
Conservation and dissipation principles for PDEs

1 Modeling through conservation principles

The notion of conservation - of number, energy, mass, momentum - is a fundamental property of
many systems that can be used to derive and analyze familiar partial differential equations.

Let u(x, t) be the density of any quantity - heat, momentum, probability, population, etc. For
any subregion R ⊂ Ω of the entire domain, the amount of u in R is∫

R
u dx.

To say that a quantity is locally conserved means that it is only gained or lost either (1) through
domain boundaries or (2) because of sources and sinks in the domain. The flow or flux, of u(x, t)
can be thought of as a vector field J(x, t), defined so that J · n̂dA is the amount of u flowing in
direction n̂ per unit time across a small area dA. Suppose there is also a source which produces u
at a rate Q(x, t) (if Q < 0, then this is a sink instead). Conservation of u on any subdomain R ⊂ Ω
implies the balance

d

dt

∫
R
u dx =

∫
R

∂u

∂t
dx = −

∫
∂R

J · n̂dx +

∫
R
Q(x, t)dx. (1)

Equation (1) says that the change in u is due to flow out of R and source terms in R.
The boundary integral in (1) can be converted to a integral over the domain R by using the

divergence theorem. ∫
∂R

J · n̂dx =

∫
R
∇·J dx,

which gives ∫
R

(∂u
∂t

+∇·J−Q
)
dx = 0.

The important point is that this is true for every region R, which means that the integrand must be
exactly zero. This gives the differential equation

∂u

∂t
+∇·J = Q. (2)

In some contexts, this is called the transport or continuity equation. This equation is valid for any
spatial dimension. Note that in one dimension, divergence is just the regular derivative ∂/∂x.
Because the flux and source terms are problem specific, a wide variety of PDEs take the form (2).
Some examples are given below.

1.1 Boundary Conditions

If a quantity is locally conserved, it still may be gained or lost by flowing through the boundaries
of the physical domain. A common situation is when flow through the boundary is prohibited,
leading to the no-flux boundary condition

J · n̂ = 0, x ∈ ∂Ω. (3)
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Notice that J itself is not zero on the boundary; this reflects the possibility that material flows
along the boundary but not through it.

The actual boundary condition that (3) represents depends on how the flux J is modeled. For
example, in the diffusion equation, the flux is J = −D∇u, so (3) becomes

∇u · n̂ = 0, x ∈ ∂Ω,

which is simply the homogeneous Neumann boundary condition.
For flow of a viscous fluid film, the conserved quantity h(x, t) (actually the film thickness) has

a corresponding flux J = −h3∇∆h. In this case, the no-flux boundary condition would read

h3(∇∆h) · n̂ = 0, x ∈ ∂Ω.

This means either h = 0 or (∇∆h) · n̂ = 0 on the boundary.
Note that other types of boundary conditions can be used in conservation laws. For example, if

the temperature is fixed on the boundary in a heat diffusion model, this corresponds to a Dirichlet-
type boundary condition

u = U(x), x ∈ ∂Ω

instead. In this case, the flux across the boundary is generally not zero, but is simply whatever
flux is needed to maintain the Dirichlet boundary condition.

1.2 Examples

Simple transport in one space dimension. Suppose that a quantity with density u = u(x, t)
is transported at velocity c. Note that flux in one dimension is a scalar, and from dimensional
considerations

J(some quantity per unit time)

= velocity (length per unit time)× density (some quantity per unit length) = cu.

Without source terms, (2) becomes
ut + cux = 0. (4)

Traffic flow. Unlike simple transport, automobiles do not generally travel at a uniform speed. The
simplest way of modeling this situation is taking the speed c = c(u) as a decreasing function of
the density of cars u. This makes sense most of the time: greater densities lead to slower speeds.
Then the scalar flux is J = c(u)u and (2) becomes

ut + (c(u)u)x = 0. (5)

This has the form of a hyperbolic conservation law ut + f(u)x = 0. The choice f = u2/2 gives rise
to what is known as Burger’s equation.
Diffusion. The idea of a quantity diffusing means that its flux has a direction toward regions of
less density. Mathematically, this can be modeled as J = −D∇u since the gradient points in the
direction of greatest increase. (The constant D is known as the diffusivity, and is measured in units
of length squared per unit time). This is known as Fick’s law, or Fourier’s law for the case of heat
diffusion. The basic form (2) becomes

ut = D∇·∇u = D∆u, (6)

which is known as the diffusion equation. This is one of the most fundamental PDEs.
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Diffusion with a nonlinear source. Suppose that the source term Q(x, t) is a function f(u) of
u itself. This might be the case for a chemical reaction (where Q is reaction rate) or biological
reproduction (for example, Q = u(1− u) as in the logistic equation). Then one obtains

ut = ∆u + f(u), (7)

which is a simple example of a reaction-diffusion equation.
Chemotaxis. Various cells and microorganisms move in response to chemical gradients. For ex-
ample, certain bacteria are drawn toward oxygen, and white blood cells may move in response to
chemicals produced at the site of an infection.

