Symmetries of partial differential equations

Basic idea: get new solutions from existing ones using a transformation.

Symmetries of partial differential equations

Basic idea: get new solutions from existing ones using a transformation.

For example, if $u(x, t)$ solves $u_{t}=u_{x x}$, so does $u\left(x-x_{0}, t-t_{0}\right)$. This is a translation symmetry.

Symmetries of partial differential equations

Basic idea: get new solutions from existing ones using a transformation.

For example, if $u(x, t)$ solves $u_{t}=u_{x x}$, so does $u\left(x-x_{0}, t-t_{0}\right)$. This is a translation symmetry.

Also, if $u(x, t)$ solves $u_{t}=u_{x x}$, so does $u(-x, t)$. This is a reflection symmetry. Note $u(x,-t)$ is not a solution, however!

Symmetry transformations

Given a function $u(x, t)$, transform both independent and dependent variables by a mapping

$$
(x, t, u) \rightarrow\left(x^{\prime}, t^{\prime}, u^{\prime}\right)
$$

or explicitly

$$
x^{\prime}=X(x, t, u), \quad t^{\prime}=T(x, t, u), \quad u^{\prime}=U(x, t, u) .
$$

Symmetry transformations

Given a function $u(x, t)$, transform both independent and dependent variables by a mapping

$$
(x, t, u) \rightarrow\left(x^{\prime}, t^{\prime}, u^{\prime}\right)
$$

or explicitly

$$
x^{\prime}=X(x, t, u), \quad t^{\prime}=T(x, t, u), \quad u^{\prime}=U(x, t, u) .
$$

A partial differential equation is said to have a symmetry if

$$
u^{\prime}(x, t)=U(x, t, u(X(x, t, u), T(x, t, u)))
$$

is a solution, given that $u(x, t)$ is.

Example 1

Consider equation

$$
u_{t}=u u_{x x}
$$

and transformation

$$
x^{\prime}=-x, \quad t^{\prime}=-t, \quad, u^{\prime}=-u
$$

Example 1

Consider equation

$$
u_{t}=u u_{x x}
$$

and transformation

$$
x^{\prime}=-x, \quad t^{\prime}=-t, \quad, u^{\prime}=-u
$$

Given solution $u(x, t)$, check $u^{\prime}(x, t)=-u(-x,-t)$ also works:

$$
\begin{array}{r}
\partial_{t}(-u(-x,-t))=u_{t}(-x,-t), \quad \text { and } \\
(-u(-x,-t)) \partial_{x x}(-u(-x,-t))=u(-x,-t) u_{x x}(-x,-t) .
\end{array}
$$

Example 2

Consider the nonlinear Schrödinger equation

$$
i u_{t}+\frac{1}{2} u_{x x}+|u|^{2} u=0, \quad u(x, t): \mathbb{R}^{2} \rightarrow \mathbb{C}
$$

Example 2

Consider the nonlinear Schrödinger equation

$$
i u_{t}+\frac{1}{2} u_{x x}+|u|^{2} u=0, \quad u(x, t): \mathbb{R}^{2} \rightarrow \mathbb{C}
$$

"Galilean symmetry", with parameter v

$$
U(x, t, u)=\exp (-i v(x+v t / 2)) u, \quad X=x+v t, \quad T=t .
$$

Example 2

Consider the nonlinear Schrödinger equation

$$
i u_{t}+\frac{1}{2} u_{x x}+|u|^{2} u=0, \quad u(x, t): \mathbb{R}^{2} \rightarrow \mathbb{C}
$$

"Galilean symmetry", with parameter v

$$
U(x, t, u)=\exp (-i v(x+v t / 2)) u, \quad X=x+v t, \quad T=t .
$$

Check $w(x, t)=\exp (-i v(x+V t / 2)) u(x+V t, t)$ is a solution:

$$
\begin{aligned}
& i w_{t}+\frac{1}{2} w_{x x}+|w|^{2} w= \\
& e^{-i V(x+V t / 2)}\left\{i\left(\frac{-i V^{2}}{2} u+u_{t}+V u_{x}\right)+\frac{1}{2}\left(-V^{2} u-2 i V u_{x}+u_{x x}\right)+|u|^{2} u\right\} \\
& =e^{-i V(x+V t / 2)}\left\{u_{t}+\frac{1}{2} u_{x x}+|u|^{2} u\right\}=0 .
\end{aligned}
$$

Dilation symmetries

Special type of symmetry involves rescaling space and time

$$
x^{\prime}=\frac{x}{L}, \quad t^{\prime}=\frac{t}{L^{\beta}},
$$

where $L>0$.

Dilation symmetries

Special type of symmetry involves rescaling space and time

$$
x^{\prime}=\frac{x}{L}, \quad t^{\prime}=\frac{t}{L^{\beta}},
$$

where $L>0$.
Mapping $u(x, t)$ to $u\left(x / L, t / L^{\beta}\right)$ is called a dilation symmetry.

