Quasi-linear first order equations

Consider the nonlinear transport equation

$$
u_{t}+c(u) u_{x}=0, \quad u(x, 0)=f(x) \quad-\infty<x<\infty
$$

Quasi-linear first order equations

Consider the nonlinear transport equation

$$
u_{t}+c(u) u_{x}=0, \quad u(x, 0)=f(x) \quad-\infty<x<\infty
$$

If we (somehow) knew $u(x, t)$, could find characteristics by solving $X^{\prime}(T)=c(u(X(T), T)), X(t)=x$.

Quasi-linear first order equations

Consider the nonlinear transport equation

$$
u_{t}+c(u) u_{x}=0, \quad u(x, 0)=f(x) \quad-\infty<x<\infty
$$

If we (somehow) knew $u(x, t)$, could find characteristics by solving $X^{\prime}(T)=c(u(X(T), T)), X(t)=x$.

Note on each characteristic, solution
$u(x, t)=U(T)=u(X(0), 0)=f(X(0))$ is just constant.

Quasi-linear first order equations

Consider the nonlinear transport equation

$$
u_{t}+c(u) u_{x}=0, \quad u(x, 0)=f(x) \quad-\infty<x<\infty
$$

If we (somehow) knew $u(x, t)$, could find characteristics by solving $X^{\prime}(T)=c(u(X(T), T)), X(t)=x$.

Note on each characteristic, solution
$u(x, t)=U(T)=u(X(0), 0)=f(X(0))$ is just constant.
Since u is not really known in advance, what is initial position of the characteristic $X(0)$?

Quasi-linear first order equations

Consider the nonlinear transport equation

$$
u_{t}+c(u) u_{x}=0, \quad u(x, 0)=f(x) \quad-\infty<x<\infty
$$

If we (somehow) knew $u(x, t)$, could find characteristics by solving $X^{\prime}(T)=c(u(X(T), T)), X(t)=x$.

Note on each characteristic, solution
$u(x, t)=U(T)=u(X(0), 0)=f(X(0))$ is just constant.
Since u is not really known in advance, what is initial position of the characteristic $X(0)$?

Idea: find characteristic $X(T)$ and the solution on characteristic U simultaneously, in a way that is compatible with the initial condition.

Example

Solve

$$
u_{t}+3 u u_{x}=0, \quad u(x, 0)=x .
$$

Example

Solve

$$
u_{t}+3 u u_{x}=0, \quad u(x, 0)=x
$$

Characteristics solve $X^{\prime}(T)=3 U=$ constant subject to $X(t)=x$.

Example

Solve

$$
u_{t}+3 u u_{x}=0, \quad u(x, 0)=x
$$

Characteristics solve $X^{\prime}(T)=3 U=$ constant subject to $X(t)=x$. Therefore

$$
X(T)=3 U(T-t)+x
$$

Example

Solve

$$
u_{t}+3 u u_{x}=0, \quad u(x, 0)=x
$$

Characteristics solve $X^{\prime}(T)=3 U=$ constant subject to $X(t)=x$. Therefore

$$
X(T)=3 U(T-t)+x
$$

At initial position $X(0)=x-3 U t$, U must agree with initial condition

$$
U=u(X(0), 0)=X(0)=x-3 U t
$$

Example

Solve

$$
u_{t}+3 u u_{x}=0, \quad u(x, 0)=x
$$

Characteristics solve $X^{\prime}(T)=3 U=$ constant subject to $X(t)=x$. Therefore

$$
X(T)=3 U(T-t)+x
$$

At initial position $X(0)=x-3 U t$, U must agree with initial condition

$$
U=u(X(0), 0)=X(0)=x-3 U t
$$

Solving for U gives

$$
U=u(x, t)=\frac{x}{1+3 t}
$$

Quasi-linear first order equations

Notice for equations of the form $u_{t}+c(u) u_{x}=0$, characteristics are always straight lines.

Quasi-linear first order equations

Notice for equations of the form $u_{t}+c(u) u_{x}=0$, characteristics are always straight lines.

