Dispersion relations

Suppose that $u(x, t)$ has domain $-\infty<x<\infty$ and solves a linear, constant coefficient PDE (for example, the standard diffusion and wave equations).

Dispersion relations

Suppose that $u(x, t)$ has domain $-\infty<x<\infty$ and solves a linear, constant coefficient PDE (for example, the standard diffusion and wave equations).

There are special solutions of the form

$$
u(x, t)=\exp (i k x-i \omega t), \quad \text { (waves) }
$$

or

$$
u(x, t)=\exp (\sigma t+i k x), \quad \text { (diffusion/growth) }
$$

provided σ is not pure imaginary.

Dispersion relations

Suppose that $u(x, t)$ has domain $-\infty<x<\infty$ and solves a linear, constant coefficient PDE (for example, the standard diffusion and wave equations).

There are special solutions of the form

$$
u(x, t)=\exp (i k x-i \omega t), \quad(\text { waves })
$$

or

$$
u(x, t)=\exp (\sigma t+i k x), \quad \text { (diffusion/growth) }
$$

provided σ is not pure imaginary.
Plugging in gives dispersion relation $\omega=\omega(k)$ or $\sigma=\sigma(k)$.

Examples

For usual wave equation

$$
u_{t t}=c^{2} u_{x x}
$$

plug in $u(x, t)=\exp (i k x-i \omega t)$:

Examples

For usual wave equation

$$
u_{t t}=c^{2} u_{x x}
$$

plug in $u(x, t)=\exp (i k x-i \omega t)$:

$$
-\omega^{2} \exp (i k x-i \omega t)=-c^{2} k^{2} \exp (i k x-i \omega t)
$$

which means $\omega(k)= \pm c k$, i.e. there are traveling wave solutions $u=\exp (i k(x \pm c t))$.

Examples

For usual wave equation

$$
u_{t t}=c^{2} u_{x x}
$$

plug in $u(x, t)=\exp (i k x-i \omega t)$:

$$
-\omega^{2} \exp (i k x-i \omega t)=-c^{2} k^{2} \exp (i k x-i \omega t)
$$

which means $\omega(k)= \pm c k$, i.e. there are traveling wave solutions $u=\exp (i k(x \pm c t))$.

For the diffusion equation

$$
u_{t}=D u_{x x}
$$

same process gives $\sigma(k)=-D k^{2}$, i.e. solutions decay of $k \neq$ zero.

Phase and group velocity of waves

For a real dispersion relation $\omega(k)$, there are solutions

$$
u(x, t)=\exp (i k x-i \omega(k) t)=\exp \left(i k\left[x-\frac{\omega(k)}{k} t\right]\right)
$$

which are waves traveling at speed $\omega(k) / k$. This is the phase velocity. If the phase velocities ω / k are different, equation is called dispersive.

Phase and group velocity of waves

For a real dispersion relation $\omega(k)$, there are solutions

$$
u(x, t)=\exp (i k x-i \omega(k) t)=\exp \left(i k\left[x-\frac{\omega(k)}{k} t\right]\right)
$$

which are waves traveling at speed $\omega(k) / k$. This is the phase velocity. If the phase velocities ω / k are different, equation is called dispersive.

But what does a superposition look like?

Phase and group velocity of waves

For a real dispersion relation $\omega(k)$, there are solutions

$$
u(x, t)=\exp (i k x-i \omega(k) t)=\exp \left(i k\left[x-\frac{\omega(k)}{k} t\right]\right)
$$

which are waves traveling at speed $\omega(k) / k$. This is the phase velocity. If the phase velocities ω / k are different, equation is called dispersive.

But what does a superposition look like? Unless phase velocity is constant, there is "apparent" wave motion which moves at a different speed.

Phase and group velocity of waves

For a real dispersion relation $\omega(k)$, there are solutions

$$
u(x, t)=\exp (i k x-i \omega(k) t)=\exp \left(i k\left[x-\frac{\omega(k)}{k} t\right]\right)
$$

which are waves traveling at speed $\omega(k) / k$. This is the phase velocity. If the phase velocities ω / k are different, equation is called dispersive.

