
Symmetries of partial differential equations

Basic idea: get new solutions from existing ones using a
transformation.

For example, if u(x , t) solves ut = uxx , so does u(x − x0, t − t0).
This is a translation symmetry.

Also, if u(x , t) solves ut = uxx , so does u(−x , t). This is a
reflection symmetry. Note u(x ,−t) is not a solution, however!
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Symmetry transformations

Given a function u(x , t), transform both independent and
dependent variables by a mapping

(x , t ,u)→ (x ′, t ′,u′)

or explicitly

x ′ = X (x , t ,u), t ′ = T (x , t ,u), u′ = U(x , t ,u).

A partial differential equation is said to have a symmetry if

u′(x , t) = U(x , t ,u(X (x , t ,u),T (x , t ,u)))

is a solution, given that u(x , t) is.
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Example 1

Consider equation
ut = uuxx

and transformation

x ′ = −x , t ′ = −t , ,u′ = −u.

Given solution u(x , t), check u′(x , t) = −u(−x ,−t) also works:

∂t

(
− u(−x ,−t)

)
= ut(−x ,−t), and(

− u(−x ,−t)
)
∂xx

(
− u(−x ,−t)

)
= u(−x ,−t)uxx(−x ,−t).
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Example 2

Consider the nonlinear Schrödinger equation

iut +
1
2

uxx + |u|2u = 0, u(x , t) : R2 → C.

“Galilean symmetry", with parameter v

U(x , t , u) = exp(−iv(x + vt/2))u, X = x + vt , T = t .

Check w(x , t) = exp(−iv(x + Vt/2))u(x + Vt , t) is a solution:

iwt +
1
2

wxx + |w |2w =

e−iV (x+Vt/2)
{

i
(
−iV 2

2
u + ut + Vux

)
+

1
2

(
−V 2u − 2iVux + uxx

)
+ |u|2u

}
= e−iV (x+Vt/2)

{
ut +

1
2

uxx + |u|2u
}

= 0.
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Dilation symmetries

Special type of symmetry involves rescaling space and time

x ′ =
x
L
, t ′ =

t
Lβ
,

where L > 0.

Mapping u(x , t) to u(x/L, t/Lβ) is called a dilation symmetry.

Example: consider transport equation ut + cux = 0.

Given solution u(x , t), for which β is u(x/L, t/Lβ) also a
solution?

ut(x/L, t/Lβ)
Lβ

+ c
ux(x/L, t/Lβ)

L
= 0,

therefore need β = 1.

For example, given solution u = sin(x − ct), can construct a
new solution u = sin([x − ct ]/L).



Dilation symmetries

Special type of symmetry involves rescaling space and time

x ′ =
x
L
, t ′ =

t
Lβ
,

where L > 0.

Mapping u(x , t) to u(x/L, t/Lβ) is called a dilation symmetry.

Example: consider transport equation ut + cux = 0.

Given solution u(x , t), for which β is u(x/L, t/Lβ) also a
solution?

ut(x/L, t/Lβ)
Lβ

+ c
ux(x/L, t/Lβ)

L
= 0,

therefore need β = 1.

For example, given solution u = sin(x − ct), can construct a
new solution u = sin([x − ct ]/L).



Dilation symmetries

Special type of symmetry involves rescaling space and time

x ′ =
x
L
, t ′ =

t
Lβ
,

where L > 0.

Mapping u(x , t) to u(x/L, t/Lβ) is called a dilation symmetry.

Example: consider transport equation ut + cux = 0.

Given solution u(x , t), for which β is u(x/L, t/Lβ) also a
solution?

ut(x/L, t/Lβ)
Lβ

+ c
ux(x/L, t/Lβ)

L
= 0,

therefore need β = 1.

For example, given solution u = sin(x − ct), can construct a
new solution u = sin([x − ct ]/L).



Dilation symmetries

Special type of symmetry involves rescaling space and time

x ′ =
x
L
, t ′ =

t
Lβ
,

where L > 0.

Mapping u(x , t) to u(x/L, t/Lβ) is called a dilation symmetry.

Example: consider transport equation ut + cux = 0.

Given solution u(x , t), for which β is u(x/L, t/Lβ) also a
solution?

ut(x/L, t/Lβ)
Lβ

+ c
ux(x/L, t/Lβ)

L
= 0,

therefore need β = 1.

For example, given solution u = sin(x − ct), can construct a
new solution u = sin([x − ct ]/L).



Dilation symmetries

Special type of symmetry involves rescaling space and time

x ′ =
x
L
, t ′ =

t
Lβ
,

where L > 0.

Mapping u(x , t) to u(x/L, t/Lβ) is called a dilation symmetry.

Example: consider transport equation ut + cux = 0.

Given solution u(x , t), for which β is u(x/L, t/Lβ) also a
solution?

ut(x/L, t/Lβ)
Lβ

+ c
ux(x/L, t/Lβ)

L
= 0,

therefore need β = 1.

For example, given solution u = sin(x − ct), can construct a
new solution u = sin([x − ct ]/L).



