
Dispersion relations

Suppose that u(x , t) has domain −∞ < x <∞ and solves a
linear, constant coefficient PDE (for example, the standard
diffusion and wave equations).

There are special solutions of the form

u(x , t) = exp(ikx − iωt), (waves)

or
u(x , t) = exp(σt + ikx), (diffusion/growth)

provided σ is not pure imaginary.

Plugging in gives dispersion relation ω = ω(k) or σ = σ(k).
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Examples

For usual wave equation

utt = c2uxx ,

plug in u(x , t) = exp(ikx − iωt):

−ω2 exp(ikx − iωt) = −c2k2 exp(ikx − iωt)

which means ω(k) = ±ck , i.e. there are traveling wave
solutions u = exp(ik(x ± ct)).

For the diffusion equation

ut = Duxx ,

same process gives σ(k) = −Dk2, i.e. solutions decay of
k 6= zero.
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Phase and group velocity of waves

For a real dispersion relation ω(k), there are solutions

u(x , t) = exp
(

ikx − iω(k)t
)
= exp

(
ik
[
x − ω(k)

k
t
])
,

which are waves traveling at speed ω(k)/k . This is the phase velocity.
If the phase velocities ω/k are different, equation is called dispersive.

But what does a superposition look like? Unless phase velocity is
constant, there is “apparent" wave motion which moves at a different
speed.

Suppose A(k) ≈ δ(k − k0) but smooth. Consider superposition

u(x , t) =
∫ ∞
−∞

A(k)eikx−iω(k)t dk .

Idea: Taylor expand ω(k) ≈ ω(k0) + ω′(k0)(k − k0),

u(x , t) ≈ eit[ω′(k0)k0−ω(k0)]

∫ ∞
−∞

A(k)eik(x−ω′(k0)t) dk .

Integral is a traveling wave moving at speed ω′(k0). This is known as
the group velocity.
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Phase and group velocity, example

Consider Schrödinger equation

iut + uxx = 0.

Dispersion relation of form u = exp(ikx − iωt) gives

exp(ikx − iωt)[i(−iω)− k2] = 0, therefore ω = k2.

Phase velocity is ω(k)/k = k .
Group velocity is ω′(k) = 2k .

Animation of phase and group velocity

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/wavepacket/wavepacket.html


Phase and group velocity, example

Consider Schrödinger equation

iut + uxx = 0.

Dispersion relation of form u = exp(ikx − iωt) gives

exp(ikx − iωt)[i(−iω)− k2] = 0, therefore ω = k2.

Phase velocity is ω(k)/k = k .
Group velocity is ω′(k) = 2k .

Animation of phase and group velocity

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/wavepacket/wavepacket.html


Phase and group velocity, example

Consider Schrödinger equation

iut + uxx = 0.

Dispersion relation of form u = exp(ikx − iωt) gives

exp(ikx − iωt)[i(−iω)− k2] = 0, therefore ω = k2.

Phase velocity is ω(k)/k = k .
Group velocity is ω′(k) = 2k .

Animation of phase and group velocity

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/wavepacket/wavepacket.html


Phase and group velocity, example

Consider Schrödinger equation

iut + uxx = 0.

Dispersion relation of form u = exp(ikx − iωt) gives

exp(ikx − iωt)[i(−iω)− k2] = 0, therefore ω = k2.

Phase velocity is ω(k)/k = k .
Group velocity is ω′(k) = 2k .

Animation of phase and group velocity

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/wavepacket/wavepacket.html


Stability

Suppose a linear equation has solutions u(x , t) = exp(σt + ikx)
where σ = σ(k) is the (real exponential form) dispersion
relation.

If Re σ(k) < 0 for all k , then equation is stable.

If there exists k for which Re σ(k) > 0, then unstable.

Intermediate case: if Re σ(k) ≤ 0 and σ = 0 for some k , called
marginally stable.

Example: ut = uxx + Aux + Bu.
Inserting u = exp(σt + ikx) gives σ = −k2 + iAk + B.
For B < 0, Re σ < 0, therefore linearly stable.
For B > 0, Re σ > 0 for small k , therefore linearly unstable.
For B = 0, marginally stable since Re σ(0) = 0.
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Steady state solutions

Consider generic linear or nonlinear PDE of form

ut = R(u,ux ,uxx , . . .)

A steady state solution u0(x) has ∂u0/∂t = 0; it therefore solves

R(u0, (u0)x , ...) = 0.

Remarks:
u0 solves an ODE
u0 is usually subject to boundary/ far field conditions
If u(x ,0) = u0(x), then u(x , t) = u0(x) for all t > 0.
Can be many solutions, esp. for nonlinear equations
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Steady state solutions, example 1

Consider diffusion equation

ut = uxx , u(0, t) = 0, ux(1, t) = 1.

Steady state solution solves a two-point boundary value
problem

(u0)xx = 0, u0(0) = 0, (u0)x(1) = 1.

Solution is easy: u0 = x .
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Steady state solutions, example 2

Consider Fisher’s equation

ut = uxx + u(1− u), −∞ < x <∞.

Look for constant (in both x and t ) solutions u(x , t) = u0.