But what does a superposition look like? Unless phase velocity is constant, there is "apparent" wave motion which moves at a different speed.

Suppose $A(k) \approx \delta\left(k-k_{0}\right)$ but smooth. Consider superposition

$$
u(x, t)=\int_{-\infty}^{\infty} A(k) e^{i k x-i \omega(k) t} d k
$$

Phase and group velocity of waves

For a real dispersion relation $\omega(k)$, there are solutions

$$
u(x, t)=\exp (i k x-i \omega(k) t)=\exp \left(i k\left[x-\frac{\omega(k)}{k} t\right]\right)
$$

which are waves traveling at speed $\omega(k) / k$. This is the phase velocity. If the phase velocities ω / k are different, equation is called dispersive.

But what does a superposition look like? Unless phase velocity is constant, there is "apparent" wave motion which moves at a different speed.

Suppose $A(k) \approx \delta\left(k-k_{0}\right)$ but smooth. Consider superposition

$$
u(x, t)=\int_{-\infty}^{\infty} A(k) e^{i k x-i \omega(k) t} d k
$$

Idea: Taylor expand $\omega(k) \approx \omega\left(k_{0}\right)+\omega^{\prime}\left(k_{0}\right)\left(k-k_{0}\right)$,

$$
u(x, t) \approx e^{i t\left[\omega^{\prime}\left(k_{0}\right) k_{0}-\omega\left(k_{0}\right)\right]} \int_{-\infty}^{\infty} A(k) e^{i k\left(x-\omega^{\prime}\left(k_{0}\right) t\right)} d k
$$

Phase and group velocity of waves

For a real dispersion relation $\omega(k)$, there are solutions

$$
u(x, t)=\exp (i k x-i \omega(k) t)=\exp \left(i k\left[x-\frac{\omega(k)}{k} t\right]\right)
$$

which are waves traveling at speed $\omega(k) / k$. This is the phase velocity. If the phase velocities ω / k are different, equation is called dispersive.

But what does a superposition look like? Unless phase velocity is constant, there is "apparent" wave motion which moves at a different speed.

Suppose $A(k) \approx \delta\left(k-k_{0}\right)$ but smooth. Consider superposition

$$
u(x, t)=\int_{-\infty}^{\infty} A(k) e^{i k x-i \omega(k) t} d k
$$

Idea: Taylor expand $\omega(k) \approx \omega\left(k_{0}\right)+\omega^{\prime}\left(k_{0}\right)\left(k-k_{0}\right)$,

$$
u(x, t) \approx e^{i t\left[\omega^{\prime}\left(k_{0}\right) k_{0}-\omega\left(k_{0}\right)\right]} \int_{-\infty}^{\infty} A(k) e^{i k\left(x-\omega^{\prime}\left(k_{0}\right) t\right)} d k
$$

Integral is a traveling wave moving at speed $\omega^{\prime}\left(k_{0}\right)$. This is known as the group velocity.

Phase and group velocity, example

Consider Schrödinger equation

$$
i u_{t}+u_{x x}=0
$$

Phase and group velocity, example

Consider Schrödinger equation

$$
i u_{t}+u_{x x}=0
$$

Dispersion relation of form $u=\exp (i k x-i \omega t)$ gives

$$
\exp (i k x-i \omega t)\left[i(-i \omega)-k^{2}\right]=0, \quad \text { therefore } \omega=k^{2}
$$

Phase and group velocity, example

Consider Schrödinger equation

$$
i u_{t}+u_{x x}=0
$$

Dispersion relation of form $u=\exp (i k x-i \omega t)$ gives

$$
\exp (i k x-i \omega t)\left[i(-i \omega)-k^{2}\right]=0, \quad \text { therefore } \omega=k^{2} .
$$

Phase velocity is $\omega(k) / k=k$.
Group velocity is $\omega^{\prime}(k)=2 k$.

