
Eigenfunctions on the surface of a sphere

In spherical coordinates, the Laplacian is

∆u = urr +
2

r
ur +

1

r2

[
uφφ

sin2(θ)
+

1

sin θ
(sin θ uθ)θ

]
.

Separating out the r variable, left with the eigenvalue problem for
v(φ, θ)

∆sv + λv = 0, ∆sv ≡
vφφ

sin2(θ)
+

1

sin θ
(sin θ vθ)θ.

Let v = p(θ)q(φ) and separate variables:

q′′

q
+

sin θ(sin θ p′)′

p
+ λ sin2 θ = 0.

The problem for q is familiar: q′′/q = constant with periodic
boundary conditions gives

q = cos(mφ), sin(mφ), m = 0, 1, 2, . . . ,

(complex form: q = exp(imφ),m = 0,±1,±2, . . .)
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Eigenfunctions on the surface of a sphere, cont.

With q′′

q = −m2, equation for p(θ) is

1

sin θ
(sin θ p′)′ + (λ− m2

sin2 θ
)p = 0.

Lucky change of variables s = cos θ gives

[(1−s2)p′]′+[λ−m2/(1−s2)]p = 0 (associated Legendre’s equation)

Boundary conditions on p: insist solution is bounded at θ = 0, π.
In the s variable, this implies p(s = ±1) is bounded.
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Solution of the associated Legendre’s equation

With m = 0, look for a solution of the form p(s) =
∑∞

k=0 aks
k .

Substituting into the equation
∞∑
k=2

(k + 2)(k + 1)ak+2s
k −

∞∑
k=0

(k2 + k − λ)aks
k = 0.

Equating coefficients of sk leads to the recursion relation

ak+2 = ak
k(k + 1)− λ

(k + 2)(k + 1)
.

If λ = l(l + 1) for l = 0, 1, 2, 3, ... series solution has zero
coefficients for k > l ; yields famous Legendre polynomials Pl(s):

P0 = 1, P1 = s, P2 =
1

2
(3s2 − 1), . . .

If λ 6= l(l + 1) for positive integer l , power series has radius of
convergence = 1, and thus series diverges at s = ±1.

For m > 0: remarkable formula

p(s) = Pm
l (s) ≡ (1− s2)m/2

dm

dsm
Pl(s).

This requires m ≤ l to get nonzero answer.
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Eigenfunctions on the surface of a sphere, summary

Complete set of eigenfunctions is

cos(mφ)Pm
l (cos θ), sin(mφ)Pm

l (cos θ), l = 0, 1, 2, . . . m = 0, 1, 2, . . . , l

with corresponding eigenvalues λ = l(l + 1).

Complex form, which gives

Ym
l (φ, θ) = e imφPm

l (cos θ), l = 0, 1, 2, . . . m = 0,±1,±2, . . . ,±l .

These are the famous spherical harmonics.
∆s is self-adjoint with the inner product

〈v1, v2〉 =

∫ π

0

∫ 2π

0
v1(φ, θ)v2(φ, θ) sin θdφdθ.

Spherical harmonics are therefore orthogonal: < Ym
l ,Y

m′
l ′ >= 0

unless l = l ′ and m = m′
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Table of spherical harmonics

l m P
|m|
l Ym

l

0 0 1 1
1 0 s = cos θ cos θ = z

1 ±1 (1− s2)1/2 = sin θ e±iφ sin θ = x±iy
r

2 0 1
2(3s2 − 1) = 1

2(3 cos2 θ − 1) 1
2(3 cos2 θ − 1) = 1

2
2z2−x2−y2

r2

2 ±1 3s(1− s2)1/2 = 3 cos θ sin θ 3e±iφ cos θ sin θ = 3 (x±iy)z
r2

2 ±2 3(1− s2) = 3 sin2 θ 3e±2iφ sin2 θ = 3 (x±iy)2
r2



Spherical harmonics in pictures



Example: solving Laplace equation inside sphere

Problem in spherical coordinates is

∆u = urr +
2

r
ur +

1

r2
∆su = 0, u(φ, θ, a) = f (φ, θ)

Separating variables u = R(r)v(φ, θ) gives

−r2R ′′ − 2rR ′

R
=

∆sv

v
= −λ

thus ∆sv + λv = 0.

Good news! We have solved the eigenvalue problem

v = Ym
l (φ, θ), λ = l(l+1), l = 0, 1, 2, . . . m = 0,±1,±2, . . . ,±l .
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Example: solving Laplace equation inside sphere, cont.

Now for R equation

r2R ′′ + 2rR ′ − l(l + 1)R = 0,

which is an Euler equation with solutions R = rα.

Substituting gives

α(α− 1) + 2α− l(l + 1) = (α− l)(α + l + 1) = 0

Thus α = l or α = −l − 1. (reject latter)

Now put it all together as superposition:

u =
∞∑
l=0

l∑
m=−l

Almr
lYm

l (φ, θ), Alm are potentially complex.

Use orthogonality to find coefficients:

f (φ, θ) =
∞∑
l=0

l∑
m=−l

Alma
lYm

l (φ, θ)

so that

Alm =
1

al
〈f ,Ym

l 〉
〈Ym

l ,Y
m
l 〉

, 〈v1, v2〉 =

∫ π

0

∫ 2π

0

v1(φ, θ)v2(θ, φ) sin θdφdθ.
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Spherical harmonics in Cartesian coordinates

Consider a separated solution P(x) = r lY m
l (φ, θ) of Laplace’s equation.

The function P(x) is homogeneous of degree l , which means

P(αx) = αlP(x), α > 0.

Theorem about homogeneous functions:

If P(x) : Rn → R is continuous and homogeneous,

of degree l , then P(x) is a polynomial.

Therefore Y m
l = P(x)/r l , where P(x) is a homogeneous polynomial of degree l

which solves Laplace’s equation.

For l = 0, P = 1 and get Y 0
0 = 1.

For l = 1, P = x , y , z gives z/r = Y 0
1 , and x/r ,y/r which are the real and

imaginary parts of Y 1
1 .
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