They solve u0(1− u0) = 0 so that u0 = 0,1.
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Steady state solutions, example 3

Consider the Allen-Cahn equation

ut = uxx + 2u(1− u2), −∞ < x <∞.

Constant solutions solve u0(1− u2
0) = 0 so that u0 = 0,±1.

Look for non-constant steady state solutions with

lim
x→−∞

u(x) = −1, lim
x→∞

u(x) = 1.

A steady solution u(x , t) = u(x) solves

uxx + 2u(1− u2) = 0.

Trick to solving: multiply by ux and integrate.∫
uxxux + 2u(1− u2)ux dx =

1
2

u2
x + u2 − 1

2
u4 + C = 0,

which uses uxxux = 1
2 (u

2
x )x and f ′(u)ux = f (u)x .

Since u(±∞) = ±1, C = −1/2.
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Steady state solutions, example 3, cont.

First order equation can now be written

ux =
√

u4 − 2u2 + 1 = 1− u2,

which can be solved by separating variables

du
1− u2 = dx , therefore

1
2
ln

∣∣∣∣1 + u
1− u

∣∣∣∣ = x + c

so that
u(x) = tanh(x + c).
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Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

ut − Vux + 6uux + uxxx = 0.

Steady solutions u(x , t) = u(x) solve

−Vux + 6uux + uxxx = 0

Suppose limx→±∞ u(x) = 0; integrate once

−Vu + 3u2 + uxx = 0.

Solve by previous trick
1
2

u2
x −

V
2

u2 + u3 = 0.

Solve by separation of variables:

u(x) =
V
2

sech2

(√
V

2
(x + c)

)
,



Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

ut − Vux + 6uux + uxxx = 0.

Steady solutions u(x , t) = u(x) solve

−Vux + 6uux + uxxx = 0

Suppose limx→±∞ u(x) = 0; integrate once

−Vu + 3u2 + uxx = 0.

Solve by previous trick
1
2

u2
x −

V
2

u2 + u3 = 0.

Solve by separation of variables:

u(x) =
V
2

sech2

(√
V

2
(x + c)

)
,



Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

ut − Vux + 6uux + uxxx = 0.

Steady solutions u(x , t) = u(x) solve

−Vux + 6uux + uxxx = 0

Suppose limx→±∞ u(x) = 0; integrate once

−Vu + 3u2 + uxx = 0.

Solve by previous trick
1
2

u2
x −

V
2

u2 + u3 = 0.

Solve by separation of variables:

u(x) =
V
2

sech2

(√
V

2
(x + c)

)
,



Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

ut − Vux + 6uux + uxxx = 0.

Steady solutions u(x , t) = u(x) solve

−Vux + 6uux + uxxx = 0

Suppose limx→±∞ u(x) = 0; integrate once

−Vu + 3u2 + uxx = 0.

Solve by previous trick
1
2

u2
x −

V
2

u2 + u3 = 0.

Solve by separation of variables:

u(x) =
V
2

sech2

(√
V

2
(x + c)

)
,



Steady state solutions, example 4

Korteweg-de Vries (KdV) equation models shallow water waves

ut − Vux + 6uux + uxxx = 0.

Steady solutions u(x , t) = u(x) solve

−Vux + 6uux + uxxx = 0

Suppose limx→±∞ u(x) = 0; integrate once

−Vu + 3u2 + uxx = 0.

Solve by previous trick
1
2

u2
x −

V
2

u2 + u3 = 0.

Solve by separation of variables:

u(x) =
V
2

sech2

(√
V

2
(x + c)

)
,



Linearization

Really important idea: approximate a nonlinear equation with a
linear one.

Look for solutions near steady state solution u0(x)

u(x , t) = u0(x) + εw(x , t)

Plugging into equation and keeping terms of order ε always
gives a linear equation, called the linearization about u0(x).

Nonlinear functions in equation must be (Taylor) expanded
as series to identify order ε terms.
One can study stability and dispersion of the linearization.
This approximation becomes invalid when w(x , t) becomes
large enough.
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Example 1

Fisher’s equation

ut = uxx + u(1− u), −∞ < x <∞.

has equilibrium solutions u(x , t) = u0 = 0,1.

Linearize about u0 = 0 by plugging in u(x , t) = 0 + εw(x , t),

εwt = εwxx + εw − ε2w2.

Keeping only terms of order ε

wt = wxx + w .

Dispersion relation σ = −k2 + 1 > 0 if |k | < 1, so linearly unstable.

Now linearize about u0 = 1 by plugging in u(x , t) = 1 + εw(x , t):

εwt = εwxx − εw − ε2w2.

so that the linearization is now

wt = wxx − w .

Dispersion relation is σ = −k2 − 1 < 0, so linearly stable.



Example 1

Fisher’s equation

ut = uxx + u(1− u), −∞ < x <∞.

has equilibrium solutions u(x , t) = u0 = 0,1.

Linearize about u0 = 0 by plugging in u(x , t) = 0 + εw(x , t),

εwt = εwxx + εw − ε2w2.

Keeping only terms of order ε

wt = wxx + w .

