
Dispersion relations, stability and linearization

1 Dispersion relations

Suppose that u(x, t) is a function with domain {−∞ < x < ∞, t > 0}, and it satisfies a linear,
constant coefficient partial differential equation such as the usual wave or diffusion equation. It
happens that these type of equations have special solutions of the form

u(x, t) = exp(ikx− iωt), (1)

or equivalently,
u(x, t) = exp(σt+ ikx). (2)

We typically look for solutions of the first kind (1) when wave-like behavior which oscillates in
time is expected, whereas (2) is used to investigate growth or decay in time. Plugging either (1) or
(2) into the equation yields an algebraic relationship of the form ω = ω(k) or σ = σ(k), called the
dispersion relation. It characterizes the dynamics of spatially oscillating modes of the form exp(ikx).

Here are a couple standard examples. For the wave equation utt = c2uxx, we plug in a wave-
like solution (1) to get−ω2 exp(ikx− iωt) = −c2k2 exp(ikx− iωt), or ω(k) = ±ck. This means there
are traveling wave solutions of the form u = exp(ik(x± ct)), which we might have guessed from
the d’Alembert formula.

For the diffusion equation ut = Duxx, we use (2) to get σ(k) = −Dk2. Since this is negative
for all k, it is expected that solutions which are superpositions of (2) also decay. This is consistent
with the fundamental solution representation for the diffusion equation.

1.1 Stability

For dispersion relations of the form σ = σ(k) stemming from (2), the sign of the real part of σ
indicates whether the solution will grow or decay in time. If the real part of σ(k) is negative for all
k values, then any superposition of solutions of the form exp(σt + ikx) will also appear to decay.
On the other hand, if the real part of σ(k) is positive for some values of k, then over time some
components of a superposition will grow exponentially. The former case is called stable, whereas
the latter is unstable. If the maximum of the real part of σ is exactly zero, the situation is called
marginally stable. It is more difficult to assess the long term behavior in this case.

1.2 Phase and group velocity of waves

For dispersion relations of the form ω(k), a solution of the form (1) can be written

u(x, t) = exp
(
ik
[
x− ω(k)

k
t
])
, (3)

which we notice are waves traveling at speed ω(k)/k; this is known as the phase velocity. If the
phase velocity is different for each k, a superposition of many different waves will appear to
spread out or disperse.

Surprisingly, if the superposition contains only wavenumbers near a central wavenumber k0,
the wave does not appear to move at the phase velocity σ(k0)/k0, but at a different speed. To see
how this happens, consider an initial condition which is a superposition of many different modes

u(x, 0) =

∫ ∞
−∞

A(k)eikx dk,
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where we think of A(k) as the amount of wavenumber k. If u solves an equation with a given
dispersion relation ω = ω(k) then the complete solution can be written

u(x, t) =

∫ ∞
−∞

A(k)eikx−iω(k)t dk. (4)

In general, the integral oscillates considerably as k is varied, and so one expects significant cancel-
lation.

Suppose thatA(k) is concentrated about some wavenumber k0; for example,A(k) = exp(−(k−
k0)

2/ε) where ε is small. One might think thatA(k) could be replaced with a delta function δ(k−k0)
as a good approximation, and then one recovers u ∼ exp(ik0x− iω(k0)t). This turns out to be too
simple, since the “sideband” wavenumbers near k0 play a role as t becomes large. Instead, we
Taylor expand ω(k) ≈ ω(k0) + ω′(k0)(k − k0), and plug into (4), giving

u(x, t) ≈ eit[ω′(k0)k0−ω(k0)]
∫ ∞
−∞

A(k)eik(x−ω
′(k0)t) dk.

The first factor just oscillates in time, whereas the integral is a traveling wave of the form f(x −
ω′(k0)t). This means that the entire superposition appears to travel at the group velocity ω′(k0),
which is in general different than the phase velocity ω(k0)/k0. Only in the case where the disper-
sion relation is linear ω = ck do the phase and group velocities coincide.

Take as an example the Schrödinger equation

iut + uxx = 0.

Looking for solutions of the form u = exp(ikx− iωt), one gets

exp(ikx− iωt)[i(−iω)− k2] = 0, therefore ω = k2.