Phase and group velocity, example

Consider Schrödinger equation

$$
i u_{t}+u_{x x}=0
$$

Dispersion relation of form $u=\exp (i k x-i \omega t)$ gives

$$
\exp (i k x-i \omega t)\left[i(-i \omega)-k^{2}\right]=0, \quad \text { therefore } \omega=k^{2} .
$$

Phase velocity is $\omega(k) / k=k$.
Group velocity is $\omega^{\prime}(k)=2 k$.

Animation of phase and group velocity

Stability

Suppose a linear equation has solutions $u(x, t)=\exp (\sigma t+i k x)$ where $\sigma=\sigma(k)$ is the (real exponential form) dispersion relation.

Stability

Suppose a linear equation has solutions $u(x, t)=\exp (\sigma t+i k x)$ where $\sigma=\sigma(k)$ is the (real exponential form) dispersion relation.

If $\operatorname{Re} \sigma(k)<0$ for all k, then equation is stable.

Stability

Suppose a linear equation has solutions $u(x, t)=\exp (\sigma t+i k x)$ where $\sigma=\sigma(k)$ is the (real exponential form) dispersion relation.

If $\operatorname{Re} \sigma(k)<0$ for all k, then equation is stable.
If there exists k for which $\operatorname{Re} \sigma(k)>0$, then unstable.

Stability

Suppose a linear equation has solutions $u(x, t)=\exp (\sigma t+i k x)$ where $\sigma=\sigma(k)$ is the (real exponential form) dispersion relation.

If $\operatorname{Re} \sigma(k)<0$ for all k, then equation is stable.
If there exists k for which $\operatorname{Re} \sigma(k)>0$, then unstable.
Intermediate case: if $\operatorname{Re} \sigma(k) \leq 0$ and $\sigma=0$ for some k, called marginally stable.

Stability

Suppose a linear equation has solutions $u(x, t)=\exp (\sigma t+i k x)$ where $\sigma=\sigma(k)$ is the (real exponential form) dispersion relation.

If $\operatorname{Re} \sigma(k)<0$ for all k, then equation is stable.
If there exists k for which $\operatorname{Re} \sigma(k)>0$, then unstable.
Intermediate case: if $\operatorname{Re} \sigma(k) \leq 0$ and $\sigma=0$ for some k, called marginally stable.

Example: $u_{t}=u_{x x}+A u_{x}+B u$.

Stability

Suppose a linear equation has solutions $u(x, t)=\exp (\sigma t+i k x)$ where $\sigma=\sigma(k)$ is the (real exponential form) dispersion relation.

If $\operatorname{Re} \sigma(k)<0$ for all k, then equation is stable.
If there exists k for which $\operatorname{Re} \sigma(k)>0$, then unstable.
Intermediate case: if $\operatorname{Re} \sigma(k) \leq 0$ and $\sigma=0$ for some k, called marginally stable.

Example: $u_{t}=u_{x x}+A u_{x}+B u$. Inserting $u=\exp (\sigma t+i k x)$ gives $\sigma=-k^{2}+i A k+B$.

Stability

Suppose a linear equation has solutions $u(x, t)=\exp (\sigma t+i k x)$ where $\sigma=\sigma(k)$ is the (real exponential form) dispersion relation.

If $\operatorname{Re} \sigma(k)<0$ for all k, then equation is stable.
If there exists k for which $\operatorname{Re} \sigma(k)>0$, then unstable.
Intermediate case: if $\operatorname{Re} \sigma(k) \leq 0$ and $\sigma=0$ for some k, called marginally stable.

Example: $u_{t}=u_{x x}+A u_{x}+B u$. Inserting $u=\exp (\sigma t+i k x)$ gives $\sigma=-k^{2}+i A k+B$.
For $B<0, \operatorname{Re} \sigma<0$, therefore linearly stable.
For $B>0$, $\operatorname{Re} \sigma>0$ for small k, therefore linearly unstable.
For $B=0$, marginally stable since $\operatorname{Re} \sigma(0)=0$.

