The Method of Characteristics

Recall that the first order linear wave equation

$$
u_{t}+c u_{x}=0, \quad u(x, 0)=f(x)
$$

is constant in the direction $(1, c)$ in the (t, x)-plane, and is therefore constant on lines of the form $x-c t=x_{0}$. To determine the value of u at (x, t), we go backward along these lines until we get to $t=0$, and then determine the value of u from the initial condition. The result is $u(x, t)=u(x-c t, 0)=$ $f(x-c t)$.

There are many extensions to this simple idea. We begin by describing the situation for linear and nearly linear equations.

1 Homogeneous transport equations

We can carry out this same idea for equations of the form

$$
\begin{equation*}
u_{t}+c(x, t) u_{x}=0, \quad u(x, 0)=f(x), \quad-\infty<x<\infty . \tag{1}
\end{equation*}
$$

Let $X(T)$ be any "trajectory" - think of it as a curve in the (x, t) plane, where (X, T) are supposed to be the (x, t) coordinates. How does u evolve as we move along this trajectory?

$$
\frac{d}{d T} u(X(T), T)=X^{\prime}(T) u_{x}(X(T), T)+u_{t}(X(T), T)
$$

by the chain rule. If we happen to pick $X^{\prime}(T)=c(X(T), T)$, then

$$
\frac{d}{d T} u(X(T), T)=c(X(T), T) u_{x}(X(T), t)+u_{t}(X(T), T)=0
$$

by virtue of equation (1). Thus u is constant along ALL curves which are solutions of the ODE $X^{\prime}(T)=c(X, T)$. To solve for u at some (x, t), we go "backward" along this curve until we hit time zero, and since u is constant along this curve, we find that the value of u is determined by the initial condition. In other words, if $X(t)=x$, then $u(x, t)=u(X(0), 0)=f(X(0))$.

The curves $X(T)$ that solve the ODE

$$
\begin{equation*}
X^{\prime}(T)=c(X, T), \quad X(t)=x, \tag{2}
\end{equation*}
$$

are called characteristics. For the purpose of finding characteristics, (x, t) are fixed constants, and it is X and T that vary along characteristics.

Example 1. Solve $u_{t}+x u_{x}=0$ with initial condition $u(x, 0)=\cos (x)$.
Solution. A characteristic curve ending at (x, t) will solve

$$
X^{\prime}(T)=X(T), \quad X(t)=x,
$$

whose solution is $X(T)=x \exp (T-t)$. Since u is constant along the characteristic,

$$
u(x, t)=u(X(0), 0)=\cos \left(x e^{-t}\right) .
$$

Example 2. We want to solve

$$
\begin{equation*}
y u_{x}=x u_{y}, \quad u(0, y)=2 y^{2} \text { for } y>0 \tag{3}
\end{equation*}
$$

Solution. This equation can be written in the form (1) as

$$
u_{x}-\frac{x}{y} u_{y}=0,
$$

treating x like the time variable. Let $Y(X)$ denote characteristic curves, which is a solution to

$$
Y^{\prime}(X)-\frac{X}{Y}=0 .
$$

Separating variables $Y d Y=-X d X$ leads to $X^{2}+Y^{2}=C$; in other words, characteristics are closed curves encircling the origin. If an implicitly defined characteristic curve passes through (x, y), it is described by $X^{2}+Y^{2}=$ $x^{2}+y^{2}$. Since the solution is constant along this curve, setting $X=0$ and using the side condition in (3) gives

$$
u(x, y)=u(X, Y)=2 Y^{2}=2\left(x^{2}+y^{2}\right) .
$$

Notice that if a boundary condition were imposed on the entire y-axis, then characteristic curves would intersect this boundary both at $(0, y)$ and $(0,-y)$. Unless $u(0, y)=u(0,-y)$, this problem would not have a solution.

1.1 Inhomogeneous transport equations

We can also solve equations of the form

$$
\begin{equation*}
u_{t}+c(x, t) u_{x}=g(u, x, t), \quad u(x, 0)=f(x), \quad-\infty<x<\infty . \tag{4}
\end{equation*}
$$

The only difference between this and equation (1) is that u is not constant along characteristics, but evolves according to

$$
\begin{equation*}
\frac{d}{d t} u(X(t), t)=g(u, X(t), t) . \tag{5}
\end{equation*}
$$

In other words, if we let $U(T)=u(X(T), T)$ be the solution restricted to a single characteristic, it solves an initial value problem, namely

$$
U^{\prime}(T)=g(U, X(T), T), \quad U(0)=u(X(0), 0)=f(X(0)) .
$$

Thus, to find u at some point (x, t), we go backwards along the characteristic that ends at x until time zero, then solve the ODE (5) forwards until $T=t$.

