Eigenfunctions on the surface of a sphere

In spherical coordinates, the Laplacian is

$$
\Delta u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}}\left[\frac{u_{\phi \phi}}{\sin ^{2}(\theta)}+\frac{1}{\sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}\right] .
$$

Eigenfunctions on the surface of a sphere

In spherical coordinates, the Laplacian is

$$
\Delta u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}}\left[\frac{u_{\phi \phi}}{\sin ^{2}(\theta)}+\frac{1}{\sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}\right] .
$$

Separating out the r variable, left with the eigenvalue problem for $v(\phi, \theta)$

$$
\Delta_{s} v+\lambda v=0, \quad \Delta_{s} v \equiv \frac{v_{\phi \phi}}{\sin ^{2}(\theta)}+\frac{1}{\sin \theta}\left(\sin \theta v_{\theta}\right)_{\theta}
$$

Eigenfunctions on the surface of a sphere

In spherical coordinates, the Laplacian is

$$
\Delta u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}}\left[\frac{u_{\phi \phi}}{\sin ^{2}(\theta)}+\frac{1}{\sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}\right] .
$$

Separating out the r variable, left with the eigenvalue problem for $v(\phi, \theta)$

$$
\Delta_{s} v+\lambda v=0, \quad \Delta_{s} v \equiv \frac{v_{\phi \phi}}{\sin ^{2}(\theta)}+\frac{1}{\sin \theta}\left(\sin \theta v_{\theta}\right)_{\theta}
$$

Let $v=p(\theta) q(\phi)$ and separate variables:

$$
\frac{q^{\prime \prime}}{q}+\frac{\sin \theta\left(\sin \theta p^{\prime}\right)^{\prime}}{p}+\lambda \sin ^{2} \theta=0 .
$$

Eigenfunctions on the surface of a sphere

In spherical coordinates, the Laplacian is

$$
\Delta u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}}\left[\frac{u_{\phi \phi}}{\sin ^{2}(\theta)}+\frac{1}{\sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}\right] .
$$

Separating out the r variable, left with the eigenvalue problem for $v(\phi, \theta)$

$$
\Delta_{s} v+\lambda v=0, \quad \Delta_{s} v \equiv \frac{v_{\phi \phi}}{\sin ^{2}(\theta)}+\frac{1}{\sin \theta}\left(\sin \theta v_{\theta}\right)_{\theta}
$$

Let $v=p(\theta) q(\phi)$ and separate variables:

$$
\frac{q^{\prime \prime}}{q}+\frac{\sin \theta\left(\sin \theta p^{\prime}\right)^{\prime}}{p}+\lambda \sin ^{2} \theta=0 .
$$

The problem for q is familiar: $q^{\prime \prime} / q=$ constant with periodic boundary conditions gives

$$
q=\cos (m \phi), \sin (m \phi), \quad m=0,1,2, \ldots
$$

(complex form: $q=\exp (i m \phi), m=0, \pm 1, \pm 2, \ldots$)

Eigenfunctions on the surface of a sphere, cont.

With $\frac{q^{\prime \prime}}{q}=-m^{2}$, equation for $p(\theta)$ is

$$
\frac{1}{\sin \theta}\left(\sin \theta p^{\prime}\right)^{\prime}+\left(\lambda-\frac{m^{2}}{\sin ^{2} \theta}\right) p=0
$$

With $\frac{q^{\prime \prime}}{q}=-m^{2}$, equation for $p(\theta)$ is

$$
\frac{1}{\sin \theta}\left(\sin \theta p^{\prime}\right)^{\prime}+\left(\lambda-\frac{m^{2}}{\sin ^{2} \theta}\right) p=0
$$

Lucky change of variables $s=\cos \theta$ gives
$\left[\left(1-s^{2}\right) p^{\prime}\right]^{\prime}+\left[\lambda-m^{2} /\left(1-s^{2}\right)\right] p=0 \quad$ (associated Legendre's equation)

Eigenfunctions on the surface of a sphere, cont.