Steady state solutions

Consider generic linear or nonlinear PDE of form

$$
u_{t}=R\left(u, u_{x}, u_{x x}, \ldots\right)
$$

Steady state solutions

Consider generic linear or nonlinear PDE of form

$$
u_{t}=R\left(u, u_{x}, u_{x x}, \ldots\right)
$$

A steady state solution $u_{0}(x)$ has $\partial u_{0} / \partial t=0$; it therefore solves

$$
R\left(u_{0},\left(u_{0}\right)_{x}, \ldots\right)=0
$$

Steady state solutions

Consider generic linear or nonlinear PDE of form

$$
u_{t}=R\left(u, u_{x}, u_{x x}, \ldots\right)
$$

A steady state solution $u_{0}(x)$ has $\partial u_{0} / \partial t=0$; it therefore solves

$$
R\left(u_{0},\left(u_{0}\right)_{x}, \ldots\right)=0
$$

Remarks:

- u_{0} solves an ODE
$\square u_{0}$ is usually subject to boundary/ far field conditions
■ If $u(x, 0)=u_{0}(x)$, then $u(x, t)=u_{0}(x)$ for all $t>0$.
- Can be many solutions, esp. for nonlinear equations

Steady state solutions, example 1

Consider diffusion equation

$$
u_{t}=u_{x x}, \quad u(0, t)=0, \quad u_{x}(1, t)=1
$$

Steady state solutions, example 1

Consider diffusion equation

$$
u_{t}=u_{x x}, \quad u(0, t)=0, \quad u_{x}(1, t)=1
$$

Steady state solution solves a two-point boundary value problem

$$
\left(u_{0}\right)_{x x}=0, \quad u_{0}(0)=0, \quad\left(u_{0}\right)_{x}(1)=1
$$

Steady state solutions, example 1

Consider diffusion equation

$$
u_{t}=u_{x x}, \quad u(0, t)=0, \quad u_{x}(1, t)=1
$$

Steady state solution solves a two-point boundary value problem

$$
\left(u_{0}\right)_{x x}=0, \quad u_{0}(0)=0, \quad\left(u_{0}\right)_{x}(1)=1
$$

Solution is easy: $u_{0}=x$.

Steady state solutions, example 2

Consider Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty .
$$

Steady state solutions, example 2

Consider Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty
$$

Look for constant (in both x and t) solutions $u(x, t)=u_{0}$.

Steady state solutions, example 2

Consider Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty .
$$

Look for constant (in both x and t) solutions $u(x, t)=u_{0}$.
They solve $u_{0}\left(1-u_{0}\right)=0$ so that $u_{0}=0,1$.

Steady state solutions, example 3

Consider the Allen-Cahn equation

$$
u_{t}=u_{x x}+2 u\left(1-u^{2}\right), \quad-\infty<x<\infty
$$

Steady state solutions, example 3

Consider the Allen-Cahn equation

$$
u_{t}=u_{x x}+2 u\left(1-u^{2}\right), \quad-\infty<x<\infty .
$$

Constant solutions solve $u_{0}\left(1-u_{0}^{2}\right)=0$ so that $u_{0}=0, \pm 1$.

Steady state solutions, example 3

Consider the Allen-Cahn equation

$$
u_{t}=u_{x x}+2 u\left(1-u^{2}\right), \quad-\infty<x<\infty .
$$

Constant solutions solve $u_{0}\left(1-u_{0}^{2}\right)=0$ so that $u_{0}=0, \pm 1$.
Look for non-constant steady state solutions with

$$
\lim _{x \rightarrow-\infty} u(x)=-1, \quad \lim _{x \rightarrow \infty} u(x)=1
$$