1.2 The method of characteristics for linear problems

We can summarize ideas above as an algorithm:

1. Find the characteristic terminating at (x, t) : Solve $X^{\prime}(T)=c(X, T)$ with the "final" condition $X(t)=x$. Note that the solution for $X(T)$ will depend on x and t as parameters.
2. Determine the solution along a characteristic: Solve $U^{\prime}(T)=g(U, X(T), T)$ subject to initial condition $U(0)=U(X(0), 0)$. Again the solution depends on x and t as parameters.
3. Find the solution at the endpoint of the characteristic: The solution of the PDE at (x, t) is simply $u(x, t)=U(t)$.

Here are a couple examples of how this is used.
Example 1. Solve

$$
u_{t}+(x+t) u_{x}=t, \quad u(x, 0)=f(x) .
$$

Solution. Characteristic curves solve the ODE

$$
X^{\prime}(T)=X+T, \quad X(t)=x .
$$

This equation has a particular solution, $X_{p}=-T-1$; the general solution is therefore $X(T)=C e^{T}-T-1$. Using the condition $X(t)=x$, we find that

$$
X(T)=e^{T-t}(x+t+1)-T-1 .
$$

Now we need to find how u changes along the characteristic. We solve

$$
U^{\prime}(T)=T, \quad U(0)=f(X(0))=f\left(e^{-t}(x+t+1)-1\right) .
$$

whose solution by direct integration is

$$
U(T)=f\left(e^{-t}(x+t+1)-1\right)+\frac{1}{2} T^{2} .
$$

Finally, the solution at (x, t) is simply the value at the endpoint of the characteristic

$$
u(x, t)=U(t)=f\left(e^{-t}(x+t+1)-1\right)+\frac{1}{2} t^{2}
$$

Example 2. Solve the nonlinear problem

$$
u_{t}+3 u_{x}=-u^{2}, \quad u(x, 0)=f(x)
$$

Solution. In this case, characteristics solve $X^{\prime}(T)=2$ with $X(t)=x$, so that $X=2(T-t)+x$. Along each characteristic, the solution evolves as $U^{\prime}(T)=-U^{2}(T)$ with $U(0)=f(X(0))=f(-2 t+x)$. This is nonlinear, but we can solve it since it is just a separable ODE which can be written $d U / U^{2}=-d T$, so that integration gives $1 / U=T+C$. Using the initial condition, one gets $C=\frac{1}{f(x-2 t)}$ and

$$
U(T)=\frac{1}{T+\frac{1}{f(x-2 t)}}
$$

The final solution is obtained by setting $u(x, t)=U(t)$.

Example 3. Suppose water flows over a landscape whose elevation is described by $h(x)$. A simple model for surface water flow says that the flow velocity is equal (in the right units) to $-h^{\prime}(x)$. It follows that if $u(x, t)$ is the depth of water, then the flux of u is $J=-h^{\prime}(x) u$. In the absence of sources u satisfies the conservation equation $u_{t}+\left(-h^{\prime}(x) u\right)_{x}=0$, which can be written in the form (4) as

$$
\begin{equation*}
u_{t}-h^{\prime}(x) u_{x}=h^{\prime \prime}(x) u \tag{6}
\end{equation*}
$$

The term on the right accounts for the fact that water will accumulate in valleys where $h^{\prime \prime}>0$, and is depleted from hills where $h^{\prime \prime}<0$.

Consider a simple model for a valley where $h=x^{2}$, and suppose that the initial depth is localized as

$$
u(x, 0)= \begin{cases}1 & |x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

Since equation (6) reads $u_{t}-2 x u_{x}=2 u$, characteristics solve $X^{\prime}(T)=-2 X$ together with the terminal condition $X(t)=x$. The solution of this problem is

$$
X(T)=x e^{2(t-T)}
$$

The solution on characteristics now solves $U^{\prime}=2 U$ with initial condition

$$
U(0)= \begin{cases}1 & |X(0)| \leq 1 \\ 0 & |X(0)|>1\end{cases}
$$

Therefore $U(T)=e^{2 T}$ if $|X(0)|=\left|x e^{2 t}\right|<1$, or zero otherwise. It follows that when $t=T$,

$$
u(x, t)= \begin{cases}e^{2 t} & |x| \leq e^{-2 t} \\ 0 & |x|>e^{-2 t}\end{cases}
$$

The depth of the fluid layer therefore increases exponentially, but its width decreases exponentially in a way such that $\int u d x$ remains constant.