With $\frac{q^{\prime \prime}}{q}=-m^{2}$, equation for $p(\theta)$ is

$$
\frac{1}{\sin \theta}\left(\sin \theta p^{\prime}\right)^{\prime}+\left(\lambda-\frac{m^{2}}{\sin ^{2} \theta}\right) p=0
$$

Lucky change of variables $s=\cos \theta$ gives
$\left[\left(1-s^{2}\right) p^{\prime}\right]^{\prime}+\left[\lambda-m^{2} /\left(1-s^{2}\right)\right] p=0 \quad$ (associated Legendre's equation)
Boundary conditions on p : insist solution is bounded at $\theta=0, \pi$. In the s variable, this implies $p(s= \pm 1)$ is bounded.

Solution of the associated Legendre's equation

With $m=0$, look for a solution of the form $p(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$.

Solution of the associated Legendre's equation

With $m=0$, look for a solution of the form $p(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$.
Substituting into the equation

$$
\sum_{k=2}^{\infty}(k+2)(k+1) a_{k+2} s^{k}-\sum_{k=0}^{\infty}\left(k^{2}+k-\lambda\right) a_{k} s^{k}=0 .
$$

Solution of the associated Legendre's equation

With $m=0$, look for a solution of the form $p(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$.
Substituting into the equation

$$
\sum_{k=2}^{\infty}(k+2)(k+1) a_{k+2} s^{k}-\sum_{k=0}^{\infty}\left(k^{2}+k-\lambda\right) a_{k} s^{k}=0 .
$$

Equating coefficients of s^{k} leads to the recursion relation

$$
a_{k+2}=a_{k} \frac{k(k+1)-\lambda}{(k+2)(k+1)} .
$$

Solution of the associated Legendre's equation

With $m=0$, look for a solution of the form $p(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$. Substituting into the equation

$$
\sum_{k=2}^{\infty}(k+2)(k+1) a_{k+2} s^{k}-\sum_{k=0}^{\infty}\left(k^{2}+k-\lambda\right) a_{k} s^{k}=0 .
$$

Equating coefficients of s^{k} leads to the recursion relation

$$
a_{k+2}=a_{k} \frac{k(k+1)-\lambda}{(k+2)(k+1)} .
$$

- If $\lambda=I(I+1)$ for $I=0,1,2,3, \ldots$ series solution has zero coefficients for $k>l$; yields famous Legendre polynomials $P_{l}(s)$:

$$
P_{0}=1, \quad P_{1}=s, \quad P_{2}=\frac{1}{2}\left(3 s^{2}-1\right), \ldots
$$

Solution of the associated Legendre's equation

With $m=0$, look for a solution of the form $p(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$. Substituting into the equation

$$
\sum_{k=2}^{\infty}(k+2)(k+1) a_{k+2} s^{k}-\sum_{k=0}^{\infty}\left(k^{2}+k-\lambda\right) a_{k} s^{k}=0 .
$$

Equating coefficients of s^{k} leads to the recursion relation

$$
a_{k+2}=a_{k} \frac{k(k+1)-\lambda}{(k+2)(k+1)} .
$$

- If $\lambda=I(I+1)$ for $I=0,1,2,3, \ldots$ series solution has zero coefficients for $k>l$; yields famous Legendre polynomials $P_{l}(s)$:

$$
P_{0}=1, \quad P_{1}=s, \quad P_{2}=\frac{1}{2}\left(3 s^{2}-1\right), \ldots
$$

- If $\lambda \neq I(I+1)$ for positive integer I, power series has radius of convergence $=1$, and thus series diverges at $s= \pm 1$.