The phase velocity is ω(k)/k) = k, so a superposition of waves will disperse. The group velocity
is ω′(k) = 2k, which is twice the phase velocity.

2 Steady state solutions

Suppose we have a (possibly nonlinear) PDE of the form

ut = R(u, ux, uxx, . . .) (5)

A steady state (or equilibrium) solution u0 is one for which (u0)t ≡ 0, so that it solves

R(u0, (u0)x, ...) = 0. (6)

In addition, (5) and (6) might also satisfy boundary conditions. Note that a steady state solution
solves an ordinary differential equation, rather then a PDE.

Example. Often, the solution to (6) is just a constant u = u0 in space as well as time. For the
diffusion equation with Dirichlet-type boundary conditions

ut = uxx, u(0, t) = 2 = u(1, t), (7)

2



it is easy to see that u(x, t) = 2 is a solution which does not depend on time or the space variable.
In general, however, equilibria may depend on x; for example, for the diffusion equation with
mixed boundary conditions

ut = uxx, u(0, t) = 0, ux(1, t) = 1, (8)

the equilibrium solution solves a two-point boundary value problem

(u0)xx = 0, u0(0) = 0, (u0)x(1) = 1, (9)

whose solution is easily obtained as u0 = x.

Example. Fisher’s equation is a nonlinear diffusion equation

ut = uxx + u(1− u), −∞ < x <∞. (10)

We can easily find two constant solutions u(x, t) = u0. They solve u0(1− u0) = 0 so that u0 = 0, 1.
This is one hallmark of nonlinear equations: they often possess numerous steady state solutions.

Example. A similar nonlinear diffusion equation is the Allen-Cahn equation

ut = uxx + 2u(1− u2), −∞ < x <∞. (11)

Constant solutions solve u0(1 − u20) = 0 so that u0 = 0,±1. We can also find non-constant steady
state solutions to (11) by imposing the conditions

lim
x→−∞

u(x) = −1, lim
x→∞

u(x) = 1.

A steady solution u(x, t) = u(x) solves

uxx + 2u(1− u2) = 0.

This is a so-called Hamiltonian equation, and can be turned into a first order equation by multi-
plying by ux and integrating. The result is∫

uxxux + 2u(1− u2)ux dx =
1

2
u2x + u2 − 1

2
u4 + C = 0,

where we used the facts that uxxux = 1
2(u

2
x)x and f ′(u)ux = f(u)x. Imposing the conditions at

x = ±∞ gives C = −1/2. The first order equation can now be written

ux =
√
u4 − 2u2 + 1 = 1− u2,

which can be solved by separating variables

du

1− u2
= dx, therefore

1

2
ln

∣∣∣∣1 + u

1− u

∣∣∣∣ = x+ c

so that finally
u(x) = tanh(x+ c).

Since c is arbitrary, there are an infinite number of steady state solutions which are just translations
of one another.
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Example. It was observed long ago that shallow water waves can appear as isolated pulses travel-
ing at speed V . If one runs along at the same speed, the wave appears steady. This can be modeled
by the Korteweg-de Vries (KdV) equation

ut − V ux + 6uux + uxxx = 0.

Steady solutions u(x, t) = u(x) solve

−V ux + 6uux + uxxx = 0.

If we suppose limx→±∞ u(x) = 0, this equation can be directly integrated to give

−V u+ 3u2 + uxx = 0.

This is also a Hamiltonian equation, so we turn it into a first order equation by the same trick as
in the previous example, giving

1

2
u2x −

V

2
u2 + u3 = 0

where the constant of integration was zero using the far field conditions. This equation can now
be solved by separation of variables, which gives

u(x) =
V

2
sech2

(√
V

2
(x+ c)

)
,

where again c allows for translation. These are the famous KdV solitons.

3 Linearization

It is frequently useful to approximate a nonlinear equation with a linear one, since we know a lot
more about linear equations. If u0(x) is a steady state of an equation of the form (5), then we can
look for solutions of the form

u(x, t) = u0(x) + εw(x, t) (12)

where ε presumed to be a small parameter. Plugging into (5) and keeping only the terms of order
ε always gives us a linear, time dependent equation for w. This equation is called the linearization
of (5) about u0.

