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Symmetries of partial differential equations

Basic idea: get new solutions from existing ones using a
transformation.

For example, if u(x, t) solves u; = uxx, SO does u(x — Xp, t — ty).
This is a translation symmetry.

Also, if u(x, t) solves u; = ux, so does u(—x, t). Thisis a
reflection symmetry. Note u(x, —t) is not a solution, however!
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Given a function u(x, t), transform both independent and
dependent variables by a mapping

(x,t,u) — (X', ', U)
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Symmetry transformations

Given a function u(x, t), transform both independent and
dependent variables by a mapping

(x,t,u) — (X', ', U)
or explicitly

X' =X(x,t,u), t'=T(xtu), U=UXxtu).

A partial differential equation is said to have a symmetry if
U'(x, t) = U(x, tu(X(x, t,u), T(x,t, u)))

is a solution, given that u(x, t) is.
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Example 1

Consider equation
ut = UUXX

and transformation
X' =-x, t=-t, ,U=-u
Given solution u(x, t), check U'(x, t) = —u(—x, —t) also works:
8t< —u(—x, —t)) = ui(—x,—t), and
(— u(—x, —t)) 8XX< — u(—x, —t)) = u(—x, —t)uxx(—x, —t).
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Consider the nonlinear Schrédinger equation

. 1
iUt + 2 s + lufu=0, u(x,t):R®—C.

“Galilean symmetry", with parameter v

Ulx,t,u) = exp(—iv(x + vt/2))u, X=x+vwvt, T=t

Check w(x, t) = exp(—iv(x + Vt/2))u(x + V&, t) is a solution:

, 1 2
w: + EWXX+ |W| w =

Civeweyz) [ [ —iVP 1 2 . 2
e i ?u+ut+Vux +§(—V u—2/Vux+uXX)+|u|u

» 1
— g~ Vx+W/2) {Ut + éuxx + |u|2u} =0.
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Dilation symmetries

Special type of symmetry involves rescaling space and time

/_X /_t
=1 t‘ﬁ’

where L > 0.

Mapping u(x, t) to u(x/L,t/L?) is called a dilation symmetry.

Example: consider transport equation u; + cuy = 0.

Given solution u(x, t), for which 3 is u(x/L,t/L?) also a
solution?

w(x/Lt/L7) | un(x/Lot/L7)
LP L
therefore need 5 = 1.

-0,

For example, given solution u = sin(x — ct), can construct a
new solution u = sin([x — ct]/L).
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y? coefficient is not.



Dilation symmetries, example 2

Consider symmetries (x, y) — (x/L, y/L?) for

Uy + y?uy, =0,

Substituting u(x/L, y/L?) in for v,
L~ ux(x/L,y /L) + L y?uy (x/L, y/LP) = 0.
Caution! This is not the same as original equation since

derivatives are evaluated where y is replaced with y /L%, but the
y? coefficient is not.

Remedy: rewrite as
L™ ux(x/L,y/L%) + LP(y /L7)2uy (x/L, y/L7) = 0.

which means g = —1.
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Dilation symmetries, cont.

More general symmetry rescales dependent variable also:
(x,t,u) = (x/L, t/L° u/L").

Exponents /3, v found by substituting L="u(x/L, t/L?).

Example: consider nonlinear convection diffusion equation

Ut == UUXX - Ux.
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More general symmetry rescales dependent variable also:
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Dilation symmetries, cont.

More general symmetry rescales dependent variable also:
(x,t,u) = (x/L,t/LP u/L).
Exponents /3, v found by substituting L="u(x/L, t/L?).
Example: consider nonlinear convection diffusion equation
Ut = Ulxx — Uy.
Substitute L= u(x/L, t/L?) for u,
L7 Pup = L2 2uu — L7 "uy, evaluated at (x/L, t/L°).

It folows v+ =2y+2=+v+1,s0thatg=1and v = —1.
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Similarity solutions

Suppose a PDE has a symmetry transformation
(x, 1) = (x/L, t/LP).

A solution u = f(n) is called a similarity solution, where
n = x/t'/8 is called the similarity variable.

Practical benefit: reduces problem to ODE for f(n).

Similarity solutions are often physically important since they are
scale invariant.
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Invariance of similarity solutions

Fact: similarity solutions are the only ones which remain the
same under symmetry transformation.

If u(x, t) = f(n) is a similarity solution,

u(x/L,t/LP) = f (W) - f<t1%) — u(x, t).

