θ).

Separating variables u = R(r)Θ(θ) gives
R′′Θ + r−1R′Θ + r−2RΘ′′ = 0 or

Θ′′

Θ
=
−r2R′′ − rR′

R
= −λ.

Eigenvalue problem

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π).

Periodic boundary conditions give rise to Fourier series
with both sines and cosines as eigenfunctions.
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Laplace’s equation in polar coordinates, cont.

Eigenfunctions (”circular harmonics”)

Θ =


1 λ = 0
cos(nθ) λ = n2

sin(nθ) λ = n2,

where n = 1,2,3, . . ..

Equation for radial component is Euler equation
r2R′′ + rR′ − λR = 0.
Solutions are just powers R = rα; plugging in,
[α(α− 1) + α− λ]rα = 0 or α = ±

√
λ.

If λ = 0, get linearly independent solutions 1 and ln r .
Reject (for now) solutions involving ln r and r−α.
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Laplace’s equation in polar coordinates, cont.

Superposition of separated solutions:

u = A0/2 +
∞∑

n=1

rn[An cos(nθ) + Bn sin(nθ)].

Satisfy boundary condition at r = a,

h(θ) = A0/2 +
∞∑

n=1

an[An cos(nθ) + Bn sin(nθ)].

This is a Fourier series with cosine coefficients anAn and
sine coefficients anBn, so that (using the known formulas)

An =
1
πan

∫ 2π

0
h(φ) cos(nφ)dφ, Bn =

1
πan

∫ 2π

0
h(φ) sin(nφ)dφ.
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Poisson formula

Inserting the Fourier coefficient formulas into the general
solution,

u(r , θ) =
1

2π

∫ 2π

0
h(φ)dφ

+
∞∑

n=1

rn

πan

∫ 2π

0
h(φ)[cos(nφ) cos(nθ) + sin(nφ) sin(nθ)]dφ.

Use the identity
cos(nφ) cos(nθ) + sin(nφ) sin(nθ) = cos(n(θ − φ)), and reverse
the order of summation and integration

u(r , θ) =
1

2π

∫ 2π

0
h(φ)

{
1 + 2

∞∑
n=1

( r
a

)n
cos(n(θ − φ))

}
dφ.
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Poisson formula, cont.

Sum is geometric series in disguise:

1 + 2
∞∑

n=1

( r
a

)n
cos(n(θ − φ)) = 1 + 2Re

∞∑
n=1

(
rei(θ−φ)

a

)n

= 1 + 2Re
rei(θ−φ)

a− rei(θ−φ)

=
a2 − r2

a2 − 2ar cos(θ − φ) + r2 .

This results in Poisson’s formula:

u(r , θ) =
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0
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1
2π
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Consequences of the Poisson formula

At r = 0, notice the integral is easy to compute:

u(r , θ) =
1

2π

∫ 2π

0
h(φ)dφ, =

1
2π

∫ 2π

0
u(a, φ)dφ.

Therefore if ∆u = 0, the value of u at any point is just the
average values of u on a circle centered on that point.
(“Mean value theorem")
The maximum and minimum values of u are therefore
always on the domain boundary (this is true for any shape
domain).