Solution of the associated Legendre's equation

With $m=0$, look for a solution of the form $p(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$.
Substituting into the equation

$$
\sum_{k=2}^{\infty}(k+2)(k+1) a_{k+2} s^{k}-\sum_{k=0}^{\infty}\left(k^{2}+k-\lambda\right) a_{k} s^{k}=0
$$

Equating coefficients of s^{k} leads to the recursion relation

$$
a_{k+2}=a_{k} \frac{k(k+1)-\lambda}{(k+2)(k+1)} .
$$

- If $\lambda=I(I+1)$ for $I=0,1,2,3, \ldots$ series solution has zero coefficients for $k>l$; yields famous Legendre polynomials $P_{l}(s)$:

$$
P_{0}=1, \quad P_{1}=s, \quad P_{2}=\frac{1}{2}\left(3 s^{2}-1\right), \ldots
$$

- If $\lambda \neq I(I+1)$ for positive integer I, power series has radius of convergence $=1$, and thus series diverges at $s= \pm 1$.
- For $m>0$: remarkable formula

$$
p(s)=P_{l}^{m}(s) \equiv\left(1-s^{2}\right)^{m / 2} \frac{d^{m}}{d s^{m}} P_{l}(s) .
$$

This requires $m \leq I$ to get nonzero answer.

Eigenfunctions on the surface of a sphere, summary

Complete set of eigenfunctions is $\cos (m \phi) P_{I}^{m}(\cos \theta), \quad \sin (m \phi) P_{I}^{m}(\cos \theta), I=0,1,2, \ldots m=0,1,2, \ldots, I$ with corresponding eigenvalues $\lambda=I(I+1)$.

Eigenfunctions on the surface of a sphere, summary

Complete set of eigenfunctions is
$\cos (m \phi) P_{I}^{m}(\cos \theta), \quad \sin (m \phi) P_{I}^{m}(\cos \theta), I=0,1,2, \ldots m=0,1,2, \ldots, I$ with corresponding eigenvalues $\lambda=I(I+1)$.
Complex form, which gives
$Y_{I}^{m}(\phi, \theta)=e^{i m \phi} P_{I}^{m}(\cos \theta), \quad I=0,1,2, \ldots \quad m=0, \pm 1, \pm 2, \ldots, \pm I$.
These are the famous spherical harmonics.

Eigenfunctions on the surface of a sphere, summary

Complete set of eigenfunctions is
$\cos (m \phi) P_{I}^{m}(\cos \theta), \quad \sin (m \phi) P_{I}^{m}(\cos \theta), I=0,1,2, \ldots m=0,1,2, \ldots, I$ with corresponding eigenvalues $\lambda=I(I+1)$.
Complex form, which gives

$$
Y_{I}^{m}(\phi, \theta)=e^{i m \phi} P_{l}^{m}(\cos \theta), \quad I=0,1,2, \ldots \quad m=0, \pm 1, \pm 2, \ldots, \pm I
$$

These are the famous spherical harmonics.
Δ_{s} is self-adjoint with the inner product

$$
\left\langle v_{1}, v_{2}\right\rangle=\int_{0}^{\pi} \int_{0}^{2 \pi} v_{1}(\phi, \theta) v_{2}(\phi, \theta) \sin \theta d \phi d \theta
$$

Eigenfunctions on the surface of a sphere, summary

Complete set of eigenfunctions is
$\cos (m \phi) P_{I}^{m}(\cos \theta), \quad \sin (m \phi) P_{I}^{m}(\cos \theta), I=0,1,2, \ldots m=0,1,2, \ldots, I$ with corresponding eigenvalues $\lambda=I(I+1)$.
Complex form, which gives
$Y_{I}^{m}(\phi, \theta)=e^{i m \phi} P_{I}^{m}(\cos \theta), \quad I=0,1,2, \ldots \quad m=0, \pm 1, \pm 2, \ldots, \pm I$.
These are the famous spherical harmonics.
Δ_{s} is self-adjoint with the inner product

$$
\left\langle v_{1}, v_{2}\right\rangle=\int_{0}^{\pi} \int_{0}^{2 \pi} v_{1}(\phi, \theta) v_{2}(\phi, \theta) \sin \theta d \phi d \theta
$$

Spherical harmonics are therefore orthogonal: $\left\langle Y_{I}^{m}, Y_{l^{\prime}}^{m^{\prime}}\right\rangle=0$ unless $I=I^{\prime}$ and $m=m^{\prime}$

