
First order wave equations

Transport equation is conservation law with J = cu,

ut + cux = 0, −∞ < x <∞.

Regard as directional derivative ∇u · v = (ux ,ut) · v = 0, with
v = (c,1).

Therefore u is a constant on lines parallel to v, having form
x − ct = x0. These are known as characteristic curves.

It follows u is function of x − ct alone:

u(x , t) = f (x − ct).
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First order wave equations

More generally
aux + buy = 0

has characteristic curves f the form bx − ay = C, and general
solution is therefore

u(x , t) = f (bx − ay).

Function f () is determined by boundary conditions.

Remark: since u(x , y) is constant along characteristic curves,
boundary data must be compatible.
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First order wave equations, example

Solve ux = uy subject to u(x , y) = sin(x) on the line y = x .

Most general solution is u(x , y) = f (x + y).

On the line y = x we have sin(x) = u(x , y) = f (2x).

To find function f (), set z = 2x , so that f (z) = sin(z/2).

Complete solution is therefore u(x , y) = sin((x + y)/2).
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Second order wave equations

Consider the wave equation

utt − c2uxx = 0, x ∈ (−∞,∞).

Factor the linear operator:(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0.

Setting v = ut + cux , get two equations

vt − cvx = 0,
ut + cux = v .

General solution to the first equation is v = h(x + ct), and

ut + cux = h(x + ct).

Can show particular solution has form up = f (x + ct);
complimentary solution has form uhom = g(x − ct), therefore

u = uhom + up = g(x − ct) + f (x + ct).



Second order wave equations

Consider the wave equation

utt − c2uxx = 0, x ∈ (−∞,∞).

Factor the linear operator:(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0.

Setting v = ut + cux , get two equations

vt − cvx = 0,
ut + cux = v .

General solution to the first equation is v = h(x + ct), and

ut + cux = h(x + ct).

Can show particular solution has form up = f (x + ct);
complimentary solution has form uhom = g(x − ct), therefore

u = uhom + up = g(x − ct) + f (x + ct).



Second order wave equations

Consider the wave equation

utt − c2uxx = 0, x ∈ (−∞,∞).

Factor the linear operator:(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0.

Setting v = ut + cux , get two equations

vt − cvx = 0,
ut + cux = v .

General solution to the first equation is v = h(x + ct), and

ut + cux = h(x + ct).

Can show particular solution has form up = f (x + ct);
complimentary solution has form uhom = g(x − ct), therefore

u = uhom + up = g(x − ct) + f (x + ct).



Second order wave equations

Consider the wave equation

utt − c2uxx = 0, x ∈ (−∞,∞).

Factor the linear operator:(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0.

Setting v = ut + cux , get two equations

vt − cvx = 0,
ut + cux = v .

General solution to the first equation is v = h(x + ct), and

ut + cux = h(x + ct).

Can show particular solution has form up = f (x + ct);
complimentary solution has form uhom = g(x − ct), therefore

u = uhom + up = g(x − ct) + f (x + ct).



Second order wave equations

Consider the wave equation

utt − c2uxx = 0, x ∈ (−∞,∞).

Factor the linear operator:(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0.

Setting v = ut + cux , get two equations

vt − cvx = 0,
ut + cux = v .

General solution to the first equation is v = h(x + ct), and

ut + cux = h(x + ct).

Can show particular solution has form up = f (x + ct);
complimentary solution has form uhom = g(x − ct), therefore

u = uhom + up = g(x − ct) + f (x + ct).



Second order wave equations,cont.

Now satisfy the initial conditions:

u(x ,0) = u0(x), ut(x ,0) = v0(x)

Inserting into general solution

f (x) + g(x) = u0(x),
f ′(x)− g′(x) = 1

c v0(x).

Integrating the second,

f (x)− g(x) =
1
c

∫ x

0
v0(x ′)dx ′ + K .

Use method of elimination

f (x) = 1
2

(
u0(x) + 1

c

∫ x
0 v0(x ′)dx ′ + K

)
,

g(x) = 1
2

(
u0(x)− 1

c

∫ x
0 v0(x ′)dx ′ − K

)
Complete solution is therefore d’Alembert’s formula

u = f (x+ct)+g(x−ct) =
1
2
(u0(x + ct) + u0(x − ct))+

1
2c

∫ x+ct

x−ct
v0(x ′)dx ′.
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Generalized second order equation

Notice that
uxx + (a− b)uxy − abuyy = 0

can be factored as(
∂

∂x
+ a

∂

∂y

)(
∂

∂x
− b

∂

∂y

)
u = 0.

which can be written as the system

vx + avy = 0,
ux − buy = v .

Using same process as before, general solution is

u(x , y) = f (y − ax) + g(y + bx)
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Generalized second order equation, example

Want a d’Alembert-type solution for uxx + uxy − 20uyy = 0
subject to initial conditions u(x ,0) = φ(x) and uy (x ,0) = ψ(x).

Factoring gives(
∂

∂x
+ 5

∂

∂y

)(
∂

∂x
− 4

∂

∂y

)
u = 0.

so that general solution is

u(x , y) = g(4x + y) + f (5x − y).
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Generalized second order equation, example

With general solution u(x , t) = g(4x + y) + f (5x − y), satisfying initial
data gives

g(4x) + f (5x) = φ(x),
g′(4x)− f ′(5x) = ψ(x).

Integration of the second equation gives

1
4

g(4x)− 1
5

f (5x) =
∫ x

0
ψ(x ′)dx ′ + C.

Using elimination to solve,

g(4x) =
4
9
φ(x) +

20
9

∫ x

0
ψ(x ′)dx ′ +

20C
9

,

f (5x) =
5
9
φ(x)− 20

9

∫ x

0
ψ(x ′)dx ′ − 20C

9
.

It follows that

u(x , y) = g(4x + y) + f (5x − y) = g(4(x + y/4)) + f (5(x − y/5))

=
4
9
φ(x + y/4) +

4
9
φ(x − y/5) +

20
9

∫ x+y/4

x−y/5
ψ(x ′)dx ′.
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