Steady state solutions, example 3

Consider the Allen-Cahn equation

$$
u_{t}=u_{x x}+2 u\left(1-u^{2}\right), \quad-\infty<x<\infty .
$$

Constant solutions solve $u_{0}\left(1-u_{0}^{2}\right)=0$ so that $u_{0}=0, \pm 1$.
Look for non-constant steady state solutions with

$$
\lim _{x \rightarrow-\infty} u(x)=-1, \quad \lim _{x \rightarrow \infty} u(x)=1
$$

A steady solution $u(x, t)=u(x)$ solves

$$
u_{x x}+2 u\left(1-u^{2}\right)=0
$$

Steady state solutions, example 3

Consider the Allen-Cahn equation

$$
u_{t}=u_{x x}+2 u\left(1-u^{2}\right), \quad-\infty<x<\infty .
$$

Constant solutions solve $u_{0}\left(1-u_{0}^{2}\right)=0$ so that $u_{0}=0, \pm 1$.
Look for non-constant steady state solutions with

$$
\lim _{x \rightarrow-\infty} u(x)=-1, \quad \lim _{x \rightarrow \infty} u(x)=1
$$

A steady solution $u(x, t)=u(x)$ solves

$$
u_{x x}+2 u\left(1-u^{2}\right)=0
$$

Trick to solving: multiply by u_{x} and integrate.

$$
\int u_{x x} u_{x}+2 u\left(1-u^{2}\right) u_{x} d x=\frac{1}{2} u_{x}^{2}+u^{2}-\frac{1}{2} u^{4}+C=0
$$

which uses $u_{x x} u_{x}=\frac{1}{2}\left(u_{x}^{2}\right)_{x}$ and $f^{\prime}(u) u_{x}=f(u)_{x}$.

Steady state solutions, example 3

Consider the Allen-Cahn equation

$$
u_{t}=u_{x x}+2 u\left(1-u^{2}\right), \quad-\infty<x<\infty .
$$

Constant solutions solve $u_{0}\left(1-u_{0}^{2}\right)=0$ so that $u_{0}=0, \pm 1$.
Look for non-constant steady state solutions with

$$
\lim _{x \rightarrow-\infty} u(x)=-1, \quad \lim _{x \rightarrow \infty} u(x)=1
$$

A steady solution $u(x, t)=u(x)$ solves

$$
u_{x x}+2 u\left(1-u^{2}\right)=0
$$

Trick to solving: multiply by u_{x} and integrate.

$$
\int u_{x x} u_{x}+2 u\left(1-u^{2}\right) u_{x} d x=\frac{1}{2} u_{x}^{2}+u^{2}-\frac{1}{2} u^{4}+C=0
$$

which uses $u_{x x} u_{x}=\frac{1}{2}\left(u_{x}^{2}\right)_{x}$ and $f^{\prime}(u) u_{x}=f(u)_{x}$.
Since $u(\pm \infty)= \pm 1, C=-1 / 2$.

Steady state solutions, example 3, cont.

First order equation can now be written

$$
u_{x}=\sqrt{u^{4}-2 u^{2}+1}=1-u^{2}
$$

Steady state solutions, example 3, cont.

First order equation can now be written

$$
u_{x}=\sqrt{u^{4}-2 u^{2}+1}=1-u^{2}
$$

which can be solved by separating variables

$$
\frac{d u}{1-u^{2}}=d x, \quad \text { therefore } \quad \frac{1}{2} \ln \left|\frac{1+u}{1-u}\right|=x+c
$$

so that

$$
u(x)=\tanh (x+c)
$$

Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

$$
u_{t}-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

$$
u_{t}-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Steady solutions $u(x, t)=u(x)$ solve

$$
-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

$$
u_{t}-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Steady solutions $u(x, t)=u(x)$ solve

$$
-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Suppose $\lim _{x \rightarrow \pm \infty} u(x)=0$; integrate once

$$
-V u+3 u^{2}+u_{x x}=0
$$

Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

$$
u_{t}-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Steady solutions $u(x, t)=u(x)$ solve

$$
-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Suppose $\lim _{x \rightarrow \pm \infty} u(x)=0$; integrate once