Two possible problems:
1 Characteristics can intersect. This produces shock waves.

Quasi-linear first order equations

Notice for equations of the form $u_{t}+c(u) u_{x}=0$, characteristics are always straight lines.

Two possible problems:
1 Characteristics can intersect. This produces shock waves.
2 Characteristics don't necessarily pass through every point (x, t) for $t>0$. This produces rarefaction waves.

Shocks

Consider

$$
u_{t}+u u_{x}=0, u(x, 0)= \begin{cases}2 & x<0 \\ 1 & x>0\end{cases}
$$

For $x<0$ have speed $=2$, for $x>0$ speed $=1$, and characteristics intersect in region $t<x<2 t$.

Shocks

Consider

$$
u_{t}+u u_{x}=0, u(x, 0)= \begin{cases}2 & x<0 \\ 1 & x>0\end{cases}
$$

For $x<0$ have speed $=2$, for $x>0$ speed $=1$, and characteristics intersect in region $t<x<2 t$.

Resolution: allow the solution to be discontinuous:

$$
u(x, t)= \begin{cases}2 & x<x_{S}(t) \\ 1 & x>x_{S}(t)\end{cases}
$$

where $x_{s}(t)$ is a curve called a shock. But what determines x_{s} ?

Shock speed

Let the shock speed be $x_{s}^{\prime}(t)=c_{s}$, and rewrite equation in conservation form

$$
u_{t}+J(u)_{x}=0, \quad J^{\prime}(u)=c(u)
$$

Shock speed

Let the shock speed be $x_{s}^{\prime}(t)=c_{s}$, and rewrite equation in conservation form

$$
u_{t}+J(u)_{x}=0, \quad J^{\prime}(u)=c(u)
$$

Look for solutions $u=U\left(x-c_{s} t\right)$ which are waves traveling at speed c_{s}, with

$$
U \rightarrow \begin{cases}u_{L} & x \rightarrow-\infty \\ u_{R} & x \rightarrow+\infty\end{cases}
$$

Shock speed

Let the shock speed be $x_{s}^{\prime}(t)=c_{s}$, and rewrite equation in conservation form

$$
u_{t}+J(u)_{x}=0, \quad J^{\prime}(u)=c(u)
$$

Look for solutions $u=U\left(x-c_{s} t\right)$ which are waves traveling at speed c_{s}, with

$$
U \rightarrow \begin{cases}u_{L} & x \rightarrow-\infty \\ u_{R} & x \rightarrow+\infty\end{cases}
$$

Plugging into $u_{t}+J(u)_{x}=0$,

$$
-c_{s} U^{\prime}+J(U)^{\prime}=0
$$

Integration over \mathbb{R} gives $-c_{s}\left(u_{R}-u_{L}\right)+J\left(u_{R}\right)-J\left(u_{L}\right)=0$ or

$$
c_{s}=\frac{J\left(u_{R}\right)-J\left(u_{L}\right)}{u_{R}-u_{L}}, \quad \text { (Rankine-Hugoniot condition) }
$$

Example, continued

For

$$
u_{t}+u u_{x}=0, u(x, 0)= \begin{cases}2 & x<0 \\ 1 & x>0\end{cases}
$$

we have

$$
u(x, t)= \begin{cases}2 & x<x_{s}(t) \\ 1 & x>x_{s}(t)\end{cases}
$$

Example, continued

For

$$
u_{t}+u u_{x}=0, u(x, 0)= \begin{cases}2 & x<0 \\ 1 & x>0\end{cases}
$$

we have

$$
u(x, t)= \begin{cases}2 & x<x_{s}(t) \\ 1 & x>x_{s}(t)\end{cases}
$$

Equation in conservation form is

$$
u_{t}+\left(u^{2} / 2\right)_{x}=0, \quad \text { therefore } J(u)=u^{2} / 2
$$

Example, continued

For

$$
u_{t}+u u_{x}=0, u(x, 0)= \begin{cases}2 & x<0 \\ 1 & x>0\end{cases}
$$

we have

$$
u(x, t)= \begin{cases}2 & x<x_{s}(t) \\ 1 & x>x_{s}(t)\end{cases}
$$

Equation in conservation form is

$$
u_{t}+\left(u^{2} / 2\right)_{x}=0, \quad \text { therefore } J(u)=u^{2} / 2
$$

Shock evolves according to

$$
d x_{s} / d t=[J(2)-J(1)] /(2-1)=3 / 2, \quad x_{s}(0)=0
$$

so that $x_{s}(t)=3 / 2 t$.