The linearization can be used in a variety of ways. If it happens to admit a dispersion relation,
this can tell us about stability or the dispersive nature of the wave components. Linearization also
provides a basis for a wide variety of nonlinear techniques, which are beyond the scope of this
discussion. It should be acknowledged that linearization has its limits: if w(x, t) becomes large,
then the justification for ignoring nonlinear terms proportional to higher powers of ε breaks down.

Consider again Fisher’s equation (10), where we had previously found steady state solutions
u0 = 0, 1. Inserting the perturbed solution (12) into (10) for u0 = 0, one gets

εwt = εwxx + εw − ε2w2.

Keeping only terms of order ε, we get the linearized Fisher equation

wt = wxx + w. (13)
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This is a diffusion equation with a linear source term. Substituting (2) into it, one gets a dispersion
relation σ = −k2 +1. Since σ > 0 when |k| < 1, we might expect that an arbitrary initial condition
forw has components that both grow and decay exponentially. We would therefore say that u0 = 0
is linearly unstable.

If we linearize about u0 = 1, we get a different result. Setting u = 1 + εw gives

εwt = εwxx − εw − ε2w2,

so that the linearization is now
wt = wxx − w. (14)

This equation has a dispersion relation σ = −k2 − 1, which is always negative. Thus any initial
condition of the form u(x, 0) = 1+ εw(x, 0) in the original equation should evolve in time in a way
that has w decay and u→ 1 as t→∞. We call this situation linearly stable.

3.1 Examples of linearization

Example. A model for flame-front propagation is the Kuramoto-Sivashinsky equation

ut = −uxxxx − uxx +
1

2
u2x.

It is easy to see that u0 = 0 is a steady state solution. Letting u = u0 + εw, we get

εwt = −εwxxxx − εwxx + ε2
1

2
w2
x.

Therefore the linearization is
wt = −wxxxx − wxx.

Looking for a dispersion relation of the form w = exp(σt+ ikx), we get

σ(k) = −k4 + k2.

Since σ > 0 for |k| < 1, u = 0 is an unstable equilibrium. Any small initial condition containing
wavenumbers in this range will therefore always grow. Of course, the solution will eventually
get so large that the approximation leading to the linearization is not valid. At this point, more
advanced techniques are needed to investigate the behavior.

Example. A thin liquid film of height h(x, t) evolves according to the equation

ht =
(
h3[−hxx +Ah−3]x

)
x
, (15)

where A describes the role of intermolecular forces (e.g. van der Waals forces). Any constant
solution h(x, t) = h0 is a steady state. Setting h(x, t) = h0 + εw, we can use the Taylor series
approximations

(h0 + εw)3 = h30 + ε3h20w +O(ε2), (h0 + εw)−3 = h−30 − ε3h
−4
0 w +O(ε2),

whereO(ε2) refers to terms which are smaller than a constant times ε2. Then plugging h = h0+εw
into equation (15), we get

εwt =
(
(h30 + ε3h20w)[−εwxx + h−30 − ε3Ah

−4
0 w]x

)
x
+O(ε2),
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so that retaining the ε size terms,

wt = h30(−wxxxx − 3Ah−40 wxx).

The corresponding dispersion relation is found from w = exp(σt+ ikx), giving

σ(k) = h30(−k4 + 3Ah−40 k2),

which has a band of unstable wavenumbers |k| < h−20

√
3A, provided A > 0. On the other hand, if

A < 0, the film is stable.

Example. The so-called sine-Gordon equation is

utt = c2uxx − sin(u).

If we set u = εw(x, t), we use sin(εw) = εw +O(ε2) which produces the linearized equation

wtt = c2wxx − w.

This is a wave type equation, so it makes sense to use the form w(x, t) = exp(ikx − iωt) for the
dispersion relation. Plugging in we get

−ω2 = −c2k2 − 1, ω(k) = ±
√
1 + c2k2.

Since the phase velocity ±
√
1 + c2k2/k is not constant, waves disperse. On the other hand, they

do not grow or decay in time.
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