
Quasi-linear first order equations

Consider the nonlinear transport equation

ut + c(u)ux = 0, u(x ,0) = f (x) −∞ < x <∞

If we (somehow) knew u(x , t), could find characteristics by
solving X ′(T ) = c(u(X (T ),T )), X (t) = x .

Note on each characteristic, solution
u(x , t) = U(T ) = u(X (0),0) = f (X (0)) is just constant.

Since u is not really known in advance, what is initial position of
the characteristic X (0)?

Idea: find characteristic X (T ) and the solution on characteristic
U simultaneously, in a way that is compatible with the initial
condition.
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Example

Solve
ut + 3uux = 0, u(x ,0) = x .

Characteristics solve X ′(T ) = 3U = constant subject to
X (t) = x . Therefore

X (T ) = 3U(T − t) + x .

At initial position X (0) = x − 3Ut , U must agree with initial
condition

U = u(X (0),0) = X (0) = x − 3Ut .

Solving for U gives

U = u(x , t) =
x

1 + 3t
.
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Quasi-linear first order equations

Notice for equations of the form ut + c(u)ux = 0, characteristics
are always straight lines.

Two possible problems:

1 Characteristics can intersect. This produces shock waves.

2 Characteristics don’t necessarily pass through every point
(x , t) for t > 0. This produces rarefaction waves.
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Shocks

Consider

ut + uux = 0,u(x ,0) =

{
2 x < 0
1 x > 0

For x < 0 have speed = 2, for x > 0 speed = 1, and
characteristics intersect in region t < x < 2t .

Resolution: allow the solution to be discontinuous:

u(x , t) =

{
2 x < xs(t)
1 x > xs(t)

where xs(t) is a curve called a shock. But what determines xs?
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Shock speed

Let the shock speed be x ′
s(t) = cs, and rewrite equation in

conservation form

ut + J(u)x = 0, J ′(u) = c(u).

Look for solutions u = U(x − cst) which are waves traveling at
speed cs, with

U →

{
uL x → −∞
uR x → +∞.

Plugging into ut + J(u)x = 0,

− csU ′ + J(U)′ = 0.

Integration over R gives −cs(uR − uL) + J(uR)− J(uL) = 0 or

cs =
J(uR)− J(uL)

uR − uL
, (Rankine-Hugoniot condition)
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Example, continued

For

ut + uux = 0,u(x ,0) =

{
2 x < 0
1 x > 0

we have

u(x , t) =

{
2 x < xs(t)
1 x > xs(t).

Equation in conservation form is

ut + (u2/2)x = 0, therefore J(u) = u2/2.

Shock evolves according to

dxs/dt = [J(2)− J(1)]/(2− 1) = 3/2, xs(0) = 0,

so that xs(t) = 3/2t .



Example, continued

For

ut + uux = 0,u(x ,0) =

{
2 x < 0
1 x > 0

we have

u(x , t) =

{
2 x < xs(t)
1 x > xs(t).

Equation in conservation form is

ut + (u2/2)x = 0, therefore J(u) = u2/2.

Shock evolves according to

dxs/dt = [J(2)− J(1)]/(2− 1) = 3/2, xs(0) = 0,

so that xs(t) = 3/2t .



Example, continued

For

ut + uux = 0,u(x ,0) =

{
2 x < 0
1 x > 0

we have

u(x , t) =

{
2 x < xs(t)
1 x > xs(t).

Equation in conservation form is

ut + (u2/2)x = 0, therefore J(u) = u2/2.

Shock evolves according to

dxs/dt = [J(2)− J(1)]/(2− 1) = 3/2, xs(0) = 0,

so that xs(t) = 3/2t .



Rarefactions

Now consider

ut + uux = 0, u(x ,0) =

{
1 x < 0
2 x > 0

Problem: no characteristics fill region t < x < 2t , called a rarefaction.