Dilation symmetries

Special type of symmetry involves rescaling space and time

$$
x^{\prime}=\frac{x}{L}, \quad t^{\prime}=\frac{t}{L^{\beta}},
$$

where $L>0$.
Mapping $u(x, t)$ to $u\left(x / L, t / L^{\beta}\right)$ is called a dilation symmetry.

Example: consider transport equation $u_{t}+c u_{x}=0$.

Dilation symmetries

Special type of symmetry involves rescaling space and time

$$
x^{\prime}=\frac{x}{L}, \quad t^{\prime}=\frac{t}{L^{\beta}},
$$

where $L>0$.
Mapping $u(x, t)$ to $u\left(x / L, t / L^{\beta}\right)$ is called a dilation symmetry.

Example: consider transport equation $u_{t}+c u_{x}=0$.
Given solution $u(x, t)$, for which β is $u\left(x / L, t / L^{\beta}\right)$ also a solution?

Dilation symmetries

Special type of symmetry involves rescaling space and time

$$
x^{\prime}=\frac{x}{L}, \quad t^{\prime}=\frac{t}{L^{\beta}},
$$

where $L>0$.
Mapping $u(x, t)$ to $u\left(x / L, t / L^{\beta}\right)$ is called a dilation symmetry.

Example: consider transport equation $u_{t}+c u_{x}=0$.
Given solution $u(x, t)$, for which β is $u\left(x / L, t / L^{\beta}\right)$ also a solution?

$$
\frac{u_{t}\left(x / L, t / L^{\beta}\right)}{L^{\beta}}+c \frac{u_{x}\left(x / L, t / L^{\beta}\right)}{L}=0
$$

therefore need $\beta=1$.
For example, given solution $u=\sin (x-c t)$, can construct a new solution $u=\sin ([x-c t] / L)$.

Dilation symmetries, example 2

Consider symmetries $(x, y) \rightarrow\left(x / L, y / L^{\beta}\right)$ for

$$
u_{x}+y^{2} u_{y}=0
$$

Dilation symmetries, example 2

Consider symmetries $(x, y) \rightarrow\left(x / L, y / L^{\beta}\right)$ for

$$
u_{x}+y^{2} u_{y}=0,
$$

Substituting $u\left(x / L, y / L^{\beta}\right)$ in for u,

$$
L^{-1} u_{x}\left(x / L, y / L^{\beta}\right)+L^{-\beta} y^{2} u_{y}\left(x / L, y / L^{\beta}\right)=0 .
$$

Dilation symmetries, example 2

Consider symmetries $(x, y) \rightarrow\left(x / L, y / L^{\beta}\right)$ for

$$
u_{x}+y^{2} u_{y}=0
$$

Substituting $u\left(x / L, y / L^{\beta}\right)$ in for u,

$$
L^{-1} u_{x}\left(x / L, y / L^{\beta}\right)+L^{-\beta} y^{2} u_{y}\left(x / L, y / L^{\beta}\right)=0
$$

Caution! This is not the same as original equation since derivatives are evaluated where y is replaced with y / L^{β}, but the y^{2} coefficient is not.

Dilation symmetries, example 2

Consider symmetries $(x, y) \rightarrow\left(x / L, y / L^{\beta}\right)$ for

$$
u_{x}+y^{2} u_{y}=0
$$

Substituting $u\left(x / L, y / L^{\beta}\right)$ in for u,

$$
L^{-1} u_{x}\left(x / L, y / L^{\beta}\right)+L^{-\beta} y^{2} u_{y}\left(x / L, y / L^{\beta}\right)=0
$$

Caution! This is not the same as original equation since derivatives are evaluated where y is replaced with y / L^{β}, but the y^{2} coefficient is not.

Remedy: rewrite as

$$
L^{-1} u_{x}\left(x / L, y / L^{\beta}\right)+L^{\beta}\left(y / L^{\beta}\right)^{2} u_{y}\left(x / L, y / L^{\beta}\right)=0 .
$$

which means $\beta=-1$.

Dilation symmetries, cont.

More general symmetry rescales dependent variable also:

$$
(x, t, u) \rightarrow\left(x / L, t / L^{\beta}, u / L^{\gamma}\right) .
$$

Dilation symmetries, cont.

More general symmetry rescales dependent variable also:

$$
(x, t, u) \rightarrow\left(x / L, t / L^{\beta}, u / L^{\gamma}\right) .
$$

Exponents β, γ found by substituting $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$.

Dilation symmetries, cont.

More general symmetry rescales dependent variable also:

$$
(x, t, u) \rightarrow\left(x / L, t / L^{\beta}, u / L^{\gamma}\right)
$$

Exponents β, γ found by substituting $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$.
Example: consider nonlinear convection diffusion equation

$$
u_{t}=u u_{x x}-u_{x} .
$$

Dilation symmetries, cont.