$$
-V u+3 u^{2}+u_{x x}=0
$$

Solve by previous trick

$$
\frac{1}{2} u_{x}^{2}-\frac{V}{2} u^{2}+u^{3}=0
$$

Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

$$
u_{t}-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Steady solutions $u(x, t)=u(x)$ solve

$$
-V u_{x}+6 u u_{x}+u_{x x x}=0
$$

Suppose $\lim _{x \rightarrow \pm \infty} u(x)=0$; integrate once

$$
-V u+3 u^{2}+u_{x x}=0 .
$$

Solve by previous trick

$$
\frac{1}{2} u_{x}^{2}-\frac{V}{2} u^{2}+u^{3}=0
$$

Solve by separation of variables:

$$
u(x)=\frac{V}{2} \operatorname{sech}^{2}\left(\frac{\sqrt{V}}{2}(x+c)\right)
$$

Linearization

Really important idea: approximate a nonlinear equation with a linear one.

Really important idea: approximate a nonlinear equation with a linear one.

Look for solutions near steady state solution $u_{0}(x)$

$$
u(x, t)=u_{0}(x)+\epsilon w(x, t)
$$

Really important idea: approximate a nonlinear equation with a linear one.

Look for solutions near steady state solution $u_{0}(x)$

$$
u(x, t)=u_{0}(x)+\epsilon w(x, t)
$$

Plugging into equation and keeping terms of order ϵ always gives a linear equation, called the linearization about $u_{0}(x)$.

Really important idea: approximate a nonlinear equation with a linear one.

Look for solutions near steady state solution $u_{0}(x)$

$$
u(x, t)=u_{0}(x)+\epsilon w(x, t)
$$

Plugging into equation and keeping terms of order ϵ always gives a linear equation, called the linearization about $u_{0}(x)$.

■ Nonlinear functions in equation must be (Taylor) expanded as series to identify order ϵ terms.
■ One can study stability and dispersion of the linearization.

- This approximation becomes invalid when $w(x, t)$ becomes large enough.

Example 1

Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty
$$

has equilibrium solutions $u(x, t)=u_{0}=0,1$.

Example 1

Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty
$$

has equilibrium solutions $u(x, t)=u_{0}=0,1$.
Linearize about $u_{0}=0$ by plugging in $u(x, t)=0+\epsilon w(x, t)$,

$$
\epsilon W_{t}=\epsilon W_{x x}+\epsilon W-\epsilon^{2} w^{2}
$$

Example 1

Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty
$$

has equilibrium solutions $u(x, t)=u_{0}=0,1$.
Linearize about $u_{0}=0$ by plugging in $u(x, t)=0+\epsilon w(x, t)$,

$$
\epsilon W_{t}=\epsilon W_{x x}+\epsilon W-\epsilon^{2} w^{2}
$$

Keeping only terms of order ϵ

$$
w_{t}=w_{x x}+w
$$

Example 1

Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty
$$

has equilibrium solutions $u(x, t)=u_{0}=0,1$.
Linearize about $u_{0}=0$ by plugging in $u(x, t)=0+\epsilon w(x, t)$,

$$
\epsilon W_{t}=\epsilon W_{x x}+\epsilon W-\epsilon^{2} w^{2}
$$

Keeping only terms of order ϵ

$$
w_{t}=w_{x x}+w
$$

Dispersion relation $\sigma=-k^{2}+1>0$ if $|k|<1$, so linearly unstable.