Resolution: employ principle

“characteristics cannot emerge from other characteristics"

This means that the characteristics in the rarefaction must all start at
the point of discontinuity x = 0.

In the above example, rarefaction characteristics solve X ′(T ) = U =
constant, subject to both X (0) = 0 and X (t) = x .
Solution: X (T ) = UT , which at T = t gives x = Ut or U = x/t .
Therefore complete solution is

u(x , t) =


1 x < t
x/t t < x < 2t
2 x > 2t .
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Example 1 (non-constant shock speed).

Consider

ut + uux = 0, u(x ,0) =


0 x < 0
2x 0 < x < 1
0 x > 1.

Three regions: x < 0, 0 < x < xs(t), and x > xs(t).
Solution is only non-zero in second region. Characteristics there
solve X ′(T ) = U subject to X (t) = x , which has a solution

X (T ) = U(T − t) + x , so that X (0) = x − Ut .

Since U = u(X (0),0) = 2X (0), it follows that 2(x − Ut) = U or
u(x , t) = U = 2x/(1 + 2t).

Conservation form is ut + J(u)x = 0 with J = u2/2, so

x ′
s(t) =

J(2xs/(1 + 2t))− J(0)
2xs/(1 + 2t)− 0

=
xs

1 + 2t
.

Solving this differential equation with initial condition xs(0) = 1 gives

xs(t) =
√

1 + 2t .



Example 1 (non-constant shock speed).

Consider

ut + uux = 0, u(x ,0) =


0 x < 0
2x 0 < x < 1
0 x > 1.

Three regions: x < 0, 0 < x < xs(t), and x > xs(t).

Solution is only non-zero in second region. Characteristics there
solve X ′(T ) = U subject to X (t) = x , which has a solution

X (T ) = U(T − t) + x , so that X (0) = x − Ut .

Since U = u(X (0),0) = 2X (0), it follows that 2(x − Ut) = U or
u(x , t) = U = 2x/(1 + 2t).

Conservation form is ut + J(u)x = 0 with J = u2/2, so

x ′
s(t) =

J(2xs/(1 + 2t))− J(0)
2xs/(1 + 2t)− 0

=
xs

1 + 2t
.

Solving this differential equation with initial condition xs(0) = 1 gives

xs(t) =
√

1 + 2t .



Example 1 (non-constant shock speed).

Consider

ut + uux = 0, u(x ,0) =


0 x < 0
2x 0 < x < 1
0 x > 1.

Three regions: x < 0, 0 < x < xs(t), and x > xs(t).
Solution is only non-zero in second region. Characteristics there
solve X ′(T ) = U subject to X (t) = x , which has a solution

X (T ) = U(T − t) + x , so that X (0) = x − Ut .

Since U = u(X (0),0) = 2X (0), it follows that 2(x − Ut) = U or
u(x , t) = U = 2x/(1 + 2t).

Conservation form is ut + J(u)x = 0 with J = u2/2, so

x ′
s(t) =

J(2xs/(1 + 2t))− J(0)
2xs/(1 + 2t)− 0

=
xs

1 + 2t
.

Solving this differential equation with initial condition xs(0) = 1 gives

xs(t) =
√

1 + 2t .



Example 1 (non-constant shock speed).

Consider

ut + uux = 0, u(x ,0) =


0 x < 0
2x 0 < x < 1
0 x > 1.

Three regions: x < 0, 0 < x < xs(t), and x > xs(t).
Solution is only non-zero in second region. Characteristics there
solve X ′(T ) = U subject to X (t) = x , which has a solution

X (T ) = U(T − t) + x , so that X (0) = x − Ut .

Since U = u(X (0),0) = 2X (0), it follows that 2(x − Ut) = U or
u(x , t) = U = 2x/(1 + 2t).

Conservation form is ut + J(u)x = 0 with J = u2/2, so

x ′
s(t) =

J(2xs/(1 + 2t))− J(0)
2xs/(1 + 2t)− 0

=
xs

1 + 2t
.