Dispersion relation σ = −k2 + 1 > 0 if |k | < 1, so linearly unstable.

Now linearize about u0 = 1 by plugging in u(x , t) = 1 + εw(x , t):

εwt = εwxx − εw − ε2w2.

so that the linearization is now

wt = wxx − w .

Dispersion relation is σ = −k2 − 1 < 0, so linearly stable.



Example 1

Fisher’s equation

ut = uxx + u(1− u), −∞ < x <∞.

has equilibrium solutions u(x , t) = u0 = 0,1.

Linearize about u0 = 0 by plugging in u(x , t) = 0 + εw(x , t),

εwt = εwxx + εw − ε2w2.

Keeping only terms of order ε

wt = wxx + w .

Dispersion relation σ = −k2 + 1 > 0 if |k | < 1, so linearly unstable.

Now linearize about u0 = 1 by plugging in u(x , t) = 1 + εw(x , t):

εwt = εwxx − εw − ε2w2.

so that the linearization is now

wt = wxx − w .

Dispersion relation is σ = −k2 − 1 < 0, so linearly stable.



Example 1

Fisher’s equation

ut = uxx + u(1− u), −∞ < x <∞.

has equilibrium solutions u(x , t) = u0 = 0,1.

Linearize about u0 = 0 by plugging in u(x , t) = 0 + εw(x , t),

εwt = εwxx + εw − ε2w2.

Keeping only terms of order ε

wt = wxx + w .

Dispersion relation σ = −k2 + 1 > 0 if |k | < 1, so linearly unstable.

Now linearize about u0 = 1 by plugging in u(x , t) = 1 + εw(x , t):

εwt = εwxx − εw − ε2w2.

so that the linearization is now

wt = wxx − w .

Dispersion relation is σ = −k2 − 1 < 0, so linearly stable.



Example 1

Fisher’s equation

ut = uxx + u(1− u), −∞ < x <∞.

has equilibrium solutions u(x , t) = u0 = 0,1.

Linearize about u0 = 0 by plugging in u(x , t) = 0 + εw(x , t),

εwt = εwxx + εw − ε2w2.

Keeping only terms of order ε

wt = wxx + w .

Dispersion relation σ = −k2 + 1 > 0 if |k | < 1, so linearly unstable.

Now linearize about u0 = 1 by plugging in u(x , t) = 1 + εw(x , t):

εwt = εwxx − εw − ε2w2.

so that the linearization is now

wt = wxx − w .

Dispersion relation is σ = −k2 − 1 < 0, so linearly stable.



Example 1

Fisher’s equation

ut = uxx + u(1− u), −∞ < x <∞.

has equilibrium solutions u(x , t) = u0 = 0,1.

Linearize about u0 = 0 by plugging in u(x , t) = 0 + εw(x , t),

εwt = εwxx + εw − ε2w2.

Keeping only terms of order ε

wt = wxx + w .

Dispersion relation σ = −k2 + 1 > 0 if |k | < 1, so linearly unstable.

Now linearize about u0 = 1 by plugging in u(x , t) = 1 + εw(x , t):

εwt = εwxx − εw − ε2w2.

so that the linearization is now

wt = wxx − w .

Dispersion relation is σ = −k2 − 1 < 0, so linearly stable.



Example 2

Flame-front propagation modeled by Kuramoto-Sivashinsky
equation

ut = uxxxx − uxx +
1
2

u2
x .

Linearize about u0 = 0 by setting u = 0 + εw ,

εwt = εwxxxx − εwxx + ε2
1
2

w2
x .

so that linearization is

wt = −wxxxx − wxx .

Dispersion relation of the form w = exp(σt + ikx) gives

σ(k) = −k4 + k2.

Since σ > 0 for |k | < 1, u = 0 is unstable.
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Example: Kuramoto-Sivashinsky simulation



Example 3

A thin liquid film of height h(x , t) evolves according to the equation

ht =
(
h3[−hxx + Ah−3]x

)
x ,

where A describes intermolecular forces.

Linearize about a constant solution h(x , t) = h0 by setting
h(x , t) = h0 + εw and Taylor expand

(h0+εw)3 = h3
0+ε3h2

0w+O(ε2), (h0+εw)−3 = h−3
0 −ε3h−4

0 w+O(ε2).

Inserting into equation,

εwt =
(
(h3

0 + ε3h2
0w)[−εwxx + h−3

0 − ε3Ah−4
0 w ]x

)
x
+O(ε2),

so that retaining the ε size terms,

wt = h3
0(−wxxxx − 3Ah−4

0 wxx).

The corresponding dispersion relation is found from
w = exp(σt + ikx), giving

σ(k) = h3
0(−k4 + 3Ah−4

0 k2),

Band of unstable wavenumbers |k | < h−2
0

√
3A if A > 0.
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Example 4

Sine-Gordon equation is

utt = c2uxx − sin(u).

Linearize about u = 0 by using sin(εw) ≈ εw , gives

wtt = c2wxx − w .

For wave type equation, find dispersion relation
w(x , t) = exp(ikx − iωt), giving

−ω2 = −c2k2 − 1, ω(k) = ±
√

1 + c2k2.
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