Conversely, if u(x, t) is invariant under symmetry
transformation, can be written in terms of new variables w(n, £),
where

X
= 5 §=xt.

The transformation in terms of the new variables is
(n,€) — (n,&/LP*1), so that

w(n, &) = w(n, &/L°HT).



Invariance of similarity solutions

Fact: similarity solutions are the only ones which remain the
same under symmetry transformation.

If u(x, t) = f(n) is a similarity solution,

u(x/L,t/LP) = f (W) - f<t1%) — u(x, t).

Conversely, if u(x, t) is invariant under symmetry
transformation, can be written in terms of new variables w(n, £),
where
X
n = PR &= xt.
The transformation in terms of the new variables is
(n,€) — (n,€/L7*7), so that
w(n,€) = w(n,&/L7H).

Differentiating with respect to L and setting L = 1,

we(n, §/L7F1)E =0,
which means w = w(n).
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Consider the diffusion equation

U = Duyy, —o00< X < 0.

Find u(x/L, t/L%) is also a solution provided 3 = 2.

Seek similarity solution u = f(n) where n = x/+/t. Substitution
into equation gives

Df"(n) + 2 /() = 0.
Separation of variables gives
f/(n) = Ce /%P,
therefore

f(n) = Cyerf(n/4D) + Co, erf(x) = 57? /O e Vdy.



More general similarity solutions

For the more general dilation symmetry,
(x,t,u) = (x/L, t/L° u/L").
seek solutions of form
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More general similarity solutions

For the more general dilation symmetry,
(x,t,u) = (x/L, t/L° u/L").
seek solutions of form

u=t"%1(n), n=x/t""

These solutions are invariant under the transformation:
—y BY — | — BY—/8 x/L
L™ u(x/L,t/L7) = L77(t/L") f<(t/L/3)1/5>

— /8¢ (ﬂ%) — u(x, t).
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Ut = Ulyx — U°.
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Consider the nonlinear diffusion equation
Ut = Ulyx — U°.
Plug in L=7u(x/L,t/L?),

u(x/L,t/L%) = u(x/L, t/LP)uex(x/L, t/LP)

[+8 [2v+2

— %U(X/L, t/L%)3.
Need~y+ 3 =2y+2=3y,so0thaty=2and 8 = 4.

Similarity solution will have the form
u=t"2f(n), n=x/t"%

Plugging into equation gives
1 U 3
2f 4f = fe.

Need to find solution numerically!
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L=7u(x/L, t/LP) into the equation gives L™ ~Pu; = DL=7"2 1.
Thus 5 = 2 but v is arbitrary.



Incomplete similarity

Sometimes scaling exponents are not uniquely determined; this
situation is called incomplete similarity.

Extra conditions are required to fix the value of the exponents.

Example: for diffusion equation u; = Duyy, inserting
L=7u(x/L, t/LP) into the equation gives L™ ~Pu; = DL=7"2 1.
Thus 5 = 2 but v is arbitrary.

Already found solution with v = 0,
f(n) = Cyerf(n/4D) + C,

but this does not decay at +oc.



Incomplete similarity, cont.

Suppose we want u(+oo) = 0. This implies conservation
d o0
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Incomplete similarity, cont.

Suppose we want u(+oo) = 0. This implies conservation
d o0

a) u(x, t)dx = 0.

Inserting solution of form u = t*f(x/t'/#) and changing variables

1 > a+1/8 _
G| e =o.

therefore a = -1/ = —1/2.



Incomplete similarity, cont.

Suppose we want u(+oo) = 0. This implies conservation
d o0

a) u(x,t)dx = 0.

Inserting solution of form u = t*f(x/t'/#) and changing variables
d * a+1/8 _
G| e =o.

therefore a = -1/ = —1/2.

Substituting u = t~'/2f(x/t/?), get ODE

o Mo 1_// 1 r_
f +2f+2f_f +2(nf) =0.

Using the condition f(+oo) = 0, integration gives

f'=——nf, df/f:—%ndn, f(n) = Ce™"'/4.

1
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Incomplete similarity, cont.

Suppose we want u(+oo) = 0. This implies conservation
d o0

a) u(x,t)dx = 0.