Table of spherical harmonics

l	m	$P_{l}^{\|m\|}$	Y_{I}^{m}
0	0	1	1
1	0	$s=\cos \theta$	$\cos \theta=z$
1	± 1	$\left(1-s^{2}\right)^{1 / 2}=\sin \theta$	$e^{ \pm i \phi} \sin \theta=\frac{x \pm i y}{r}$
2	0	$\frac{1}{2}\left(3 s^{2}-1\right)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)$	$\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)=\frac{1}{2} \frac{2 z^{2}-x^{2}-y^{2}}{r^{2}}$
2	± 1	$3 s\left(1-s^{2}\right)^{1 / 2}=3 \cos \theta \sin \theta$	$3 e^{ \pm i \phi} \cos \theta \sin \theta=3 \frac{(x \pm i y) z}{r^{2}}$
2	± 2	$3\left(1-s^{2}\right)=3 \sin ^{2} \theta$	$3 e^{ \pm 2 i \phi} \sin ^{2} \theta=3 \frac{(x \pm i y)^{2}}{r^{2}}$

Spherical harmonics in pictures

Example: solving Laplace equation inside sphere

Problem in spherical coordinates is

$$
\Delta u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}} \Delta_{s} u=0, \quad u(\phi, \theta, a)=f(\phi, \theta)
$$

Example: solving Laplace equation inside sphere

Problem in spherical coordinates is

$$
\Delta u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}} \Delta_{s} u=0, \quad u(\phi, \theta, a)=f(\phi, \theta)
$$

Separating variables $u=R(r) v(\phi, \theta)$ gives

$$
\frac{-r^{2} R^{\prime \prime}-2 r R^{\prime}}{R}=\frac{\Delta_{s} v}{v}=-\lambda
$$

thus $\Delta_{s} v+\lambda v=0$.

Example: solving Laplace equation inside sphere

Problem in spherical coordinates is

$$
\Delta u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}} \Delta_{s} u=0, \quad u(\phi, \theta, a)=f(\phi, \theta)
$$

Separating variables $u=R(r) v(\phi, \theta)$ gives

$$
\frac{-r^{2} R^{\prime \prime}-2 r R^{\prime}}{R}=\frac{\Delta_{s} v}{v}=-\lambda
$$

thus $\Delta_{s} v+\lambda v=0$.
Good news! We have solved the eigenvalue problem
$v=Y_{I}^{m}(\phi, \theta), \quad \lambda=I(I+1), \quad I=0,1,2, \ldots \quad m=0, \pm 1, \pm 2, \ldots, \pm I$.

Example: solving Laplace equation inside sphere, cont.

Now for R equation

$$
r^{2} R^{\prime \prime}+2 r R^{\prime}-I(I+1) R=0,
$$

which is an Euler equation with solutions $R=r^{\alpha}$.

Example: solving Laplace equation inside sphere, cont.

Now for R equation

$$
r^{2} R^{\prime \prime}+2 r R^{\prime}-I(I+1) R=0,
$$

which is an Euler equation with solutions $R=r^{\alpha}$. Substituting gives

$$
\alpha(\alpha-1)+2 \alpha-I(I+1)=(\alpha-I)(\alpha+I+1)=0
$$

Thus $\alpha=I$ or $\alpha=-I-1$. (reject latter)

Example: solving Laplace equation inside sphere, cont.

Now for R equation

$$
r^{2} R^{\prime \prime}+2 r R^{\prime}-I(I+1) R=0,
$$

which is an Euler equation with solutions $R=r^{\alpha}$. Substituting gives

$$
\alpha(\alpha-1)+2 \alpha-I(I+1)=(\alpha-I)(\alpha+I+1)=0
$$

Thus $\alpha=I$ or $\alpha=-I-1$. (reject latter)
Now put it all together as superposition:

$$
u=\sum_{l=0}^{\infty} \sum_{m=-I}^{l} A_{l m} r^{\prime} Y_{l}^{m}(\phi, \theta), \quad A_{l m} \text { are potentially complex. }
$$

Example: solving Laplace equation inside sphere, cont.

