Inhomogeneous equations or boundary conditions

CAUTION! Separation can't be applied directly in these cases.

Inhomogeneous equations or boundary conditions

CAUTION! Separation can't be applied directly in these cases.
Recall extended superposition principle: $w=u-u_{p}$ satisfies a homogeneous equation if u_{p} satisfies the inhomogeneous equation.

Inhomogeneous equations or boundary conditions

CAUTION! Separation can't be applied directly in these cases.
Recall extended superposition principle: $w=u-u_{p}$ satisfies a homogeneous equation if u_{p} satisfies the inhomogeneous equation.

Same idea for boundary conditions: $w=u-u_{p}$ satisfies a problem with homogeneous BCs if u_{p} satisfies the inhomogeneous BCs.

Inhomogeneous equations or boundary conditions

CAUTION! Separation can't be applied directly in these cases.
Recall extended superposition principle: $w=u-u_{p}$ satisfies a homogeneous equation if u_{p} satisfies the inhomogeneous equation.

Same idea for boundary conditions: $w=u-u_{p}$ satisfies a problem with homogeneous BCs if u_{p} satisfies the inhomogeneous BCs.
Strategy:
1 Find a particular solution. This is often just an educated guess.
2 Formulate homogeneous problem for $w=u-u_{p}$ by subtracting the equations and ALL side conditions satisfied by both u and u_{p}.
3 Now problem for w is suitable for separation of variables.

Inhomogeneous equation, example 1

Example: diffusion equation with nonzero boundary conditions

$$
u_{t}=D u_{x x}, \quad u(0, t)=u_{l}, \quad u(L, t)=u_{r}, \quad u(x, 0)=\phi(x)
$$

Inhomogeneous equation, example 1

Example: diffusion equation with nonzero boundary conditions

$$
u_{t}=D u_{x x}, \quad u(0, t)=u_{l}, \quad u(L, t)=u_{r}, \quad u(x, 0)=\phi(x)
$$

Guess $u_{p}=A x+B$.

Inhomogeneous equation, example 1

Example: diffusion equation with nonzero boundary conditions

$$
u_{t}=D u_{x x}, \quad u(0, t)=u_{l}, \quad u(L, t)=u_{r}, \quad u(x, 0)=\phi(x)
$$

Guess $u_{p}=A x+B$. To get $u_{p}(0, t)=u_{l}$ and $u_{p}(L, t)=u_{r}$, need $B=u_{l}$ and $A=\left(u_{r}-u_{l}\right) / L$.

Inhomogeneous equation, example 1

Example: diffusion equation with nonzero boundary conditions

$$
u_{t}=D u_{x x}, \quad u(0, t)=u_{t}, \quad u(L, t)=u_{r}, \quad u(x, 0)=\phi(x)
$$

Guess $u_{p}=A x+B$. To get $u_{p}(0, t)=u_{l}$ and $u_{p}(L, t)=u_{r}$, need $B=u_{l}$ and $A=\left(u_{r}-u_{l}\right) / L$.

Then $w=u-u_{p}$ solves equation with homogeneous boundary conditions (check this!)

$$
w_{t}=D w_{x x}, \quad w(0, t)=0, \quad w(L, t)=0, \quad w(x, 0)=\phi(x)-u_{p} .
$$

Inhomogeneous equation, example 1

Example: diffusion equation with nonzero boundary conditions

$$
u_{t}=D u_{x x}, \quad u(0, t)=u_{t}, \quad u(L, t)=u_{r}, \quad u(x, 0)=\phi(x)
$$

Guess $u_{p}=A x+B$. To get $u_{p}(0, t)=u_{l}$ and $u_{p}(L, t)=u_{r}$, need $B=u_{l}$ and $A=\left(u_{r}-u_{l}\right) / L$.