Inserting solution of form u = t*f(x/t'/#) and changing variables

ﬂ ~ a+1/8 —
G| e =o.

therefore a = -1/ = —1/2.
Substituting u = t~'/2f(x/t/?), get ODE

1" ﬂ / 1 __ 1 [
f +2f +2f_f +2(nf) =0.
Using the condition f(+oo) = 0, integration gives

1 1
f'=—gnf. df/f=—Zndn, f(n)= Ce /4,

With C = 1/v4r get fundamental solution

u = (4rt)1/2e /4
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Consider nonlinear transport equation
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Similarity solutions, Example 1

Consider nonlinear transport equation

Uy + uuy = 0.
Symmetry of the form u(x, t) — u(x/L,t/L?) leadsto 5 = 1.
Look for similarity solution u = f(x/t). Plugging in,

1
—?F+ ~ff =0
or
f/(f —n) = 0.

Either f = 0, or f = . Latter choice leads to solution
ulx,t)y=n=—.

i.e. a rarefaction wave.
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by y/L everywhere.



Similarity solutions,Example 2

A model for a convective thermal layer is
3yux —uy, =0, u(0,y)=1, u(x,0)=0.
Treat x like the time variable, substitute u(x/L”, y/L)

3 1
THu XLy L) = Uy (XL /L) =O.

Note: to make this like original equation, y should be replaced
by y/L everywhere. Write as:

WD ety - Lu iy =o

therefore u(x/L?, y/L) is still a solution if 3 = 3.



Similarity solutions,Example 2, cont.

Plug in similarity ansatz u = f(n), n = y/x"/3,

—n?f'(n) — f"(n) =0, £(0)=0, Jim #(n) =1.



Similarity solutions,Example 2, cont.

Plug in similarity ansatz u = f(n), n = y/x"/3,

—?f(n) —f'(n) =0, f(0)=0, lim f(n)=1.

n—00

Separate variables f”/f' = —n? and integrate
f=Ae /3,

and integrate again

n
f— A/ e=5°/3ds + B.
0

Using the boundary conditions, B = 0 and

o) —1
A= </ 6_33/30.3) .
0
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Vi = <r[rv]r)r, r>0, v(r0)= .
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Similarity solutions, Example 3

An unwinding fluid vortex is described by

Vi = <1r[rv],)r, r>0, v(r,0)=-

-
Inserting L="v(r/L,t/LP)

1
Bﬂ(Uﬂ)

thus 5 = 2 but « is undetermined.
To be compatible with initial condition, insert L="v(r/L,0)

vi(r/L, t/LP) =

Kvuvauwn),

r

1
LB+

L=7v(r/L,0) = L~'(r/L)~", therefore v = 1.
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Similarity solutions, Example 3 cont.

Since
t12H(r/t1?) = [ (/1)

easier to look for solution of form

V:M, n=r2/t, lim f(n)=1.

r 7—00
Substitution gives f' + 4f” = 0 whose general solution is
f(ry=A+ Be "4
In original variables

v(r,t) = 1? <1 + Bexp( Z))

For bounded solution at origin, B = —1.
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Similarity solutions, Example 4.

The porous medium equation is
ur = (Uux)x.
If L= u(r/L,t/LP) is a solution, need 8 = 2 + .

Equation is a conservation law with flux J = —uuy, so that

ccfjt/ u(x,t)dx =0, if J(£o0)=0.
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Similarity solutions, Example 4.

The porous medium equation is
ur = (Uux)x.

If L= u(r/L,t/LP) is a solution, need 8 = 2 + .
Equation is a conservation law with flux J = —uuy, so that

ccfjt/ u(x,t)dx =0, if J(£o0)=0.

—0o0

Inserting
u=t""(n), n=x/t"/7

then

/ u(x, f)ax = 1=/ / f(n)dly

—00 —00

which means thaty =1, 5 = 3.
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Similarity solution u = t=1/3f(n), n = x/t'/3 solves
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n
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Similarity solution u = t=1/3f(n), n = x/t'/3 solves

oty = (1.

Integration twice (assuming f/(0) = 0 or f(+o00) = 0) gives

n
f=B-L,
6

Problem! f is not positive (unphysical), and J(+o00) # 0.



Similarity solutions, Example 4, cont.

Similarity solution u = t=1/3f(n), n = x/t'/3 solves

oty = (1.

Integration twice (assuming f/(0) = 0 or f(+o00) = 0) gives

Problem! f is not positive (unphysical), and J(+o00) # 0.
Solution: just take positive part, so that

=13(B— 2 2/3
u(x, t) = <B 6f2/3> X" < 6Bt
0 x2 > 6Bt3/3.

Observation: value of B determines total mass | udx, and this
is constant in time.