More general symmetry rescales dependent variable also:

$$
(x, t, u) \rightarrow\left(x / L, t / L^{\beta}, u / L^{\gamma}\right)
$$

Exponents β, γ found by substituting $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$.
Example: consider nonlinear convection diffusion equation

$$
u_{t}=u u_{x x}-u_{x} .
$$

Substitute $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$ for u,

$$
L^{-\gamma-\beta} u_{t}=L^{-2 \gamma-2} u u_{x x}-L^{-\gamma-1} u_{x}, \quad \text { evaluated at }\left(x / L, t / L^{\beta}\right) .
$$

Dilation symmetries, cont.

More general symmetry rescales dependent variable also:

$$
(x, t, u) \rightarrow\left(x / L, t / L^{\beta}, u / L^{\gamma}\right)
$$

Exponents β, γ found by substituting $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$.
Example: consider nonlinear convection diffusion equation

$$
u_{t}=u u_{x x}-u_{x}
$$

Substitute $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$ for u,

$$
L^{-\gamma-\beta} u_{t}=L^{-2 \gamma-2} u u_{x x}-L^{-\gamma-1} u_{x}, \quad \text { evaluated at }\left(x / L, t / L^{\beta}\right) .
$$

It follows $\gamma+\beta=2 \gamma+2=\gamma+1$, so that $\beta=1$ and $\gamma=-1$.

Similarity solutions

Suppose a PDE has a symmetry transformation $(x, t) \rightarrow\left(x / L, t / L^{\beta}\right)$.

Similarity solutions

Suppose a PDE has a symmetry transformation $(x, t) \rightarrow\left(x / L, t / L^{\beta}\right)$.

A solution $u=f(\eta)$ is called a similarity solution, where $\eta=x / t^{1 / \beta}$ is called the similarity variable.

Similarity solutions

Suppose a PDE has a symmetry transformation $(x, t) \rightarrow\left(x / L, t / L^{\beta}\right)$.

A solution $u=f(\eta)$ is called a similarity solution, where $\eta=x / t^{1 / \beta}$ is called the similarity variable.

Practical benefit: reduces problem to ODE for $f(\eta)$.

Similarity solutions

Suppose a PDE has a symmetry transformation $(x, t) \rightarrow\left(x / L, t / L^{\beta}\right)$.

A solution $u=f(\eta)$ is called a similarity solution, where $\eta=x / t^{1 / \beta}$ is called the similarity variable.

Practical benefit: reduces problem to ODE for $f(\eta)$.
Similarity solutions are often physically important since they are scale invariant.

Invariance of similarity solutions

Fact: similarity solutions are the only ones which remain the same under symmetry transformation.

Invariance of similarity solutions

Fact: similarity solutions are the only ones which remain the same under symmetry transformation.
If $u(x, t)=f(\eta)$ is a similarity solution,

$$
u\left(x / L, t / L^{\beta}\right)=f\left(\frac{x / L}{\left(t / L^{\beta}\right)^{1 / \beta}}\right)=f\left(\frac{x}{t^{1 / \beta}}\right)=u(x, t)
$$

Invariance of similarity solutions

Fact: similarity solutions are the only ones which remain the same under symmetry transformation.
If $u(x, t)=f(\eta)$ is a similarity solution,

$$
u\left(x / L, t / L^{\beta}\right)=f\left(\frac{x / L}{\left(t / L^{\beta}\right)^{1 / \beta}}\right)=f\left(\frac{x}{t^{1 / \beta}}\right)=u(x, t)
$$

Conversely, if $u(x, t)$ is invariant under symmetry transformation, can be written in terms of new variables $w(\eta, \xi)$, where

$$
\eta=\frac{x}{t^{1 / \beta}}, \quad \xi=x t
$$

Invariance of similarity solutions

Fact: similarity solutions are the only ones which remain the same under symmetry transformation.
If $u(x, t)=f(\eta)$ is a similarity solution,

$$
u\left(x / L, t / L^{\beta}\right)=f\left(\frac{x / L}{\left(t / L^{\beta}\right)^{1 / \beta}}\right)=f\left(\frac{x}{t^{1 / \beta}}\right)=u(x, t)
$$

Conversely, if $u(x, t)$ is invariant under symmetry transformation, can be written in terms of new variables $w(\eta, \xi)$, where

$$
\eta=\frac{x}{t^{1 / \beta}}, \quad \xi=x t
$$

The transformation in terms of the new variables is $(\eta, \xi) \rightarrow\left(\eta, \xi / L^{\beta+1}\right)$, so that

$$
w(\eta, \xi)=w\left(\eta, \xi / L^{\beta+1}\right)
$$

Invariance of similarity solutions

Fact: similarity solutions are the only ones which remain the same under symmetry transformation.
If $u(x, t)=f(\eta)$ is a similarity solution,

$$
u\left(x / L, t / L^{\beta}\right)=f\left(\frac{x / L}{\left(t / L^{\beta}\right)^{1 / \beta}}\right)=f\left(\frac{x}{t^{1 / \beta}}\right)=u(x, t)
$$

