The Method of Characteristics

Recall that the first order linear wave equation
u +cuy, =0, u(z,0) = f(x)

is constant in the direction (1, ¢) in the (¢, x)-plane, and is therefore constant
on lines of the form x — ¢t = xy. To determine the value of u at (x,t), we go
backward along these lines until we get to ¢ = 0, and then determine the
value of u from the initial condition. The result is u(z,t) = u(x — ct,0) =
f(z —ct).

There are many extensions to this simple idea. We begin by describing
the situation for linear and nearly linear equations.

1 Homogeneous transport equations
We can carry out this same idea for equations of the form
ut + c(z, t)uy =0, u(z,0) = f(z), —oo<z<o00. (1)

Let X (T") be any “trajectory” - think of it as a curve in the (z, t) plane, where
(X,T) are supposed to be the (z,t) coordinates. How does u evolve as we
move along this trajectory?

4
ar"
by the chain rule. If we happen to pick X'(T') = ¢(X(T'),T'), then

(X(T),T) = X'(T)ua(X(T), T) + ue(X(T),T)

LX), T) = e(X(T), T (X(T), 1)+ u(X(T),T) = 0

by virtue of equation (1). Thus u is constant along ALL curves which are

solutions of the ODE X'(T') = ¢(X,T). To solve for u at some (z,t), we go

“backward” along this curve until we hit time zero, and since u is constant

along this curve, we find that the value of u is determined by the initial

condition. In other words, if X (t) = z, then u(z,t) = u(X(0),0) = f(X(0)).
The curves X (7T') that solve the ODE

X'(T) = (X, T), X(t)=uz, )

are called characteristics. For the purpose of finding characteristics, (z,t) are
fixed constants, and it is X and T that vary along characteristics.
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Example 1. Solve u; + zu, = 0 with initial condition u(z,0) = cos(z).
Solution. A characteristic curve ending at (x,¢) will solve

X(T)=X(T), X(t)=uz,

whose solution is X (T") = x exp(T — t). Since u is constant along the char-
acteristic,
u(z,t) = u(X(0),0) = cos(ze ™).

Example 2. We want to solve
Yuy = zuy, u(0,y) = 22 fory > 0 3)

Solution. This equation can be written in the form (1) as

x
Uy — —Uy = 0,
treating x like the time variable. Let Y (X) denote characteristic curves,

which is a solution to X
Y'(X)- = =0.
(X)-%

Separating variables Y'dY = —XdX leads to X 2 4+ Y? = C; in other words,
characteristics are closed curves encircling the origin. If an implicitly de-
fined characteristic curve passes through (z,y), itis described by X?+Y?2 =
2% + y2. Since the solution is constant along this curve, setting X = 0 and
using the side condition in (3) gives

u(z,y) = u(X,Y) = 2Y2% = 2(z% + 4%).

Notice that if a boundary condition were imposed on the entire y-axis,
then characteristic curves would intersect this boundary both at (0, y) and
(0, —y). Unless u(0,y) = u(0, —y), this problem would not have a solution.

1.1 Inhomogeneous transport equations
We can also solve equations of the form
ur + c(z, t)uy = g(u, x,t), u(z,0)= f(zr), —oo<z<o0. 4)

The only difference between this and equation (1) is that u is not constant
along characteristics, but evolves according to

d

(X (1), 1) = g(u, X(2), 1). ()



In other words, if we let U(T") = u(X(T'),T') be the solution restricted to a
single characteristic, it solves an initial value problem, namely

U'(T) = g(U,X(T),T), U(0)=u(X(0),0) = f(X(0)).
Thus, to find v at some point (z, t), we go backwards along the characteristic
that ends at = until time zero, then solve the ODE (5) forwards until T' = ¢.
1.2 The method of characteristics for linear problems

We can summarize ideas above as an algorithm:

1. Find the characteristic terminating at (z,¢): Solve X'(T) = ¢(X,T)
with the “final” condition X (¢) = z. Note that the solution for X (7')
will depend on z and ¢ as parameters.

2. Determine the solution along a characteristic: Solve U'(T") = ¢(U, X (T'), T)
subject to initial condition U(0) = U(X(0),0). Again the solution de-
pends on x and ¢ as parameters.

3. Find the solution at the endpoint of the characteristic: The solution
of the PDE at (x, t) is simply u(z,t) = U(t).

Here are a couple examples of how this is used.

Example 1. Solve
u + (z+ t)huy =t,  u(x,0) = f(x).
Solution. Characteristic curves solve the ODE
X'(T)=X+T, X(t) ==

This equation has a particular solution, X,, = —T" — 1; the general solution
is therefore X (T) = Ce? — T — 1. Using the condition X (t) = z, we find
that

XT)=eTtz+t+1)-T-1.

Now we need to find how u changes along the characteristic. We solve
U(T) =T, U0)=f(X(0) = fle™ (@ +t+1)—1).

whose solution by direct integration is
1
UT)=fleHz+t+1)—1)+ 5T2.
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Finally, the solution at (x, ¢) is simply the value at the endpoint of the char-
acteristic

u(z,t) =U(t) = fle H(z+t+1)—1)+ %tz.

Example 2. Solve the nonlinear problem
up + 3uy = —u?,  u(z,0) = f(z).

Solution. In this case, characteristics solve X'(T') = 2 with X(¢) = =z, so
that X = 2(T — t) + z. Along each characteristic, the solution evolves as
U'(T) = —U*(T) with U(0) = f(X(0)) = f(—2t + z). This is nonlinear,
but we can solve it since it is just a separable ODE which can be written
dU/U? = —dT, so that integration gives 1/U = T + C. Using the initial

condition, one gets C' = m and

1

e
T+ v=2p

U(T)
The final solution is obtained by setting u(x,t) = U(t).

Example 3. Suppose water flows over a landscape whose elevation is de-
scribed by h(z). A simple model for surface water flow says that the flow
velocity is equal (in the right units) to —/(z). It follows that if u(z, t) is the
depth of water, then the flux of u is J = —h/(z)u. In the absence of sources
u satisfies the conservation equation u; + (—h/(z)u), = 0, which can be
written in the form (4) as

ug — W (2)uze = ' (z)u. (6)

The term on the right accounts for the fact that water will accumulate in
valleys where h” > 0, and is depleted from hills where 2" < 0.

Consider a simple model for a valley where h = 2%, and suppose that
the initial depth is localized as

(2,0) 1 Jz| <1
u(z,0) =
0 |z[>1

Since equation (6) reads u; — 2zu, = 2u, characteristics solve X'(T') = —2X
together with the terminal condition X (¢) = x. The solution of this problem
is

X(T) = ze2t=1),
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The solution on characteristics now solves U’ = 2U with initial condition

1 1X(0) <1
vy {1 X0 <
0 [X(0)>1
Therefore U(T) = €27 if | X(0)| = |ze?!| < 1, or zero otherwise. It follows
that whent¢ =T,
e?t x| < e ?
u(x,t) = -
(1) {O 2| > e

The depth of the fluid layer therefore increases exponentially, but its width
decreases exponentially in a way such that [ udz remains constant.