Example 1

Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty
$$

has equilibrium solutions $u(x, t)=u_{0}=0,1$.
Linearize about $u_{0}=0$ by plugging in $u(x, t)=0+\epsilon w(x, t)$,

$$
\epsilon W_{t}=\epsilon W_{x x}+\epsilon W-\epsilon^{2} w^{2}
$$

Keeping only terms of order ϵ

$$
w_{t}=w_{x x}+w
$$

Dispersion relation $\sigma=-k^{2}+1>0$ if $|k|<1$, so linearly unstable.
Now linearize about $u_{0}=1$ by plugging in $u(x, t)=1+\epsilon w(x, t)$:

$$
\epsilon W_{t}=\epsilon W_{x x}-\epsilon W-\epsilon^{2} W^{2}
$$

Example 1

Fisher's equation

$$
u_{t}=u_{x x}+u(1-u), \quad-\infty<x<\infty
$$

has equilibrium solutions $u(x, t)=u_{0}=0,1$.
Linearize about $u_{0}=0$ by plugging in $u(x, t)=0+\epsilon W(x, t)$,

$$
\epsilon W_{t}=\epsilon W_{x x}+\epsilon W-\epsilon^{2} w^{2}
$$

Keeping only terms of order ϵ

$$
w_{t}=w_{x x}+w
$$

Dispersion relation $\sigma=-k^{2}+1>0$ if $|k|<1$, so linearly unstable.
Now linearize about $u_{0}=1$ by plugging in $u(x, t)=1+\epsilon w(x, t)$:

$$
\epsilon W_{t}=\epsilon W_{x x}-\epsilon \boldsymbol{W}-\epsilon^{2} w^{2}
$$

so that the linearization is now

$$
w_{t}=w_{x x}-w
$$

Dispersion relation is $\sigma=-k^{2}-1<0$, so linearly stable.

Example 2

Flame-front propagation modeled by Kuramoto-Sivashinsky equation

$$
u_{t}=u_{x x x x}-u_{x x}+\frac{1}{2} u_{x}^{2}
$$

Example 2

Flame-front propagation modeled by Kuramoto-Sivashinsky equation

$$
u_{t}=u_{x x x x}-u_{x x}+\frac{1}{2} u_{x}^{2}
$$

Linearize about $u_{0}=0$ by setting $u=0+\epsilon W$,

$$
\epsilon W_{t}=\epsilon W_{x x x x}-\epsilon W_{x x}+\epsilon^{2} \frac{1}{2} w_{x}^{2} .
$$

so that linearization is

$$
w_{t}=-w_{x x x x}-w_{x x}
$$

Example 2

Flame-front propagation modeled by Kuramoto-Sivashinsky equation

$$
u_{t}=u_{x x x x}-u_{x x}+\frac{1}{2} u_{x}^{2}
$$

Linearize about $u_{0}=0$ by setting $u=0+\epsilon W$,

$$
\epsilon W_{t}=\epsilon W_{x x x x}-\epsilon W_{x x}+\epsilon^{2} \frac{1}{2} w_{x}^{2} .
$$

so that linearization is

$$
w_{t}=-w_{x x x x}-w_{x x} .
$$

Dispersion relation of the form $w=\exp (\sigma t+i k x)$ gives

$$
\sigma(k)=-k^{4}+k^{2}
$$

Since $\sigma>0$ for $|k|<1, u=0$ is unstable.

Example: Kuramoto-Sivashinsky simulation

Example 3

A thin liquid film of height $h(x, t)$ evolves according to the equation

$$
h_{t}=\left(h^{3}\left[-h_{x x}+A h^{-3}\right]_{x}\right)_{x}
$$

where A describes intermolecular forces.

Example 3

A thin liquid film of height $h(x, t)$ evolves according to the equation

$$
h_{t}=\left(h^{3}\left[-h_{x x}+A h^{-3}\right]_{x}\right)_{x},
$$

where A describes intermolecular forces. Linearize about a constant solution $h(x, t)=h_{0}$ by setting $h(x, t)=h_{0}+\epsilon W$ and Taylor expand
$\left(h_{0}+\epsilon w\right)^{3}=h_{0}^{3}+\epsilon 3 h_{0}^{2} w+\mathcal{O}\left(\epsilon^{2}\right), \quad\left(h_{0}+\epsilon w\right)^{-3}=h_{0}^{-3}-\epsilon 3 h_{0}^{-4} w+\mathcal{O}\left(\epsilon^{2}\right)$.