Conversely, if $u(x, t)$ is invariant under symmetry transformation, can be written in terms of new variables $w(\eta, \xi)$, where

$$
\eta=\frac{x}{t^{1 / \beta}}, \quad \xi=x t
$$

The transformation in terms of the new variables is $(\eta, \xi) \rightarrow\left(\eta, \xi / L^{\beta+1}\right)$, so that

$$
w(\eta, \xi)=w\left(\eta, \xi / L^{\beta+1}\right)
$$

Differentiating with respect to L and setting $L=1$,

$$
w_{\xi}\left(\eta, \xi / L^{\beta+1}\right) \xi=0
$$

which means $w=w(\eta)$.

Example

Consider the diffusion equation

$$
u_{t}=D u_{x x}, \quad-\infty<x<\infty .
$$

Example

Consider the diffusion equation

$$
u_{t}=D u_{x x}, \quad-\infty<x<\infty .
$$

Find $u\left(x / L, t / L^{\beta}\right)$ is also a solution provided $\beta=2$.

Example

Consider the diffusion equation

$$
u_{t}=D u_{x x}, \quad-\infty<x<\infty
$$

Find $u\left(x / L, t / L^{\beta}\right)$ is also a solution provided $\beta=2$.
Seek similarity solution $u=f(\eta)$ where $\eta=x / \sqrt{t}$. Substitution into equation gives

$$
D f^{\prime \prime}(\eta)+\frac{\eta}{2} f^{\prime}(\eta)=0
$$

Example

Consider the diffusion equation

$$
u_{t}=D u_{x x}, \quad-\infty<x<\infty
$$

Find $u\left(x / L, t / L^{\beta}\right)$ is also a solution provided $\beta=2$.
Seek similarity solution $u=f(\eta)$ where $\eta=x / \sqrt{t}$. Substitution into equation gives

$$
D f^{\prime \prime}(\eta)+\frac{\eta}{2} f^{\prime}(\eta)=0
$$

Separation of variables gives

$$
f^{\prime}(\eta)=C e^{-\eta^{2} / 4 D}
$$

therefore

$$
f(\eta)=C_{1} \operatorname{erf}(\eta / 4 D)+C_{2}, \quad \operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-y^{2}} d y
$$

More general similarity solutions

For the more general dilation symmetry,

$$
(x, t, u) \rightarrow\left(x / L, t / L^{\beta}, u / L^{\gamma}\right)
$$

seek solutions of form

$$
u=t^{-\gamma / \beta} f(\eta), \quad \eta=x / t^{1 / \beta}
$$

More general similarity solutions

For the more general dilation symmetry,

$$
(x, t, u) \rightarrow\left(x / L, t / L^{\beta}, u / L^{\gamma}\right)
$$

seek solutions of form

$$
u=t^{-\gamma / \beta} f(\eta), \quad \eta=x / t^{1 / \beta}
$$

These solutions are invariant under the transformation:

$$
\begin{aligned}
L^{-\gamma} u\left(x / L, t / L^{\beta}\right) & =L^{-\gamma}\left(t / L^{\beta}\right)^{-\gamma / \beta} f\left(\frac{x / L}{\left(t / L^{\beta}\right)^{1 / \beta}}\right) \\
& =t^{-\gamma / \beta} f\left(\frac{x}{t^{1 / \beta}}\right)=u(x, t)
\end{aligned}
$$

Example

Consider the nonlinear diffusion equation

$$
u_{t}=u u_{x x}-u^{3} .
$$

Example

Consider the nonlinear diffusion equation

$$
u_{t}=u u_{x x}-u^{3}
$$

Plug in $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$,

$$
\begin{aligned}
\frac{1}{L^{\gamma+\beta}} u\left(x / L, t / L^{\beta}\right) & =\frac{1}{L^{2 \gamma+2}} u\left(x / L, t / L^{\beta}\right) u_{x x}\left(x / L, t / L^{\beta}\right) \\
& -\frac{1}{L^{3 \gamma}} u\left(x / L, t / L^{\beta}\right)^{3} .
\end{aligned}
$$

Example

Consider the nonlinear diffusion equation

$$
u_{t}=u u_{x x}-u^{3}
$$

Plug in $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$,

$$
\begin{aligned}
\frac{1}{L^{\gamma+\beta}} u\left(x / L, t / L^{\beta}\right) & =\frac{1}{L^{2 \gamma+2}} u\left(x / L, t / L^{\beta}\right) u_{x x}\left(x / L, t / L^{\beta}\right) \\
& -\frac{1}{L^{3 \gamma}} u\left(x / L, t / L^{\beta}\right)^{3} .
\end{aligned}
$$

Need $\gamma+\beta=2 \gamma+2=3 \gamma$, so that $\gamma=2$ and $\beta=4$.

