First order wave equations

Transport equation is conservation law with $J=c u$,

$$
u_{t}+c u_{x}=0, \quad-\infty<x<\infty .
$$

First order wave equations

Transport equation is conservation law with $J=c u$,

$$
u_{t}+c u_{x}=0, \quad-\infty<x<\infty
$$

Regard as directional derivative $\nabla u \cdot \mathbf{v}=\left(u_{x}, u_{t}\right) \cdot \mathbf{v}=0$, with $\mathbf{v}=(c, 1)$.

First order wave equations

Transport equation is conservation law with $J=c u$,

$$
u_{t}+c u_{x}=0, \quad-\infty<x<\infty
$$

Regard as directional derivative $\nabla u \cdot \mathbf{v}=\left(u_{x}, u_{t}\right) \cdot \mathbf{v}=0$, with $\mathbf{v}=(c, 1)$.

Therefore u is a constant on lines parallel to \mathbf{v}, having form $x-c t=x_{0}$. These are known as characteristic curves.

First order wave equations

Transport equation is conservation law with $J=c u$,

$$
u_{t}+c u_{x}=0, \quad-\infty<x<\infty
$$

Regard as directional derivative $\nabla u \cdot \mathbf{v}=\left(u_{x}, u_{t}\right) \cdot \mathbf{v}=0$, with $\mathbf{v}=(c, 1)$.

Therefore u is a constant on lines parallel to \mathbf{v}, having form $x-c t=x_{0}$. These are known as characteristic curves.

It follows u is function of $x-c t$ alone:

$$
u(x, t)=f(x-c t)
$$

First order wave equations

More generally

$$
a u_{x}+b u_{y}=0
$$

has characteristic curves f the form $b x-a y=C$, and general solution is therefore

$$
u(x, t)=f(b x-a y)
$$

First order wave equations

More generally

$$
a u_{x}+b u_{y}=0
$$

has characteristic curves f the form $b x-a y=C$, and general solution is therefore

$$
u(x, t)=f(b x-a y)
$$

Function $f()$ is determined by boundary conditions.

First order wave equations

More generally

$$
a u_{x}+b u_{y}=0
$$

has characteristic curves f the form $b x-a y=C$, and general solution is therefore

$$
u(x, t)=f(b x-a y)
$$

Function $f()$ is determined by boundary conditions.
Remark: since $u(x, y)$ is constant along characteristic curves, boundary data must be compatible.

First order wave equations, example

Solve $u_{x}=u_{y}$ subject to $u(x, y)=\sin (x)$ on the line $y=x$.

First order wave equations, example

Solve $u_{x}=u_{y}$ subject to $u(x, y)=\sin (x)$ on the line $y=x$. Most general solution is $u(x, y)=f(x+y)$.

First order wave equations, example

Solve $u_{x}=u_{y}$ subject to $u(x, y)=\sin (x)$ on the line $y=x$.
Most general solution is $u(x, y)=f(x+y)$.
On the line $y=x$ we have $\sin (x)=u(x, y)=f(2 x)$.

First order wave equations, example

Solve $u_{x}=u_{y}$ subject to $u(x, y)=\sin (x)$ on the line $y=x$.
Most general solution is $u(x, y)=f(x+y)$.
On the line $y=x$ we have $\sin (x)=u(x, y)=f(2 x)$.
To find function $f()$, set $z=2 x$, so that $f(z)=\sin (z / 2)$.

First order wave equations, example

Solve $u_{x}=u_{y}$ subject to $u(x, y)=\sin (x)$ on the line $y=x$.
Most general solution is $u(x, y)=f(x+y)$.
On the line $y=x$ we have $\sin (x)=u(x, y)=f(2 x)$.
To find function $f()$, set $z=2 x$, so that $f(z)=\sin (z / 2)$.
Complete solution is therefore $u(x, y)=\sin ((x+y) / 2)$.

Second order wave equations

Consider the wave equation

$$
u_{t t}-c^{2} u_{x x}=0, \quad x \in(-\infty, \infty)
$$

Second order wave equations

Consider the wave equation

$$
u_{t t}-c^{2} u_{x x}=0, \quad x \in(-\infty, \infty)
$$

Factor the linear operator:

$$
\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0 .
$$

Second order wave equations

Consider the wave equation

$$
u_{t t}-c^{2} u_{x x}=0, \quad x \in(-\infty, \infty)
$$

Factor the linear operator:

$$
\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0 .
$$

Setting $v=u_{t}+c u_{x}$, get two equations

$$
\begin{aligned}
& v_{t}-c v_{x}=0, \\
& u_{t}+c u_{x}=v .
\end{aligned}
$$

Second order wave equations

Consider the wave equation

$$
u_{t t}-c^{2} u_{x x}=0, \quad x \in(-\infty, \infty)
$$

Factor the linear operator:

$$
\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0 .
$$

Setting $v=u_{t}+c u_{x}$, get two equations

$$
\begin{aligned}
& v_{t}-c v_{x}=0 \\
& u_{t}+c u_{x}=v .
\end{aligned}
$$

General solution to the first equation is $v=h(x+c t)$, and

$$
u_{t}+c u_{x}=h(x+c t)
$$

Second order wave equations

Consider the wave equation

$$
u_{t t}-c^{2} u_{x x}=0, \quad x \in(-\infty, \infty)
$$

Factor the linear operator:

$$
\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u=0
$$

Setting $v=u_{t}+c u_{x}$, get two equations

$$
\begin{aligned}
& v_{t}-c v_{x}=0 \\
& u_{t}+c u_{x}=v
\end{aligned}
$$

General solution to the first equation is $v=h(x+c t)$, and

$$
u_{t}+c u_{x}=h(x+c t)
$$

Can show particular solution has form $u_{p}=f(x+c t)$; complimentary solution has form $u_{\text {hom }}=g(x-c t)$, therefore

$$
u=u_{\text {hom }}+u_{p}=g(x-c t)+f(x+c t)
$$

Second order wave equations,cont.

Now satisfy the initial conditions:

$$
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=v_{0}(x)
$$

Second order wave equations,cont.

Now satisfy the initial conditions:

$$
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=v_{0}(x)
$$

Inserting into general solution

$$
\begin{aligned}
f(x)+g(x) & =u_{0}(x) \\
f^{\prime}(x)-g^{\prime}(x) & =\frac{1}{c} v_{0}(x)
\end{aligned}
$$

Second order wave equations,cont.

Now satisfy the initial conditions:

$$
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=v_{0}(x)
$$

Inserting into general solution

$$
\begin{aligned}
f(x)+g(x) & =u_{0}(x) \\
f^{\prime}(x)-g^{\prime}(x) & =\frac{1}{c} v_{0}(x)
\end{aligned}
$$

Integrating the second,

$$
f(x)-g(x)=\frac{1}{c} \int_{0}^{x} v_{0}\left(x^{\prime}\right) d x^{\prime}+K
$$

Second order wave equations,cont.

Now satisfy the initial conditions:

$$
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=v_{0}(x)
$$

Inserting into general solution

$$
\begin{aligned}
f(x)+g(x) & =u_{0}(x) \\
f^{\prime}(x)-g^{\prime}(x) & =\frac{1}{c} v_{0}(x)
\end{aligned}
$$

Integrating the second,

$$
f(x)-g(x)=\frac{1}{c} \int_{0}^{x} v_{0}\left(x^{\prime}\right) d x^{\prime}+K
$$

Use method of elimination

$$
\begin{aligned}
& f(x)=\frac{1}{2}\left(u_{0}(x)+\frac{1}{c} \int_{0}^{x} v_{0}\left(x^{\prime}\right) d x^{\prime}+K\right), \\
& g(x)=\frac{1}{2}\left(u_{0}(x)-\frac{1}{c} \int_{0}^{x} v_{0}\left(x^{\prime}\right) d x^{\prime}-K\right)
\end{aligned}
$$

Second order wave equations,cont.

Now satisfy the initial conditions:

$$
u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=v_{0}(x)
$$

Inserting into general solution

$$
\begin{aligned}
f(x)+g(x) & =u_{0}(x) \\
f^{\prime}(x)-g^{\prime}(x) & =\frac{1}{c} v_{0}(x)
\end{aligned}
$$

Integrating the second,

$$
f(x)-g(x)=\frac{1}{c} \int_{0}^{x} v_{0}\left(x^{\prime}\right) d x^{\prime}+K
$$

Use method of elimination

$$
\begin{aligned}
& f(x)=\frac{1}{2}\left(u_{0}(x)+\frac{1}{c} \int_{0}^{x} v_{0}\left(x^{\prime}\right) d x^{\prime}+K\right), \\
& g(x)=\frac{1}{2}\left(u_{0}(x)-\frac{1}{c} \int_{0}^{x} v_{0}\left(x^{\prime}\right) d x^{\prime}-K\right)
\end{aligned}
$$

Complete solution is therefore d'Alembert's formula

$$
u=f(x+c t)+g(x-c t)=\frac{1}{2}\left(u_{0}(x+c t)+u_{0}(x-c t)\right)+\frac{1}{2 c} \int_{x-c t}^{x+c t} v_{0}\left(x^{\prime}\right) d x^{\prime}
$$

