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In spherical coordinates, the Laplacian is / e\
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Let v = p(0)q(¢) and separate variables:
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The problem for q is familiar: q”/q = constant with periodic
boundary conditions gives

q = cos(m¢),sin(mp), m=0,1,2,...,
(complex form: g = exp(im¢), m=0,+1,4+2,...)

+ Asin®0 = 0.
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Eigenfunctions on the surface of a sphere, cont.

With %ﬁ = —m?, equation for p(#) is

Lucky change of variables s = cosf gives
[(1—5?)p')+[A\—m?/(1—s?®)]p = 0 (associated Legendre's equation)

Boundary conditions on p: insist solution is bounded at 6 = 0, 7.
In the s variable, this implies p(s = £1) is bounded.
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Solution of the associated Legendre’s equation

With m = 0, look for a solution of the form p(s) = 7= aks*.
Substituting into the equation

oo oo

D (k+2)(k+D)akias' = > (K +k = Naks* =0.
k=2 k=0

Equating coefficients of s¥ leads to the recursion relation
dry = o SEED =X
(k+2)(k+1)
mIf A=1/(/+1)for /| =0,1,2,3,... series solution has zero
coefficients for k > [; yields famous Legendre polynomials P(s):

1
POZ]., P1:S, P2:§(35271),...
m If A # /(/ 4+ 1) for positive integer /, power series has radius of
convergence = 1, and thus series diverges at s = £1.

m For m > 0: remarkable formula

p(s) = PP(s) = (1 - )" S _py(s)

This requires m < [ to get nonzero answer.
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Eigenfunctions on the surface of a sphere, summary

Complete set of eigenfunctions is
cos(m¢p)P"(cos @), sin(mp)P"(cosb), | =0,1,2,... m=0,1,2,...,/

with corresponding eigenvalues A = /(/ + 1).
Complex form, which gives

Y"(¢,0) = €M™ PP (cosf), 1=0,1,2,... m=0+1,+2 ... +/

These are the famous spherical harmonics.
As is self-adjoint with the inner product

s 2
<V17 V2> = /0 /0 Vl(qb, 9)V2(¢, 9) sin 0d¢>d0

Spherical harmonics are therefore orthogonal: < Y™, Y,’,”/ >=0
unless | = /" and m=m’



Table of spherical harmonics

|m]

I m ; ym
00 |1 .

1 0 |s=cosb cosf =z

1 41| (1-s%)2=sing e*i? sin § = XY

20 3(3s?—1) = 3(3cos?0 — 1) %(3cos? — 1)_ 1M
2 41 |3s(1—s2)/2=3cosfsind 3e*®cosfsinf = 3(xi/y)

2 42| 3(1—s%) =3sin’0 3et2iPgin2 g = 3%



Spherical harmonics in pictures

{=0 cos(me) P™(cos 6)
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Example: solving Laplace equation inside sphere

Problem in spherical coordinates is
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Example: solving Laplace equation inside sphere

Problem in spherical coordinates is

2 1
AU = Uy + ;ur + ﬁASu = O? u(¢’ 97 a) = f(¢’ 0)

Separating variables u = R(r)v(¢, 0) gives

—r2R" —2rR’ Ay

= -\
R v

thus Asv + v = 0.

Good news! We have solved the eigenvalue problem

v=Y"(6,0), A=I(+1), 1=0,1,2,... m=0,%1,4+2 ... =Ll



Example: solving Laplace equation inside sphere, cont.

Now for R equation
rPR" 4+ 2rR — I(I+1)R =0,

which is an Euler equation with solutions R = r®.
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Example: solving Laplace equation inside sphere, cont.

Now for R equation
r’R" +2rR" — I(I+ 1)R = 0,
which is an Euler equation with solutions R = r®. Substituting gives
ala=1)+2a—-I(I+1)=(a—)(a+1+1)=0
Thus o =1 or « = —/ — 1. (reject latter)

Now put it all together as superposition:

') !
u= Z Z Amr'Y™(¢,0), A are potentially complex.
1=0 m=—1

Use orthogonality to find coefficients:

oo !
F(0,0)=> Y Ama¥(¢,0)
=0 m=—1
so that
L (f,Y™

Am =~ Tvmymy
al (Y, ym)

T 27
L (v = /0 /0 (6, 0)va(6, &) sin 0.
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Spherical harmonics in Cartesian coordinates

Consider a separated solution P(x) = r'Y/"(¢, 0) of Laplace’s equation.
The function P(x) is homogeneous of degree |, which means

P(ax) = a'P(x), a > 0.
Theorem about homogeneous functions:

If P(x) : R" — R is continuous and homogeneous,

of degree /, then P(x) is a polynomial.

Therefore Y™ = P(x)/r!, where P(x) is a homogeneous polynomial of degree /
which solves Laplace’s equation.

For /=0, P=1and get Y =1.
For /=1, P=x,y,z gives z/r = Y, and x/r,y/r which are the real and
imaginary parts of Y{.