Example

Consider the nonlinear diffusion equation

$$
u_{t}=u u_{x x}-u^{3} .
$$

Plug in $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$,

$$
\begin{aligned}
\frac{1}{L^{\gamma+\beta}} u\left(x / L, t / L^{\beta}\right) & =\frac{1}{L^{2 \gamma+2}} u\left(x / L, t / L^{\beta}\right) u_{x x}\left(x / L, t / L^{\beta}\right) \\
& -\frac{1}{L^{3 \gamma}} u\left(x / L, t / L^{\beta}\right)^{3} .
\end{aligned}
$$

Need $\gamma+\beta=2 \gamma+2=3 \gamma$, so that $\gamma=2$ and $\beta=4$.
Similarity solution will have the form

$$
u=t^{-1 / 2} f(\eta), \quad \eta=x / t^{1 / 4}
$$

Example

Consider the nonlinear diffusion equation

$$
u_{t}=u u_{x x}-u^{3}
$$

Plug in $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$,

$$
\begin{aligned}
\frac{1}{L^{\gamma+\beta}} u\left(x / L, t / L^{\beta}\right) & =\frac{1}{L^{2 \gamma+2}} u\left(x / L, t / L^{\beta}\right) u_{x x}\left(x / L, t / L^{\beta}\right) \\
& -\frac{1}{L^{3 \gamma}} u\left(x / L, t / L^{\beta}\right)^{3} .
\end{aligned}
$$

Need $\gamma+\beta=2 \gamma+2=3 \gamma$, so that $\gamma=2$ and $\beta=4$.
Similarity solution will have the form

$$
u=t^{-1 / 2} f(\eta), \quad \eta=x / t^{1 / 4} .
$$

Plugging into equation gives

$$
-\frac{1}{2} f-\frac{\eta}{4} f^{\prime}=f f^{\prime \prime}-f^{3} .
$$

Need to find solution numerically!

Incomplete similarity

Sometimes scaling exponents are not uniquely determined; this situation is called incomplete similarity.

Incomplete similarity

Sometimes scaling exponents are not uniquely determined; this situation is called incomplete similarity.

Extra conditions are required to fix the value of the exponents.

Incomplete similarity

Sometimes scaling exponents are not uniquely determined; this situation is called incomplete similarity.

Extra conditions are required to fix the value of the exponents.
Example: for diffusion equation $u_{t}=D u_{x x}$, inserting $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$ into the equation gives $L^{-\gamma-\beta} u_{t}=D L^{-\gamma-2} u_{x x}$. Thus $\beta=2$ but γ is arbitrary.

Incomplete similarity

Sometimes scaling exponents are not uniquely determined; this situation is called incomplete similarity.

Extra conditions are required to fix the value of the exponents.
Example: for diffusion equation $u_{t}=D u_{x x}$, inserting $L^{-\gamma} u\left(x / L, t / L^{\beta}\right)$ into the equation gives $L^{-\gamma-\beta} u_{t}=D L^{-\gamma-2} u_{x x}$. Thus $\beta=2$ but γ is arbitrary.

Already found solution with $\gamma=0$,

$$
f(\eta)=C_{1} \operatorname{erf}(\eta / 4 D)+C_{2}
$$

but this does not decay at $\pm \infty$.

Incomplete similarity, cont.

Suppose we want $u(\pm \infty)=0$. This implies conservation

$$
\frac{d}{d t} \int_{-\infty}^{\infty} u(x, t) d x=0
$$

Incomplete similarity, cont.

Suppose we want $u(\pm \infty)=0$. This implies conservation

$$
\frac{d}{d t} \int_{-\infty}^{\infty} u(x, t) d x=0
$$

Inserting solution of form $u=t^{\alpha} f\left(x / t^{1 / \beta}\right)$ and changing variables

$$
\frac{d}{d t} \int_{-\infty}^{\infty} t^{\alpha+1 / \beta} f(\eta) d \eta=0
$$

therefore $\alpha=-1 / \beta=-1 / 2$.

Incomplete similarity, cont.