Generalized second order equation

Notice that

$$
u_{x x}+(a-b) u_{x y}-a b u_{y y}=0
$$

can be factored as

$$
\left(\frac{\partial}{\partial x}+a \frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}-b \frac{\partial}{\partial y}\right) u=0
$$

which can be written as the system

$$
\begin{aligned}
& v_{x}+a v_{y}=0 \\
& u_{x}-b u_{y}=v
\end{aligned}
$$

Generalized second order equation

Notice that

$$
u_{x x}+(a-b) u_{x y}-a b u_{y y}=0
$$

can be factored as

$$
\left(\frac{\partial}{\partial x}+a \frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}-b \frac{\partial}{\partial y}\right) u=0
$$

which can be written as the system

$$
\begin{aligned}
& v_{x}+a v_{y}=0 \\
& u_{x}-b u_{y}=v
\end{aligned}
$$

Using same process as before, general solution is

$$
u(x, y)=f(y-a x)+g(y+b x)
$$

Generalized second order equation, example

Want a d'Alembert-type solution for $u_{x x}+u_{x y}-20 u_{y y}=0$
subject to initial conditions $u(x, 0)=\phi(x)$ and $u_{y}(x, 0)=\psi(x)$.

Generalized second order equation, example

Want a d'Alembert-type solution for $u_{x x}+u_{x y}-20 u_{y y}=0$
subject to initial conditions $u(x, 0)=\phi(x)$ and $u_{y}(x, 0)=\psi(x)$.
Factoring gives

$$
\left(\frac{\partial}{\partial x}+5 \frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x}-4 \frac{\partial}{\partial y}\right) u=0
$$

so that general solution is

$$
u(x, y)=g(4 x+y)+f(5 x-y)
$$

Generalized second order equation, example

With general solution $u(x, t)=g(4 x+y)+f(5 x-y)$, satisfying initial data gives

$$
\begin{aligned}
g(4 x)+f(5 x) & =\phi(x), \\
g^{\prime}(4 x)-f^{\prime}(5 x) & =\psi(x) .
\end{aligned}
$$

Generalized second order equation, example

With general solution $u(x, t)=g(4 x+y)+f(5 x-y)$, satisfying initial data gives

$$
\begin{aligned}
g(4 x)+f(5 x) & =\phi(x), \\
g^{\prime}(4 x)-f^{\prime}(5 x) & =\psi(x) .
\end{aligned}
$$

Integration of the second equation gives

$$
\frac{1}{4} g(4 x)-\frac{1}{5} f(5 x)=\int_{0}^{x} \psi\left(x^{\prime}\right) d x^{\prime}+C
$$

Generalized second order equation, example

With general solution $u(x, t)=g(4 x+y)+f(5 x-y)$, satisfying initial data gives

$$
\begin{aligned}
g(4 x)+f(5 x) & =\phi(x), \\
g^{\prime}(4 x)-f^{\prime}(5 x) & =\psi(x) .
\end{aligned}
$$

Integration of the second equation gives

$$
\frac{1}{4} g(4 x)-\frac{1}{5} f(5 x)=\int_{0}^{x} \psi\left(x^{\prime}\right) d x^{\prime}+C .
$$

Using elimination to solve,

$$
\begin{aligned}
g(4 x) & =\frac{4}{9} \phi(x)+\frac{20}{9} \int_{0}^{x} \psi\left(x^{\prime}\right) d x^{\prime}+\frac{20 C}{9} \\
f(5 x) & =\frac{5}{9} \phi(x)-\frac{20}{9} \int_{0}^{x} \psi\left(x^{\prime}\right) d x^{\prime}-\frac{20 C}{9}
\end{aligned}
$$

Generalized second order equation, example

With general solution $u(x, t)=g(4 x+y)+f(5 x-y)$, satisfying initial data gives

$$
\begin{aligned}
g(4 x)+f(5 x) & =\phi(x), \\
g^{\prime}(4 x)-f^{\prime}(5 x) & =\psi(x) .
\end{aligned}
$$

Integration of the second equation gives

$$
\frac{1}{4} g(4 x)-\frac{1}{5} f(5 x)=\int_{0}^{x} \psi\left(x^{\prime}\right) d x^{\prime}+C .
$$

Using elimination to solve,

$$
\begin{aligned}
g(4 x) & =\frac{4}{9} \phi(x)+\frac{20}{9} \int_{0}^{x} \psi\left(x^{\prime}\right) d x^{\prime}+\frac{20 C}{9} \\
f(5 x) & =\frac{5}{9} \phi(x)-\frac{20}{9} \int_{0}^{x} \psi\left(x^{\prime}\right) d x^{\prime}-\frac{20 C}{9}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
u(x, y) & =g(4 x+y)+f(5 x-y)=g(4(x+y / 4))+f(5(x-y / 5)) \\
& =\frac{4}{9} \phi(x+y / 4)+\frac{4}{9} \phi(x-y / 5)+\frac{20}{9} \int_{x-y / 5}^{x+y / 4} \psi\left(x^{\prime}\right) d x^{\prime} .
\end{aligned}
$$