Now for R equation

$$
r^{2} R^{\prime \prime}+2 r R^{\prime}-I(I+1) R=0,
$$

which is an Euler equation with solutions $R=r^{\alpha}$. Substituting gives

$$
\alpha(\alpha-1)+2 \alpha-I(I+1)=(\alpha-I)(\alpha+I+1)=0
$$

Thus $\alpha=I$ or $\alpha=-I-1$. (reject latter)
Now put it all together as superposition:

$$
u=\sum_{l=0}^{\infty} \sum_{m=-I}^{l} A_{l m} r^{\prime} Y_{l}^{m}(\phi, \theta), \quad A_{l m} \text { are potentially complex. }
$$

Use orthogonality to find coefficients:

$$
f(\phi, \theta)=\sum_{l=0}^{\infty} \sum_{m=-1}^{l} A_{l m} a^{\prime} Y_{l}^{m}(\phi, \theta)
$$

so that

$$
A_{l m}=\frac{1}{a^{\prime}} \frac{\left\langle f, Y_{l}^{m}\right\rangle}{\left\langle Y_{I}^{m}, Y_{l}^{m}\right\rangle}, \quad\left\langle v_{1}, v_{2}\right\rangle=\int_{0}^{\pi} \int_{0}^{2 \pi} v_{1}(\phi, \theta) v_{2}(\theta, \phi) \sin \theta d \phi d \theta .
$$

Spherical harmonics in Cartesian coordinates

Consider a separated solution $P(\mathbf{x})=r^{\prime} Y_{l}^{m}(\phi, \theta)$ of Laplace's equation.

Spherical harmonics in Cartesian coordinates

Consider a separated solution $P(\mathbf{x})=r^{\prime} Y_{l}^{m}(\phi, \theta)$ of Laplace's equation. The function $P(\mathbf{x})$ is homogeneous of degree I, which means

$$
P(\alpha \mathbf{x})=\alpha^{\prime} P(\mathbf{x}), \quad \alpha>0
$$

Spherical harmonics in Cartesian coordinates

Consider a separated solution $P(\mathbf{x})=r^{\prime} Y_{l}^{m}(\phi, \theta)$ of Laplace's equation. The function $P(\mathbf{x})$ is homogeneous of degree l, which means

$$
P(\alpha \mathbf{x})=\alpha^{\prime} P(\mathbf{x}), \quad \alpha>0
$$

Theorem about homogeneous functions:
If $P(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and homogeneous, of degree I, then $P(\mathbf{x})$ is a polynomial.

Spherical harmonics in Cartesian coordinates

Consider a separated solution $P(\mathbf{x})=r^{\prime} Y_{l}^{m}(\phi, \theta)$ of Laplace's equation. The function $P(\mathbf{x})$ is homogeneous of degree l, which means

$$
P(\alpha \mathbf{x})=\alpha^{\prime} P(\mathbf{x}), \quad \alpha>0
$$

Theorem about homogeneous functions:
If $P(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and homogeneous, of degree I, then $P(\mathbf{x})$ is a polynomial.

Therefore $Y_{l}^{m}=P(\mathbf{x}) / r^{\prime}$, where $P(\mathbf{x})$ is a homogeneous polynomial of degree $/$ which solves Laplace's equation.

Spherical harmonics in Cartesian coordinates

Consider a separated solution $P(\mathbf{x})=r^{\prime} Y_{l}^{m}(\phi, \theta)$ of Laplace's equation. The function $P(\mathbf{x})$ is homogeneous of degree l, which means

$$
P(\alpha \mathbf{x})=\alpha^{\prime} P(\mathbf{x}), \quad \alpha>0
$$

Theorem about homogeneous functions:
If $P(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and homogeneous, of degree I, then $P(\mathbf{x})$ is a polynomial.

Therefore $Y_{l}^{m}=P(\mathbf{x}) / r^{\prime}$, where $P(\mathbf{x})$ is a homogeneous polynomial of degree $/$ which solves Laplace's equation.

For $I=0, P=1$ and get $Y_{0}^{0}=1$.
For $I=1, P=x, y, z$ gives $z / r=Y_{1}^{0}$, and $x / r, y / r$ which are the real and imaginary parts of Y_{1}^{1}.