Suppose we want $u(\pm \infty)=0$. This implies conservation

$$
\frac{d}{d t} \int_{-\infty}^{\infty} u(x, t) d x=0
$$

Inserting solution of form $u=t^{\alpha} f\left(x / t^{1 / \beta}\right)$ and changing variables

$$
\frac{d}{d t} \int_{-\infty}^{\infty} t^{\alpha+1 / \beta} f(\eta) d \eta=0
$$

therefore $\alpha=-1 / \beta=-1 / 2$.
Substituting $u=t^{-1 / 2} f\left(x / t^{1 / 2}\right)$, get ODE

$$
f^{\prime \prime}+\frac{\eta}{2} f^{\prime}+\frac{1}{2} f=f^{\prime \prime}+\frac{1}{2}(\eta f)^{\prime}=0
$$

Using the condition $f(\pm \infty)=0$, integration gives

$$
f^{\prime}=-\frac{1}{2} \eta f, \quad d f / f=-\frac{1}{2} \eta d \eta, \quad f(\eta)=C e^{-\eta^{2} / 4} .
$$

Incomplete similarity, cont.

Suppose we want $u(\pm \infty)=0$. This implies conservation

$$
\frac{d}{d t} \int_{-\infty}^{\infty} u(x, t) d x=0
$$

Inserting solution of form $u=t^{\alpha} f\left(x / t^{1 / \beta}\right)$ and changing variables

$$
\frac{d}{d t} \int_{-\infty}^{\infty} t^{\alpha+1 / \beta} f(\eta) d \eta=0
$$

therefore $\alpha=-1 / \beta=-1 / 2$.
Substituting $u=t^{-1 / 2} f\left(x / t^{1 / 2}\right)$, get ODE

$$
f^{\prime \prime}+\frac{\eta}{2} f^{\prime}+\frac{1}{2} f=f^{\prime \prime}+\frac{1}{2}(\eta f)^{\prime}=0
$$

Using the condition $f(\pm \infty)=0$, integration gives

$$
f^{\prime}=-\frac{1}{2} \eta f, \quad d f / f=-\frac{1}{2} \eta d \eta, \quad f(\eta)=C e^{-\eta^{2} / 4} .
$$

With $C=1 / \sqrt{4 \pi}$ get fundamental solution

$$
u=(4 \pi t)^{-1 / 2} e^{-x^{2} / 4 t}
$$

Similarity solutions, Example 1

Consider nonlinear transport equation

$$
u_{t}+u u_{x}=0
$$

Symmetry of the form $u(x, t) \rightarrow u\left(x / L, t / L^{\beta}\right)$ leads to $\beta=1$.

Similarity solutions, Example 1

Consider nonlinear transport equation

$$
u_{t}+u u_{x}=0
$$

Symmetry of the form $u(x, t) \rightarrow u\left(x / L, t / L^{\beta}\right)$ leads to $\beta=1$.
Look for similarity solution $u=f(x / t)$. Plugging in,

$$
-\frac{x}{t^{2}} f^{\prime}+\frac{1}{t} f f^{\prime}=0
$$

or

$$
f^{\prime}(f-\eta)=0 .
$$

Similarity solutions, Example 1

Consider nonlinear transport equation

$$
u_{t}+u u_{x}=0
$$

Symmetry of the form $u(x, t) \rightarrow u\left(x / L, t / L^{\beta}\right)$ leads to $\beta=1$.
Look for similarity solution $u=f(x / t)$. Plugging in,

$$
-\frac{x}{t^{2}} f^{\prime}+\frac{1}{t} f f^{\prime}=0
$$

or

$$
f^{\prime}(f-\eta)=0 .
$$

Either $f^{\prime}=0$, or $f=\eta$. Latter choice leads to solution

$$
u(x, t)=\eta=\frac{x}{t} .
$$

i.e. a rarefaction wave.

Similarity solutions,Example 2

A model for a convective thermal layer is

$$
3 y u_{x}-u_{y y}=0, \quad u(0, y)=1, \quad u(x, 0)=0 .
$$

Similarity solutions,Example 2

A model for a convective thermal layer is

$$
3 y u_{x}-u_{y y}=0, \quad u(0, y)=1, \quad u(x, 0)=0
$$

Treat x like the time variable, substitute $u\left(x / L^{\beta}, y / L\right)$

$$
\frac{3 y}{L^{\beta}} u_{x}\left(x / L^{\beta}, y / L\right)-\frac{1}{L^{2}} u_{y y}\left(x / L^{\beta}, y / L\right)=0 .
$$

Similarity solutions,Example 2

A model for a convective thermal layer is

$$
3 y u_{x}-u_{y y}=0, \quad u(0, y)=1, \quad u(x, 0)=0
$$

Treat x like the time variable, substitute $u\left(x / L^{\beta}, y / L\right)$

$$
\frac{3 y}{L^{\beta}} u_{x}\left(x / L^{\beta}, y / L\right)-\frac{1}{L^{2}} u_{y y}\left(x / L^{\beta}, y / L\right)=0 .
$$

Note: to make this like original equation, y should be replaced by y / L everywhere.