Rarefactions

Now consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 2 & x>0\end{cases}
$$

Problem: no characteristics fill region $t<x<2 t$, called a rarefaction.

Rarefactions

Now consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 2 & x>0\end{cases}
$$

Problem: no characteristics fill region $t<x<2 t$, called a rarefaction.
Resolution: employ principle
"characteristics cannot emerge from other characteristics"
This means that the characteristics in the rarefaction must all start at the point of discontinuity $x=0$.

Rarefactions

Now consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 2 & x>0\end{cases}
$$

Problem: no characteristics fill region $t<x<2 t$, called a rarefaction.
Resolution: employ principle
"characteristics cannot emerge from other characteristics"
This means that the characteristics in the rarefaction must all start at the point of discontinuity $x=0$.

In the above example, rarefaction characteristics solve $X^{\prime}(T)=U=$ constant, subject to both $X(0)=0$ and $X(t)=x$.

Rarefactions

Now consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 2 & x>0\end{cases}
$$

Problem: no characteristics fill region $t<x<2 t$, called a rarefaction.
Resolution: employ principle
"characteristics cannot emerge from other characteristics"
This means that the characteristics in the rarefaction must all start at the point of discontinuity $x=0$.

In the above example, rarefaction characteristics solve $X^{\prime}(T)=U=$ constant, subject to both $X(0)=0$ and $X(t)=x$.
Solution: $X(T)=U T$, which at $T=t$ gives $x=U t$ or $U=x / t$.

Rarefactions

Now consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 2 & x>0\end{cases}
$$

Problem: no characteristics fill region $t<x<2 t$, called a rarefaction.
Resolution: employ principle
"characteristics cannot emerge from other characteristics"
This means that the characteristics in the rarefaction must all start at the point of discontinuity $x=0$.
In the above example, rarefaction characteristics solve $X^{\prime}(T)=U=$ constant, subject to both $X(0)=0$ and $X(t)=x$.
Solution: $X(T)=U T$, which at $T=t$ gives $x=U t$ or $U=x / t$.
Therefore complete solution is

$$
u(x, t)= \begin{cases}1 & x<t \\ x / t & t<x<2 t \\ 2 & x>2 t\end{cases}
$$

Example 1 (non-constant shock speed).

Consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}0 & x<0 \\ 2 x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Example 1 (non-constant shock speed).

Consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}0 & x<0 \\ 2 x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Three regions: $x<0,0<x<x_{s}(t)$, and $x>x_{s}(t)$.

Example 1 (non-constant shock speed).

Consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}0 & x<0 \\ 2 x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Three regions: $x<0,0<x<x_{s}(t)$, and $x>x_{s}(t)$.
Solution is only non-zero in second region. Characteristics there solve $X^{\prime}(T)=U$ subject to $X(t)=x$, which has a solution

$$
X(T)=U(T-t)+x, \quad \text { so that } X(0)=x-U t
$$

Example 1 (non-constant shock speed).

Consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}0 & x<0 \\ 2 x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Three regions: $x<0,0<x<x_{s}(t)$, and $x>x_{s}(t)$.
Solution is only non-zero in second region. Characteristics there solve $X^{\prime}(T)=U$ subject to $X(t)=x$, which has a solution

$$
X(T)=U(T-t)+x, \quad \text { so that } X(0)=x-U t .
$$

Since $U=u(X(0), 0)=2 X(0)$, it follows that $2(x-U t)=U$ or $u(x, t)=U=2 x /(1+2 t)$.