Let u(x, t) be the time-dependent density of cells, and let c(x, t) be the density of chemoattrac-
tant concentration. The main idea is that the flux of cells is in the same direction as the (spatial)
gradient of c - in other words, the cells seek a direction where there is the greatest concentration.
The magnitude of the flux is, on the other hand, typically a fixed number M , which has to do with
the mobility of cells. It follows that the flux of cells due to chemotaxis is

Jc = M
∇c
|∇c|

.

In real situations, one also has standard diffusion of cells modeled as the diffusive flux Jd =
−D∇u. The equations of motion are a combination of these fluxes:

ut = −∇·(Jc + Jd) = −M∇·
(
∇c
|∇c|

)
+ D∆u. (8)

Of course, one can also consider the evolution of chemoattractant by diffusion. If the organism
produces the chemoattractant itself (as in the famous slime mold example), one arrives at a cou-
pled system for u and c known as the Keller-Segel equations.
Wave equation. Suppose that u(x, t) represents the vertical displacement of an elastic membrane
at (x, t). For wave propagation, the conserved quantity is the momentum, which is the time deriva-
tive ut instead of u. Momentum flux is proportional to −∇u, which comes from the way in which
elastic forces depend on the displacement. Setting the proportionality constant to one, the fact that
momentum is conserved means

(ut)t −∇ · ∇u = 0

which is known as the wave equation.

1.3 Steady state problems

Often dynamical processes “settle down” over time. Mathematically this means that ut → 0 as
t → ∞. In the context of conservation laws, a steady state solution is a solution of (2) for which the
time derivative is suppressed:

∇·J(u) = Q. (9)

Note that this does not mean that the flux is zero; it simply says that the amount flowing away
from a point balances the sources at that point. Often (9) is supplemented with inhomogeneous
boundary conditions.

As an example, consider diffusion described by the flux J = −D∇u, with a given time-
independent source Q(x). A steady state solution is a solution u = u(x) solving (9) which in
this case reads

D∇·∇u = ∆u = Q(x). (10)

This is known as Poisson’s equation; If Q ≡ 0, it is called Laplace’s equation, which is one of the
fundamental equations along with the diffusion and wave equations.
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2 Conserved and dissipated quantities

Any function, especially one with several independent variables, carries a huge amount of in-
formation. The questions we want to answer about PDEs are often simple, and don’t require a
complete knowledge of the solution. It is useful to study coarse grained quantities that arise in
PDEs in order to circumvent a complete analysis of these problems. Note that this philosophy has
a long history in science: physicists and chemists like to talk about a system’s energy or entropy,
which can be understood without any intimate knowledge of the microscopic details.

For some solution of a PDE u(x, t), we can define a coarse-grained quantity as a functional,
which is a mapping from u to the real numbers. For example,∫

Ω
udx,

∫
Ω
u2
xdx,

∫
Ω
u4
xxdx

are all examples of functionals. It often happens that functionals represent quantities of physical
interest – mass, energy, momentum, etc. – but such an interpretation is not essential for these
objects to be useful.

Suppose F is some functional of u(x, t) of the form

F [u] =

∫
Ω
f(u, ux, ...)dx.

so that F depends on t, but not on the variable x which has been integrated out. There are two
common properties which depend on the time evolution of F . If dF/dt = 0, then F is called
conserved. If dF/dt ≤ 0, then F is called dissipated.

Suppose u solves the wave equation and boundary conditions

utt = uxx, u(0, t) = 0 = u(L, t).

Then the energy functional (essentially the sum of kinetic and potential energy)

E =

∫ L

0

1

2
u2
t +

1

2
u2
x dx

is conserved. Indeed,

dE

dt
=

∫ L

0
ututt + uxuxt dx = uxut|x=L

x=0 +

∫ L

0
ututt − uxxut dx = 0,

where integration by parts and the boundary condition was used for the second equality (we leave
out a technical issue: is it always appropriate to move the derivative d/dt inside the integral and
replace it with a partial derivative?)

The fact that E remains the same for all t has profound qualitative implications. Any solu-
tion which has wave oscillations initially (so that the energy is positive) must continue to have
oscillations for all time - they never die out, for example. Conversely, if the initial conditions are
quiescent, so that E = 0, then this must happen forever. Notice we learn these things without ever
finding a solution of the equation!

As another example, suppose u solves the diffusion equation

ut = uxx, u(0, t) = 0 = u(L, t).
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Then the quantity

F =

∫ L

0

1

2
u2
x dx

is dissipated, since

dF

dt
=

∫ L

0
uxuxt dx = −

∫ L

0
uxxut dx = −

∫ L

0
u2
xx dx < 0,

where again integration by parts and the boundary condition was used.
We can interpret F as follows. The arclength of x-cross sections of u can be approximated for

small ux as ∫ L

0

√
1 + u2

xdx ≈
∫ L

0
1 +

1

2
u2
x dx.

Since, dF/dt ≤ 0, the approximate arclength must also diminish over time. This means the graph
of u(x, ·) gradually becomes smoother, and oscillations die away. This statement will be made
perfectly quantitative by solving the equation outright later on.
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