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Inhomogeneous equations or boundary conditions

CAUTION! Separation can’t be applied directly in these cases.

Recall extended superposition principle: w = u — u, satisfies a
homogeneous equation if up satisfies the inhomogeneous
equation.

Same idea for boundary conditions: w = u — up satisfies a
problem with homogeneous BCs if u, satisfies the
inhomogeneous BCs.

Strategy:

El Find a particular solution. This is often just an educated
guess.

B Formulate homogeneous problem for w = u — up by
subtracting the equations and ALL side conditions satisfied
by both u and up.

E Now problem for w is suitable for separation of variables.
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Example: diffusion equation with nonzero boundary conditions
U = Duyx, u(0,t)=u;, u(Lt)=ur, u(x,0)=¢(x).

Guess up, = Ax + B. To get up(0,t) = vy and up(L, t) = ur, need
B=uand A= (ur—u)/L.

Then w = u — up solves equation with homogeneous boundary
conditions (check this!)

Wt = Dwyy, w(0,1)=0, w(L t)=0, w(x,0)=¢(x)— up.

Our complete solution will be u(x, t) = w(x, t) + up(x), where
from before

wix,t) = > Apexp(=D(nr/L)?t)sin (”LLX) ,
n=1
(¢ — Up, Xn)

A, =
n <Xn, Xn>
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Inhomogeneous equation, example 2

Poisson equation
U + Uy =1, u(0,y) =0=u(1,y), u(x,0) =0=u(x,1)
Guess U, = Ax? + Bx + C. Plug into equation gives 2A =1 or A= J.

Inserting up into side BCs gives C =0, B= —
Now w = u — u, solves

1
5

1
Wix+Wyy =0, w(0,y) =0 =w(1,y), w(x,0) = _EX(X_” =w(x,1)

Complete solution is u(x,t) = w(x, t) + up(x); using previous result,

w(x,y) =Y [Anexp(nmy) + Byexp(—nmy)]sin(nmx),

n=1

where
(3x(x = 1), Xn) (Fx(x—1),X5)
A +B, = 223" LA oa B Cpn) = 22\ A
n+ n <Xn,Xn> ) nexp(nﬂ-)—i_ neXp( nﬂ-) <Xn;Xn>
and

1 —1), X,
<2XE))((,1,)1(3>’ ) _ ——leos(mn) —1].