Example 1 (non-constant shock speed).

Consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}0 & x<0 \\ 2 x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Three regions: $x<0,0<x<x_{s}(t)$, and $x>x_{s}(t)$.
Solution is only non-zero in second region. Characteristics there solve $X^{\prime}(T)=U$ subject to $X(t)=x$, which has a solution

$$
X(T)=U(T-t)+x, \quad \text { so that } X(0)=x-U t
$$

Since $U=u(X(0), 0)=2 X(0)$, it follows that $2(x-U t)=U$ or $u(x, t)=U=2 x /(1+2 t)$.
Conservation form is $u_{t}+J(u)_{x}=0$ with $J=u^{2} / 2$, so

$$
x_{s}^{\prime}(t)=\frac{J\left(2 x_{s} /(1+2 t)\right)-J(0)}{2 x_{s} /(1+2 t)-0}=\frac{x_{s}}{1+2 t}
$$

Example 1 (non-constant shock speed).

Consider

$$
u_{t}+u u_{x}=0, \quad u(x, 0)= \begin{cases}0 & x<0 \\ 2 x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Three regions: $x<0,0<x<x_{s}(t)$, and $x>x_{s}(t)$.
Solution is only non-zero in second region. Characteristics there solve $X^{\prime}(T)=U$ subject to $X(t)=x$, which has a solution

$$
X(T)=U(T-t)+x, \quad \text { so that } X(0)=x-U t
$$

Since $U=u(X(0), 0)=2 X(0)$, it follows that $2(x-U t)=U$ or $u(x, t)=U=2 x /(1+2 t)$.
Conservation form is $u_{t}+J(u)_{x}=0$ with $J=u^{2} / 2$, so

$$
x_{s}^{\prime}(t)=\frac{J\left(2 x_{s} /(1+2 t)\right)-J(0)}{2 x_{s} /(1+2 t)-0}=\frac{x_{s}}{1+2 t} .
$$

Solving this differential equation with initial condition $x_{s}(0)=1$ gives

$$
x_{s}(t)=\sqrt{1+2 t} .
$$

Example 2 (shock creation)

Consider

$$
u_{t}+(u+1) u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 1-x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Characteristics which start at $x=0$ and $x=1$ are lines $X_{1}(T)=2 T$ and $X_{2}(T)=1+T$.

Example 2 (shock creation)

Consider

$$
u_{t}+(u+1) u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 1-x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Characteristics which start at $x=0$ and $x=1$ are lines $X_{1}(T)=2 T$ and $X_{2}(T)=1+T$. These intersect at $X=2$ and $T=1$ to create shock, evolving as

$$
x_{s}^{\prime}(t)=\frac{J(0)-J(1)}{0-1}, \quad J(u)=u^{2} / 2+u, \quad x_{c}(1)=2
$$

so that $x_{s}(t)=3 / 2(t-1)+2$.

Example 2 (shock creation)

Consider

$$
u_{t}+(u+1) u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 1-x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Characteristics which start at $x=0$ and $x=1$ are lines $X_{1}(T)=2 T$ and $X_{2}(T)=1+T$. These intersect at $X=2$ and $T=1$ to create shock, evolving as

$$
x_{s}^{\prime}(t)=\frac{J(0)-J(1)}{0-1}, \quad J(u)=u^{2} / 2+u, \quad x_{c}(1)=2
$$

so that $x_{s}(t)=3 / 2(t-1)+2$.
In region $X_{1}(t)<x<X_{2}(t)$, characteristics with $X(t)=x$ satisfy $X^{\prime}(T)=(U+1)$.

Example 2 (shock creation)

Consider

$$
u_{t}+(u+1) u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 1-x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Characteristics which start at $x=0$ and $x=1$ are lines $X_{1}(T)=2 T$ and $X_{2}(T)=1+T$. These intersect at $X=2$ and $T=1$ to create shock, evolving as

$$
x_{s}^{\prime}(t)=\frac{J(0)-J(1)}{0-1}, \quad J(u)=u^{2} / 2+u, \quad x_{c}(1)=2
$$

so that $x_{s}(t)=3 / 2(t-1)+2$.
In region $X_{1}(t)<x<X_{2}(t)$, characteristics with $X(t)=x$ satisfy $X^{\prime}(T)=(U+1)$. They are therefore lines $X(T)=(U+1)(T-t)+x$.