Then $w=u-u_{p}$ solves equation with homogeneous boundary conditions (check this!)

$$
w_{t}=D w_{x x}, \quad w(0, t)=0, \quad w(L, t)=0, \quad w(x, 0)=\phi(x)-u_{p}
$$

Our complete solution will be $u(x, t)=w(x, t)+u_{p}(x)$, where from before

$$
\begin{aligned}
w(x, t) & =\sum_{n=1}^{\infty} A_{n} \exp \left(-D(n \pi / L)^{2} t\right) \sin \left(\frac{n \pi x}{L}\right) \\
A_{n} & =\frac{\left\langle\phi-u_{p}, X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}
\end{aligned}
$$

Inhomogeneous equation, example 2

Poisson equation

$$
u_{x x}+u_{y y}=1, u(0, y)=0=u(1, y), u(x, 0)=0=u(x, 1)
$$

Inhomogeneous equation, example 2

Poisson equation

$$
u_{x x}+u_{y y}=1, u(0, y)=0=u(1, y), u(x, 0)=0=u(x, 1)
$$

Guess $u_{p}=A x^{2}+B x+C$.

Inhomogeneous equation, example 2

Poisson equation

$$
u_{x x}+u_{y y}=1, u(0, y)=0=u(1, y), u(x, 0)=0=u(x, 1)
$$

Guess $u_{p}=A x^{2}+B x+C$. Plug into equation gives $2 A=1$ or $A=\frac{1}{2}$.

Inhomogeneous equation, example 2

Poisson equation

$$
u_{x x}+u_{y y}=1, u(0, y)=0=u(1, y), u(x, 0)=0=u(x, 1)
$$

Guess $u_{p}=A x^{2}+B x+C$. Plug into equation gives $2 A=1$ or $A=\frac{1}{2}$. Inserting u_{p} into side $B C$ gives $C=0, B=-\frac{1}{2}$.

Inhomogeneous equation, example 2

Poisson equation

$$
u_{x x}+u_{y y}=1, u(0, y)=0=u(1, y), u(x, 0)=0=u(x, 1)
$$

Guess $u_{p}=A x^{2}+B x+C$. Plug into equation gives $2 A=1$ or $A=\frac{1}{2}$. Inserting u_{p} into side $B C$ gives $C=0, B=-\frac{1}{2}$.
Now $w=u-u_{p}$ solves
$w_{x x}+w_{y y}=0, w(0, y)=0=w(1, y), w(x, 0)=-\frac{1}{2} x(x-1)=w(x, 1)$

Inhomogeneous equation, example 2

Poisson equation

$$
u_{x x}+u_{y y}=1, u(0, y)=0=u(1, y), u(x, 0)=0=u(x, 1)
$$

Guess $u_{p}=A x^{2}+B x+C$. Plug into equation gives $2 A=1$ or $A=\frac{1}{2}$. Inserting u_{p} into side BCs gives $C=0, B=-\frac{1}{2}$.
Now $w=u-u_{p}$ solves
$w_{x x}+w_{y y}=0, w(0, y)=0=w(1, y), w(x, 0)=-\frac{1}{2} x(x-1)=w(x, 1)$
Complete solution is $u(x, t)=w(x, t)+u_{p}(x)$; using previous result,

$$
w(x, y)=\sum_{n=1}^{\infty}\left[A_{n} \exp (n \pi y)+B_{n} \exp (-n \pi y)\right] \sin (n \pi x)
$$

where
$A_{n}+B_{n}=-\frac{\left\langle\frac{1}{2} x(x-1), X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}, \quad A_{n} \exp (n \pi)+B_{n} \exp (-n \pi)=-\frac{\left\langle\frac{1}{2} x(x-1), X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}$ and

$$
\frac{\left\langle\frac{1}{2} x(x-1), X_{n}\right\rangle}{\left\langle X_{n}, X_{n}\right\rangle}=-\frac{2}{\pi^{4} n^{3}}[\cos (\pi n)-1] .
$$