Example 3

A thin liquid film of height $h(x, t)$ evolves according to the equation

$$
h_{t}=\left(h^{3}\left[-h_{x x}+A h^{-3}\right]_{x}\right)_{x},
$$

where A describes intermolecular forces. Linearize about a constant solution $h(x, t)=h_{0}$ by setting $h(x, t)=h_{0}+\epsilon W$ and Taylor expand
$\left(h_{0}+\epsilon W\right)^{3}=h_{0}^{3}+\epsilon 3 h_{0}^{2} w+\mathcal{O}\left(\epsilon^{2}\right), \quad\left(h_{0}+\epsilon W\right)^{-3}=h_{0}^{-3}-\epsilon 3 h_{0}^{-4} w+\mathcal{O}\left(\epsilon^{2}\right)$.
Inserting into equation,

$$
\epsilon w_{t}=\left(\left(h_{0}^{3}+\epsilon 3 h_{0}^{2} w\right)\left[-\epsilon w_{x x}+h_{0}^{-3}-\epsilon 3 A h_{0}^{-4} w\right]_{x}\right)_{x}+\mathcal{O}\left(\epsilon^{2}\right)
$$

so that retaining the ϵ size terms,

$$
w_{t}=h_{0}^{3}\left(-w_{x x x x}-3 A h_{0}^{-4} w_{x x}\right)
$$

Example 3

A thin liquid film of height $h(x, t)$ evolves according to the equation

$$
h_{t}=\left(h^{3}\left[-h_{x x}+A h^{-3}\right]_{x}\right)_{x},
$$

where A describes intermolecular forces. Linearize about a constant solution $h(x, t)=h_{0}$ by setting $h(x, t)=h_{0}+\epsilon W$ and Taylor expand
$\left(h_{0}+\epsilon W\right)^{3}=h_{0}^{3}+\epsilon 3 h_{0}^{2} w+\mathcal{O}\left(\epsilon^{2}\right), \quad\left(h_{0}+\epsilon W\right)^{-3}=h_{0}^{-3}-\epsilon 3 h_{0}^{-4} w+\mathcal{O}\left(\epsilon^{2}\right)$.
Inserting into equation,

$$
\epsilon w_{t}=\left(\left(h_{0}^{3}+\epsilon 3 h_{0}^{2} w\right)\left[-\epsilon w_{x x}+h_{0}^{-3}-\epsilon 3 A h_{0}^{-4} w\right]_{x}\right)_{x}+\mathcal{O}\left(\epsilon^{2}\right)
$$

so that retaining the ϵ size terms,

$$
w_{t}=h_{0}^{3}\left(-w_{x x x x}-3 A h_{0}^{-4} w_{x x}\right)
$$

The corresponding dispersion relation is found from $w=\exp (\sigma t+i k x)$, giving

$$
\sigma(k)=h_{0}^{3}\left(-k^{4}+3 A h_{0}^{-4} k^{2}\right)
$$

Band of unstable wavenumbers $|k|<h_{0}^{-2} \sqrt{3 A}$ if $A>0$.

Example 4

Sine-Gordon equation is

$$
u_{t t}=c^{2} u_{x x}-\sin (u)
$$

Example 4

Sine-Gordon equation is

$$
u_{t t}=c^{2} u_{x x}-\sin (u)
$$

Linearize about $u=0$ by using $\sin (\epsilon W) \approx \epsilon W$, gives

$$
w_{t t}=c^{2} w_{x x}-w
$$

Example 4

Sine-Gordon equation is

$$
u_{t t}=c^{2} u_{x x}-\sin (u)
$$

Linearize about $u=0$ by using $\sin (\epsilon W) \approx \epsilon W$, gives

$$
w_{t t}=c^{2} w_{x x}-w
$$

For wave type equation, find dispersion relation $w(x, t)=\exp (i k x-i \omega t)$, giving

$$
-\omega^{2}=-c^{2} k^{2}-1, \quad \omega(k)= \pm \sqrt{1+c^{2} k^{2}}
$$