Dilation symmetries, example 2

Consider symmetries (x , y)→ (x/L, y/Lβ) for

ux + y2uy = 0,

Substituting u(x/L, y/Lβ) in for u,

L−1ux(x/L, y/Lβ) + L−βy2uy (x/L, y/Lβ) = 0.

Caution! This is not the same as original equation since
derivatives are evaluated where y is replaced with y/Lβ, but the
y2 coefficient is not.

Remedy: rewrite as

L−1ux(x/L, y/Lβ) + Lβ(y/Lβ)2uy (x/L, y/Lβ) = 0.

which means β = −1.
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Dilation symmetries, cont.

More general symmetry rescales dependent variable also:

(x , t ,u)→ (x/L, t/Lβ,u/Lγ).

Exponents β, γ found by substituting L−γu(x/L, t/Lβ).

Example: consider nonlinear convection diffusion equation

ut = uuxx − ux .

Substitute L−γu(x/L, t/Lβ) for u,

L−γ−βut = L−2γ−2uuxx − L−γ−1ux , evaluated at (x/L, t/Lβ).

It follows γ + β = 2γ + 2 = γ + 1, so that β = 1 and γ = −1.
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Similarity solutions

Suppose a PDE has a symmetry transformation
(x , t)→ (x/L, t/Lβ).

A solution u = f (η) is called a similarity solution, where
η = x/t1/β is called the similarity variable.

Practical benefit: reduces problem to ODE for f (η).

Similarity solutions are often physically important since they are
scale invariant.



Similarity solutions

Suppose a PDE has a symmetry transformation
(x , t)→ (x/L, t/Lβ).

A solution u = f (η) is called a similarity solution, where
η = x/t1/β is called the similarity variable.

Practical benefit: reduces problem to ODE for f (η).

Similarity solutions are often physically important since they are
scale invariant.



Similarity solutions

Suppose a PDE has a symmetry transformation
(x , t)→ (x/L, t/Lβ).

A solution u = f (η) is called a similarity solution, where
η = x/t1/β is called the similarity variable.

Practical benefit: reduces problem to ODE for f (η).

Similarity solutions are often physically important since they are
scale invariant.



Similarity solutions

Suppose a PDE has a symmetry transformation
(x , t)→ (x/L, t/Lβ).

A solution u = f (η) is called a similarity solution, where
η = x/t1/β is called the similarity variable.

Practical benefit: reduces problem to ODE for f (η).

Similarity solutions are often physically important since they are
scale invariant.



Invariance of similarity solutions

Fact: similarity solutions are the only ones which remain the
same under symmetry transformation.

If u(x , t) = f (η) is a similarity solution,

u(x/L, t/Lβ) = f
(

x/L
(t/Lβ)1/β

)
= f

( x
t1/β

)
= u(x , t).

Conversely, if u(x , t) is invariant under symmetry
transformation, can be written in terms of new variables w(η, ξ),
where

η =
x

t1/β , ξ = xt .

The transformation in terms of the new variables is
(η, ξ)→ (η, ξ/Lβ+1), so that

w(η, ξ) = w(η, ξ/Lβ+1).

Differentiating with respect to L and setting L = 1,

wξ(η, ξ/Lβ+1)ξ = 0,

which means w = w(η).
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Example

Consider the diffusion equation

ut = Duxx , −∞ < x <∞.

Find u(x/L, t/Lβ) is also a solution provided β = 2.

Seek similarity solution u = f (η) where η = x/
√

t . Substitution
into equation gives

Df ′′(η) +
η

2
f ′(η) = 0.

Separation of variables gives

f ′(η) = Ce−η
2/4D,

therefore

f (η) = C1erf(η/4D) + C2, erf(x) ≡ 2√
π

∫ x

0
e−y2

dy .
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More general similarity solutions

For the more general dilation symmetry,

(x , t ,u)→ (x/L, t/Lβ,u/Lγ).

seek solutions of form

u = t−γ/βf (η), η = x/t1/β

These solutions are invariant under the transformation:

L−γu(x/L, t/Lβ) = L−γ(t/Lβ)−γ/βf
(

x/L
(t/Lβ)1/β

)
= t−γ/βf

( x
t1/β

)
= u(x , t).
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Example

Consider the nonlinear diffusion equation

ut = uuxx − u3.

Plug in L−γu(x/L, t/Lβ),

1
Lγ+β

u(x/L, t/Lβ) =
1

L2γ+2 u(x/L, t/Lβ)uxx(x/L, t/Lβ)

− 1
L3γ u(x/L, t/Lβ)3.

Need γ + β = 2γ + 2 = 3γ, so that γ = 2 and β = 4.

Similarity solution will have the form

u = t−1/2f (η), η = x/t1/4.

Plugging into equation gives

−1
2

f − η

4
f ′ = ff ′′ − f 3.

Need to find solution numerically!
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Need to find solution numerically!



Incomplete similarity

Sometimes scaling exponents are not uniquely determined; this
situation is called incomplete similarity.

Extra conditions are required to fix the value of the exponents.