Similarity solutions,Example 2

A model for a convective thermal layer is

$$
3 y u_{x}-u_{y y}=0, \quad u(0, y)=1, \quad u(x, 0)=0 .
$$

Treat x like the time variable, substitute $u\left(x / L^{\beta}, y / L\right)$

$$
\frac{3 y}{L^{\beta}} u_{x}\left(x / L^{\beta}, y / L\right)-\frac{1}{L^{2}} u_{y y}\left(x / L^{\beta}, y / L\right)=0 .
$$

Note: to make this like original equation, y should be replaced by y / L everywhere. Write as:

$$
\frac{3(y / L)}{L^{\beta-1}} u_{x}\left(x / L^{\beta}, y / L\right)-\frac{1}{L^{2}} u_{y y}\left(x / L^{\beta}, y / L\right)=0 .
$$

therefore $u\left(x / L^{\beta}, y / L\right)$ is still a solution if $\beta=3$.

Similarity solutions,Example 2, cont.

Plug in similarity ansatz $u=f(\eta), \eta=y / x^{1 / 3}$,

$$
-\eta^{2} f^{\prime}(\eta)-f^{\prime \prime}(\eta)=0, \quad f(0)=0, \quad \lim _{\eta \rightarrow \infty} f(\eta)=1 .
$$

Similarity solutions,Example 2, cont.

Plug in similarity ansatz $u=f(\eta), \eta=y / x^{1 / 3}$,

$$
-\eta^{2} f^{\prime}(\eta)-f^{\prime \prime}(\eta)=0, \quad f(0)=0, \quad \lim _{\eta \rightarrow \infty} f(\eta)=1
$$

Separate variables $f^{\prime \prime} / f^{\prime}=-\eta^{2}$ and integrate

$$
f^{\prime}=A e^{-\eta^{3} / 3}
$$

and integrate again

$$
f=A \int_{0}^{\eta} e^{-s^{3} / 3} d s+B
$$

Using the boundary conditions, $B=0$ and

$$
A=\left(\int_{0}^{\infty} e^{-s^{3} / 3} d s\right)^{-1}
$$

Similarity solutions, Example 3

An unwinding fluid vortex is described by

$$
v_{t}=\left(\frac{1}{r}[r v]_{r}\right)_{r}, \quad r>0, \quad v(r, 0)=\frac{1}{r} .
$$

Similarity solutions, Example 3

An unwinding fluid vortex is described by

$$
v_{t}=\left(\frac{1}{r}[r v]_{r}\right)_{r}, \quad r>0, \quad v(r, 0)=\frac{1}{r} .
$$

Inserting $L^{-\gamma} \boldsymbol{v}\left(r / L, t / L^{\beta}\right)$

$$
\frac{1}{L^{\beta+\gamma}} v_{t}\left(r / L, t / L^{\beta}\right)=\frac{1}{L^{2+\gamma}}\left(\frac{1}{(r / L)}\left[(r / L) v\left(r / L, t / L^{\beta}\right)\right]_{r}\right)_{r},
$$

thus $\beta=2$ but γ is undetermined.

Similarity solutions, Example 3

An unwinding fluid vortex is described by

$$
v_{t}=\left(\frac{1}{r}[r v]_{r}\right)_{r}, \quad r>0, \quad v(r, 0)=\frac{1}{r} .
$$

Inserting $L^{-\gamma} \boldsymbol{v}\left(r / L, t / L^{\beta}\right)$

$$
\frac{1}{L^{\beta+\gamma}} v_{t}\left(r / L, t / L^{\beta}\right)=\frac{1}{L^{2+\gamma}}\left(\frac{1}{(r / L)}\left[(r / L) v\left(r / L, t / L^{\beta}\right)\right]_{r}\right)_{r},
$$

thus $\beta=2$ but γ is undetermined.
To be compatible with initial condition, insert $L^{-\gamma} v(r / L, 0)$

$$
L^{-\gamma} v(r / L, 0)=L^{-1}(r / L)^{-1}, \quad \text { therefore } \gamma=1 .
$$

Similarity solutions, Example 3 cont.

Since

$$
t^{-1 / 2} f\left(r / t^{1 / 2}\right)=\frac{1}{r}\left[\eta^{-1} f\left(r / t^{1 / 2}\right)\right],
$$

easier to look for solution of form

$$
v=\frac{f(\eta)}{r}, \quad \eta=r^{2} / t, \quad \lim _{\eta \rightarrow \infty} f(\eta)=1 .
$$

Similarity solutions, Example 3 cont.

Since

$$
t^{-1 / 2} f\left(r / t^{1 / 2}\right)=\frac{1}{r}\left[\eta^{-1} f\left(r / t^{1 / 2}\right)\right]
$$

easier to look for solution of form

$$
v=\frac{f(\eta)}{r}, \quad \eta=r^{2} / t, \quad \lim _{\eta \rightarrow \infty} f(\eta)=1
$$

Substitution gives $f^{\prime}+4 f^{\prime \prime}=0$ whose general solution is

$$
f(r)=A+B e^{-\eta / 4}
$$

Similarity solutions, Example 3 cont.

