
The Method of Characteristics

Recall that the first order linear wave equation

ut + cux = 0, u(x, 0) = f(x)

is constant in the direction (1, c) in the (t, x)-plane, and is therefore constant
on lines of the form x− ct = x0. To determine the value of u at (x, t), we go
backward along these lines until we get to t = 0, and then determine the
value of u from the initial condition. The result is u(x, t) = u(x − ct, 0) =
f(x− ct).

There are many extensions to this simple idea. We begin by describing
the situation for linear and nearly linear equations.

1 Homogeneous transport equations

We can carry out this same idea for equations of the form

ut + c(x, t)ux = 0, u(x, 0) = f(x), −∞ < x <∞. (1)

Let X(T ) be any “trajectory” - think of it as a curve in the (x, t) plane, where
(X,T ) are supposed to be the (x, t) coordinates. How does u evolve as we
move along this trajectory?

d

dT
u(X(T ), T ) = X ′(T )ux(X(T ), T ) + ut(X(T ), T )

by the chain rule. If we happen to pick X ′(T ) = c(X(T ), T ), then

d

dT
u(X(T ), T ) = c(X(T ), T )ux(X(T ), t) + ut(X(T ), T ) = 0

by virtue of equation (1). Thus u is constant along ALL curves which are
solutions of the ODE X ′(T ) = c(X,T ). To solve for u at some (x, t), we go
“backward” along this curve until we hit time zero, and since u is constant
along this curve, we find that the value of u is determined by the initial
condition. In other words, if X(t) = x, then u(x, t) = u(X(0), 0) = f(X(0)).

The curves X(T ) that solve the ODE

X ′(T ) = c(X,T ), X(t) = x, (2)

are called characteristics. For the purpose of finding characteristics, (x, t) are
fixed constants, and it is X and T that vary along characteristics.
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Example 1. Solve ut + xux = 0 with initial condition u(x, 0) = cos(x).
Solution. A characteristic curve ending at (x, t) will solve

X ′(T ) = X(T ), X(t) = x,

whose solution is X(T ) = x exp(T − t). Since u is constant along the char-
acteristic,

u(x, t) = u(X(0), 0) = cos(xe−t).

Example 2. We want to solve

yux = xuy, u(0, y) = 2y2 for y > 0 (3)

Solution. This equation can be written in the form (1) as

ux −
x

y
uy = 0,

treating x like the time variable. Let Y (X) denote characteristic curves,
which is a solution to

Y ′(X)− X

Y
= 0.

Separating variables Y dY = −XdX leads to X2 + Y 2 = C; in other words,
characteristics are closed curves encircling the origin. If an implicitly de-
fined characteristic curve passes through (x, y), it is described by X2+Y 2 =
x2 + y2. Since the solution is constant along this curve, setting X = 0 and
using the side condition in (3) gives

u(x, y) = u(X,Y ) = 2Y 2 = 2(x2 + y2).

Notice that if a boundary condition were imposed on the entire y-axis,
then characteristic curves would intersect this boundary both at (0, y) and
(0,−y). Unless u(0, y) = u(0,−y), this problem would not have a solution.

1.1 Inhomogeneous transport equations

We can also solve equations of the form

ut + c(x, t)ux = g(u, x, t), u(x, 0) = f(x), −∞ < x <∞. (4)

The only difference between this and equation (1) is that u is not constant
along characteristics, but evolves according to

d

dt
u(X(t), t) = g(u,X(t), t). (5)
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In other words, if we let U(T ) = u(X(T ), T ) be the solution restricted to a
single characteristic, it solves an initial value problem, namely

U ′(T ) = g(U,X(T ), T ), U(0) = u(X(0), 0) = f(X(0)).

Thus, to find u at some point (x, t), we go backwards along the characteristic
that ends at x until time zero, then solve the ODE (5) forwards until T = t.

1.2 The method of characteristics for linear problems

We can summarize ideas above as an algorithm:

1. Find the characteristic terminating at (x, t): Solve X ′(T ) = c(X,T )
with the “final” condition X(t) = x. Note that the solution for X(T )
will depend on x and t as parameters.

2. Determine the solution along a characteristic: Solve U ′(T ) = g(U,X(T ), T )
subject to initial condition U(0) = U(X(0), 0). Again the solution de-
pends on x and t as parameters.

3. Find the solution at the endpoint of the characteristic: The solution
of the PDE at (x, t) is simply u(x, t) = U(t).

Here are a couple examples of how this is used.

Example 1. Solve

ut + (x+ t)ux = t, u(x, 0) = f(x).

Solution. Characteristic curves solve the ODE

X ′(T ) = X + T, X(t) = x.

This equation has a particular solution, Xp = −T − 1; the general solution
is therefore X(T ) = CeT − T − 1. Using the condition X(t) = x, we find
that

X(T ) = eT−t(x+ t+ 1)− T − 1.

Now we need to find how u changes along the characteristic. We solve

U ′(T ) = T, U(0) = f(X(0)) = f(e−t(x+ t+ 1)− 1).

whose solution by direct integration is

U(T ) = f(e−t(x+ t+ 1)− 1) +
1

2
T 2.
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Finally, the solution at (x, t) is simply the value at the endpoint of the char-
acteristic

u(x, t) = U(t) = f(e−t(x+ t+ 1)− 1) +
1

2
t2.

Example 2. Solve the nonlinear problem

ut + 3ux = −u2, u(x, 0) = f(x).

Solution. In this case, characteristics solve X ′(T ) = 2 with X(t) = x, so
that X = 2(T − t) + x. Along each characteristic, the solution evolves as
U ′(T ) = −U2(T ) with U(0) = f(X(0)) = f(−2t + x). This is nonlinear,
but we can solve it since it is just a separable ODE which can be written
dU/U2 = −dT , so that integration gives 1/U = T + C. Using the initial
condition, one gets C = 1

f(x−2t) and

U(T ) =
1

T + 1
f(x−2t)

.

The final solution is obtained by setting u(x, t) = U(t).

Example 3. Suppose water flows over a landscape whose elevation is de-
scribed by h(x). A simple model for surface water flow says that the flow
velocity is equal (in the right units) to −h′(x). It follows that if u(x, t) is the
depth of water, then the flux of u is J = −h′(x)u. In the absence of sources
u satisfies the conservation equation ut + (−h′(x)u)x = 0, which can be
written in the form (4) as

ut − h′(x)ux = h′′(x)u. (6)

The term on the right accounts for the fact that water will accumulate in
valleys where h′′ > 0, and is depleted from hills where h′′ < 0.

Consider a simple model for a valley where h = x2, and suppose that
the initial depth is localized as

u(x, 0) =

{
1 |x| ≤ 1

0 |x| > 1

Since equation (6) reads ut−2xux = 2u, characteristics solve X ′(T ) = −2X
together with the terminal condition X(t) = x. The solution of this problem
is

X(T ) = xe2(t−T ).
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The solution on characteristics now solves U ′ = 2U with initial condition

U(0) =

{
1 |X(0)| ≤ 1

0 |X(0)| > 1

Therefore U(T ) = e2T if |X(0)| = |xe2t| < 1, or zero otherwise. It follows
that when t = T ,

u(x, t) =

{
e2t |x| ≤ e−2t

0 |x| > e−2t

The depth of the fluid layer therefore increases exponentially, but its width
decreases exponentially in a way such that

∫
udx remains constant.
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