Example: for diffusion equation ut = Duxx , inserting
L−γu(x/L, t/Lβ) into the equation gives L−γ−βut = DL−γ−2uxx .
Thus β = 2 but γ is arbitrary.

Already found solution with γ = 0,

f (η) = C1erf(η/4D) + C2,

but this does not decay at ±∞.
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Incomplete similarity, cont.

Suppose we want u(±∞) = 0. This implies conservation

d
dt

∫ ∞
−∞

u(x , t)dx = 0.

Inserting solution of form u = tαf (x/t1/β) and changing variables

d
dt

∫ ∞
−∞

tα+1/β f (η)dη = 0,

therefore α = −1/β = −1/2.

Substituting u = t−1/2f (x/t1/2), get ODE

f ′′ +
η

2
f ′ +

1
2

f = f ′′ +
1
2
(ηf )′ = 0.

Using the condition f (±∞) = 0, integration gives

f ′ = −1
2
ηf , df/f = −1

2
ηdη, f (η) = Ce−η

2/4.

With C = 1/
√

4π get fundamental solution

u = (4πt)−1/2e−x2/4t
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Similarity solutions, Example 1

Consider nonlinear transport equation

ut + uux = 0.

Symmetry of the form u(x , t)→ u(x/L, t/Lβ) leads to β = 1.

Look for similarity solution u = f (x/t). Plugging in,

− x
t2 f ′ +

1
t

ff ′ = 0

or
f ′(f − η) = 0.

Either f ′ = 0, or f = η. Latter choice leads to solution

u(x , t) = η =
x
t
.

i.e. a rarefaction wave.
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Similarity solutions,Example 2

A model for a convective thermal layer is

3yux − uyy = 0, u(0, y) = 1, u(x ,0) = 0.

Treat x like the time variable, substitute u(x/Lβ, y/L)

3y
Lβ

ux(x/Lβ, y/L)−
1
L2 uyy (x/Lβ, y/L) = 0.

Note: to make this like original equation, y should be replaced
by y/L everywhere. Write as:

3(y/L)
Lβ−1 ux(x/Lβ, y/L)−

1
L2 uyy (x/Lβ, y/L) = 0.

therefore u(x/Lβ, y/L) is still a solution if β = 3.
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Similarity solutions,Example 2, cont.

Plug in similarity ansatz u = f (η), η = y/x1/3,

−η2f ′(η)− f ′′(η) = 0, f (0) = 0, lim
η→∞

f (η) = 1.

Separate variables f ′′/f ′ = −η2 and integrate

f ′ = Ae−η
3/3,

and integrate again

f = A
∫ η

0
e−s3/3ds + B.

Using the boundary conditions, B = 0 and

A =

(∫ ∞
0

e−s3/3ds
)−1

.
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Similarity solutions, Example 3

An unwinding fluid vortex is described by

vt =

(
1
r
[rv ]r

)
r
, r > 0, v(r ,0) =

1
r
.

Inserting L−γv(r/L, t/Lβ)

1
Lβ+γ

vt(r/L, t/Lβ) =
1

L2+γ

(
1

(r/L)
[(r/L)v(r/L, t/Lβ)]r

)
r
,

thus β = 2 but γ is undetermined.
To be compatible with initial condition, insert L−γv(r/L,0)

L−γv(r/L,0) = L−1(r/L)−1, therefore γ = 1.
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Similarity solutions, Example 3 cont.

Since
t−1/2f (r/t1/2) =

1
r
[η−1f (r/t1/2)],

easier to look for solution of form

v =
f (η)

r
, η = r2/t , lim

η→∞
f (η) = 1.

Substitution gives f ′ + 4f ′′ = 0 whose general solution is

f (r) = A + Be−η/4.

In original variables

v(r , t) =
1
r

(
1 + B exp

(
− r2

4t

))
.

For bounded solution at origin, B = −1.
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Similarity solutions, Example 4.

The porous medium equation is

ut = (uux)x .

If L−γu(r/L, t/Lβ) is a solution, need β = 2 + γ.

Equation is a conservation law with flux J = −uux , so that

d
dt

∫ ∞
−∞

u(x , t)dx = 0, if J(±∞) = 0.

Inserting
u = t−γ/βf (η), η = x/t1/β,

then ∫ ∞
−∞

u(x , t)dx = t(1−γ)/β
∫ ∞
−∞

f (η)dη

which means that γ = 1, β = 3.
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Similarity solutions, Example 4, cont.

Similarity solution u = t−1/3f (η), η = x/t1/3 solves

−1
3
(ηf )′ = (ff ′)′.

Integration twice (assuming f ′(0) = 0 or f (±∞) = 0) gives

f = B − η2

6
.

Problem! f is not positive (unphysical), and J(±∞) 6= 0.
Solution: just take positive part, so that

u(x , t) =

{
t−1/3

(
B − x2

6t2/3

)
x2 < 6Bt2/3,

0 x2 > 6Bt2/3.

Observation: value of B determines total mass
∫

udx , and this
is constant in time.
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