Example 2 (shock creation)

Consider

$$
u_{t}+(u+1) u_{x}=0, \quad u(x, 0)= \begin{cases}1 & x<0 \\ 1-x & 0<x<1 \\ 0 & x>1\end{cases}
$$

Characteristics which start at $x=0$ and $x=1$ are lines $X_{1}(T)=2 T$ and $X_{2}(T)=1+T$. These intersect at $X=2$ and $T=1$ to create shock, evolving as

$$
x_{s}^{\prime}(t)=\frac{J(0)-J(1)}{0-1}, \quad J(u)=u^{2} / 2+u, \quad x_{c}(1)=2
$$

so that $x_{s}(t)=3 / 2(t-1)+2$.
In region $X_{1}(t)<x<X_{2}(t)$, characteristics with $X(t)=x$ satisfy $X^{\prime}(T)=(U+1)$. They are therefore lines $X(T)=(U+1)(T-t)+x$. To be consistent with the initial condition,

$$
U=u(X(0), 0)=1-[x-(U+1) t],
$$

so that

$$
U=u(x, t)=\frac{1-x+t}{1-t}
$$

Notice that this solution breaks down at $t=1$.

Example 3 (multiple shocks)

Consider

$$
u_{t}+3 u^{2} u_{x}=0, \quad u(x, 0)= \begin{cases}3 & x<1 \\ 2 & 1<x<2 \\ 1 & x>2\end{cases}
$$

For small t, three regions with characteristic speeds

$$
X^{\prime}(T)=3 U^{2}= \begin{cases}27 & x<x_{1}(t) \\ 12 & x_{1}(t)<x<x_{2}(t) \\ 3 & x>x_{2}(t)\end{cases}
$$

Example 3 (multiple shocks)

Consider

$$
u_{t}+3 u^{2} u_{x}=0, \quad u(x, 0)= \begin{cases}3 & x<1 \\ 2 & 1<x<2 \\ 1 & x>2\end{cases}
$$

For small t, three regions with characteristic speeds

$$
X^{\prime}(T)=3 U^{2}= \begin{cases}27 & x<x_{1}(t) \\ 12 & x_{1}(t)<x<x_{2}(t) \\ 3 & x>x_{2}(t)\end{cases}
$$

Conservation form $u_{t}+J(u)_{x}=0$ has $J(u)=u^{3}$, so that

$$
\begin{array}{ll}
x_{1}^{\prime}(t)=\frac{2^{3}-3^{3}}{2-3}=19, & x_{1}(0)=1 \\
x_{2}^{\prime}(t)=\frac{1^{3}-2^{3}}{1-2}=7, & x_{2}(0)=2
\end{array}
$$

Example 3,cont.

Solution:

$$
x_{1}(t)=19 t+1, \quad x_{2}(t)=7 t+2 .
$$

Example 3,cont.

Solution:

$$
x_{1}(t)=19 t+1, \quad x_{2}(t)=7 t+2
$$

These intersect where $t=1 / 12$ and $x=31 / 12$, producing a single shock with $u=3$ on left and $u=1$ on right.

Example 3,cont.

Solution:

$$
x_{1}(t)=19 t+1, \quad x_{2}(t)=7 t+2
$$

These intersect where $t=1 / 12$ and $x=31 / 12$, producing a single shock with $u=3$ on left and $u=1$ on right.

Third shock $x_{3}(t)$ evolves according to

$$
x_{3}^{\prime}(t)=\frac{1^{3}-3^{3}}{1-3}=13, \quad x_{3}(1 / 12)=32 / 12
$$

so that $x_{3}(t)=13(t-1 / 12)+31 / 12$.