Solving this differential equation with initial condition xs(0) = 1 gives

xs(t) =
√

1 + 2t .



Example 1 (non-constant shock speed).

Consider

ut + uux = 0, u(x ,0) =


0 x < 0
2x 0 < x < 1
0 x > 1.

Three regions: x < 0, 0 < x < xs(t), and x > xs(t).
Solution is only non-zero in second region. Characteristics there
solve X ′(T ) = U subject to X (t) = x , which has a solution

X (T ) = U(T − t) + x , so that X (0) = x − Ut .

Since U = u(X (0),0) = 2X (0), it follows that 2(x − Ut) = U or
u(x , t) = U = 2x/(1 + 2t).

Conservation form is ut + J(u)x = 0 with J = u2/2, so

x ′
s(t) =

J(2xs/(1 + 2t))− J(0)
2xs/(1 + 2t)− 0

=
xs

1 + 2t
.

Solving this differential equation with initial condition xs(0) = 1 gives

xs(t) =
√

1 + 2t .



Example 1 (non-constant shock speed).

Consider

ut + uux = 0, u(x ,0) =


0 x < 0
2x 0 < x < 1
0 x > 1.

Three regions: x < 0, 0 < x < xs(t), and x > xs(t).
Solution is only non-zero in second region. Characteristics there
solve X ′(T ) = U subject to X (t) = x , which has a solution

X (T ) = U(T − t) + x , so that X (0) = x − Ut .

Since U = u(X (0),0) = 2X (0), it follows that 2(x − Ut) = U or
u(x , t) = U = 2x/(1 + 2t).

Conservation form is ut + J(u)x = 0 with J = u2/2, so

x ′
s(t) =

J(2xs/(1 + 2t))− J(0)
2xs/(1 + 2t)− 0

=
xs

1 + 2t
.

Solving this differential equation with initial condition xs(0) = 1 gives

xs(t) =
√

1 + 2t .



Example 2 (shock creation)

Consider

ut + (u + 1)ux = 0, u(x ,0) =


1 x < 0
1− x 0 < x < 1
0 x > 1.

Characteristics which start at x = 0 and x = 1 are lines X1(T ) = 2T
and X2(T ) = 1 + T .

These intersect at X = 2 and T = 1 to create
shock, evolving as

x ′
s(t) =

J(0)− J(1)
0− 1

, J(u) = u2/2 + u, xc(1) = 2.

so that xs(t) = 3/2(t − 1) + 2.

In region X1(t) < x < X2(t), characteristics with X (t) = x satisfy
X ′(T ) = (U + 1). They are therefore lines X (T ) = (U + 1)(T − t) + x .
To be consistent with the initial condition,

U = u(X (0),0) = 1− [x − (U + 1)t ],

so that
U = u(x , t) =

1− x + t
1− t

.

Notice that this solution breaks down at t = 1.
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Example 3 (multiple shocks)

Consider

ut + 3u2ux = 0, u(x ,0) =


3 x < 1
2 1 < x < 2
1 x > 2.

For small t , three regions with characteristic speeds

X ′(T ) = 3U2 =


27 x < x1(t)
12 x1(t) < x < x2(t)
3 x > x2(t).

Conservation form ut + J(u)x = 0 has J(u) = u3, so that

x ′
1(t) =

23 − 33

2− 3
= 19, x1(0) = 1

x ′
2(t) =

13 − 23

1− 2
= 7, x2(0) = 2
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Example 3,cont.

Solution:
x1(t) = 19t + 1, x2(t) = 7t + 2.

These intersect where t = 1/12 and x = 31/12, producing a
single shock with u = 3 on left and u = 1 on right.

Third shock x3(t) evolves according to

x ′
3(t) =

13 − 33

1− 3
= 13, x3(1/12) = 32/12,

so that x3(t) = 13(t − 1/12) + 31/12.
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