Since

$$
t^{-1 / 2} f\left(r / t^{1 / 2}\right)=\frac{1}{r}\left[\eta^{-1} f\left(r / t^{1 / 2}\right)\right],
$$

easier to look for solution of form

$$
v=\frac{f(\eta)}{r}, \quad \eta=r^{2} / t, \quad \lim _{\eta \rightarrow \infty} f(\eta)=1 .
$$

Substitution gives $f^{\prime}+4 f^{\prime \prime}=0$ whose general solution is

$$
f(r)=A+B e^{-\eta / 4} .
$$

In original variables

$$
v(r, t)=\frac{1}{r}\left(1+B \exp \left(-\frac{r^{2}}{4 t}\right)\right) .
$$

For bounded solution at origin, $B=-1$.

Similarity solutions, Example 4.

The porous medium equation is

$$
u_{t}=\left(u u_{x}\right)_{x} .
$$

If $L^{-\gamma} u\left(r / L, t / L^{\beta}\right)$ is a solution, need $\beta=2+\gamma$.

Similarity solutions, Example 4.

The porous medium equation is

$$
u_{t}=\left(u u_{x}\right)_{x}
$$

If $L^{-\gamma} u\left(r / L, t / L^{\beta}\right)$ is a solution, need $\beta=2+\gamma$.
Equation is a conservation law with flux $J=-u u_{x}$, so that

$$
\frac{d}{d t} \int_{-\infty}^{\infty} u(x, t) d x=0, \quad \text { if } J(\pm \infty)=0
$$

Similarity solutions, Example 4.

The porous medium equation is

$$
u_{t}=\left(u u_{x}\right)_{x}
$$

If $L^{-\gamma} u\left(r / L, t / L^{\beta}\right)$ is a solution, need $\beta=2+\gamma$.
Equation is a conservation law with flux $J=-u u_{x}$, so that

$$
\frac{d}{d t} \int_{-\infty}^{\infty} u(x, t) d x=0, \quad \text { if } J(\pm \infty)=0
$$

Inserting

$$
u=t^{-\gamma / \beta} f(\eta), \quad \eta=x / t^{1 / \beta}
$$

then

$$
\int_{-\infty}^{\infty} u(x, t) d x=t^{(1-\gamma) / \beta} \int_{-\infty}^{\infty} f(\eta) d \eta
$$

which means that $\gamma=1, \beta=3$.

Similarity solutions, Example 4, cont.

Similarity solution $u=t^{-1 / 3} f(\eta), \eta=x / t^{1 / 3}$ solves

$$
-\frac{1}{3}(\eta f)^{\prime}=\left(f f^{\prime}\right)^{\prime}
$$

Similarity solutions, Example 4, cont.

Similarity solution $u=t^{-1 / 3} f(\eta), \eta=x / t^{1 / 3}$ solves

$$
-\frac{1}{3}(\eta f)^{\prime}=\left(f f^{\prime}\right)^{\prime}
$$

Integration twice (assuming $f^{\prime}(0)=0$ or $f(\pm \infty)=0$) gives

$$
f=B-\frac{\eta^{2}}{6}
$$

Similarity solutions, Example 4, cont.

Similarity solution $u=t^{-1 / 3} f(\eta), \eta=x / t^{1 / 3}$ solves

$$
-\frac{1}{3}(\eta f)^{\prime}=\left(f f^{\prime}\right)^{\prime}
$$

Integration twice (assuming $f^{\prime}(0)=0$ or $f(\pm \infty)=0$) gives

$$
f=B-\frac{\eta^{2}}{6}
$$

Problem! f is not positive (unphysical), and $J(\pm \infty) \neq 0$.

Similarity solutions, Example 4, cont.

Similarity solution $u=t^{-1 / 3} f(\eta), \eta=x / t^{1 / 3}$ solves

$$
-\frac{1}{3}(\eta f)^{\prime}=\left(f f^{\prime}\right)^{\prime} .
$$

Integration twice (assuming $f^{\prime}(0)=0$ or $f(\pm \infty)=0$) gives

$$
f=B-\frac{\eta^{2}}{6} .
$$

Problem! f is not positive (unphysical), and $J(\pm \infty) \neq 0$. Solution: just take positive part, so that

$$
u(x, t)= \begin{cases}t^{-1 / 3}\left(B-\frac{x^{2}}{6 t^{2 / 3}}\right) & x^{2}<6 B t^{2 / 3}, \\ 0 & x^{2}>6 B t^{2 / 3} .\end{cases}
$$

Observation: value of B determines total mass $\int u d x$, and this is constant in time.

