
Introduction and some preliminaries

1 Partial differential equations

A partial differential equation (PDE) is a relationship among partial derivatives of a function (or
functions) of more than one variable. In contrast, ordinary differential equations have only one
independent variable. Problems of this form are often supplemented with side conditions on the
domain boundaries.

The study of PDEs is quite old (at least 250 years) and is still evolving. Its development is in-
tertwined with the very fabric of modern scientific discovery. This is particularly true of physics,
since most of the elementary (and not so elementary) PDEs were developed from descriptions of
fluid and solid mechanics, electromagnetism, and quantum mechanics. More recently, the subject
has filtered into other scientific endeavors, such as ecology (e.g. the Fisher equation), chemistry
(e.g. reaction diffusion equations), materials science (e.g. the Cahn-Hilliard equation). Contem-
porary uses of PDEs have grown ever more imaginative, spanning topics from image processing
to mathematical finance. Some famous examples are shown in table 1. The first three comprise
the most basic linear equations; we shall study them first.

Name Equation Applications
Wave equation utt = c2uxx Vibrating string
Diffusion equation ut = Duxx Heat flow
Laplace’s equation uxx + uyy = 0 Electrostatics and many more
Burger’s equation ut + uux = Duxx Fluid mechanics
Cahn-Hilliard equation ut = (u3 − u− uxx)xx Phase separation
Eikonal equation |∇u| = f(x) Waves and control theory
Fisher’s equation ut = uxx + u(1− u) Ecology
Korteweg-de Vries equation ut + 6uux + uxxx = 0 Water waves
Schrödinger equation iut + uxx = 0 Quantum mechanics
Nonlinear Schrödinger equation iut + uxx + |u|2u = 0 Nonlinear optics
Swift-Hohenberg equation ut = −(∂xx + 1)2u+N(u) Pattern formation

Table 1: Some of the famous PDEs

The simplest classification of PDE’s is order, which is the highest derivative that appears. Often,
there is a distinction between order in space and time. For example, the wave equation is second
order in both x and t derivatives, whereas the diffusion equation is first order in the time variable
t but second order in the spatial variable x.

1.1 Coordinates and domains

In many problems, we often associate independent variables to coordinates of a physical sys-
tem. For example, a function u(x, y, z, t) might be regarded as assigning a value to each point
(x, y, z) ∈ R3 at time t. It is not always essential to impart a physical meaning to variables, but the
identification of spatial variables is important for defining operations like gradient, divergence
and Laplacian (see below). It is also nice to have a physical interpretation of an otherwise abstract
functional relation.
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The domain of the function(s) involved is an an essential aspect in the study of PDEs. Here the
domain will typically be denoted Ω, and will be regarded as an open set (one that does not contain
its boundary points). An equation is expected to be satisfied within the domain Ω, but nowhere
else.

The coordinate system we use typically reflects the type of domain. For example a function
u : R2 → R might be written in Cartesian coordinates u(x, y) for a square domain or polar vari-
ables u(r, θ) for a semi-circular domain. Of course, a PDE written in terms of x− and y− partial
derivatives is going to be different in terms of r and θ− partial derivatives. There is a perfectly
straightforward (although often laborious) way of changing coordinates in a PDE by the chain
rule. For example, we can regard polar coordinates as functions of Cartesian ones as r = r(x, y)
and θ = θ(x, y). Thus the partial derivative

ux = urrx + uθθx.

Of course, to effect a complete change of variables, one needs to write rx and θx in terms of r and
θ alone.

Sometimes there will be no need to refer to a particular coordinate system. In this case, the
spatial coordinate is identified by a (boldface) vector x. In fact, many calculations in PDE are far
simpler to accomplish using this so-called “coordinate-free” notation.

1.2 Side conditions

A PDE alone is generally insufficient to describe a situation of interest. Often there are side con-
ditions which are to be satisfied in addition to the equation itself. These are typically boundary or
initial conditions, which as their names imply restrict the behavior of the solution on the physical
boundary or at some specified value of time, respectively.

There are two common types of boundary conditions encountered in applications. The first is
called Dirichlet, which simply fixes the value of the solution on the boundary, e.g.

u(x) = f(x), x ∈ ∂Ω. (1)

The notation ∂Ω refers to the boundary of the set Ω. A second frequently encountered type of
boundary condition fixes the derivative normal to the boundary

∂u

∂n
= ∇u(x) · n̂ = f(x), x ∈ ∂Ω, (2)

where by convention n̂ is a unit vector normal to δΩ and points outward (assuming the boundary
is a smooth curve or surface). Condition (1) is often called the Neumann condition. For either case
(1) or (2), if f ≡ 0, these boundary conditions are called homogeneous.

In many problems, the domain is an unbounded set such as Rn or {(x, y), y > 0}. In these
cases, it is useful to think of the domain boundary as it were moved out to infinity. Rather than a
boundary condition for “boundaries at infinity”, we have far-field conditions, which specify some
kind of limiting behavior of the solution. An example of this is

lim
|x|→∞

u(x) = 0,

which behaves as a sort of Dirichlet condition.
For problems where time (or something like it) is one of the independent variables, initial

conditions are sometimes imposed. For example, one might specify the initial value of a solution
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u(x, t) as u(x, 0) = g(x) or even the initial time derivative, for example ut(x, 0) = h(x). Although
the notion of an initial condition is probably familiar from ordinary differential equations, here its
value is not a number, but a function of the spatial variables.

It will be occasionally useful to ignore or change certain side conditions when finding solutions
to PDEs. The expectation is that when fewer conditions are imposed on a problem, it will possess
more solutions. This has the advantage of generating families of solutions, from which the relevant
ones may be extracted.

1.3 Well-posedness

What makes for a “good” math problem? 1 Usually when we model the physical world, we expect
our equations to reproduce what we observe, and good science demands that our observations
are themselves reproducible. So if our model is complete (which is sometimes too strong of a
demand), it should give us one and only one solution, which hopefully mimics the real world
observation we were trying to model.

In the context of differential equations, well-posed problems have the following properties.

• Existence: there is at least one solution to equation and side conditions. If this were not the
case, the model is perhaps too restrictive, and may not tell us anything!

• Uniqueness: there is only one solution. This property goes back to the desire for repro-
ducibility: if we get many solutions, which one would we expect to observe? It often hap-
pens models do not have unique solutions, and it is generally because of missing ingredients
such as side conditions.

• Stability: informally speaking, this means if the model problem is changed a little, then the
solution only changes a little. Since the inputs (side conditions, coefficients, etc.) to models
are generally only known approximately, it would be undesirable if the solution was highly
sensitive to these things.

2 Multivariable derivatives, integrals and notation

The reader should be familiar with the basics - vector calculus and ordinary differential equa-
tions in particular. The following section merely mentions some of the highlights from calculus of
several variables, and establishes the particular notation which will be employed throughout.

2.1 Derivatives of more than one variable

Functions with more than one independent variable have various kinds of derivatives: partial
derivatives, directional derivatives, gradients, divergence, curl, etc. The most important one is the
partial derivative

∂

∂x
u(x, y) =

d

dx

∣∣∣
y
u(x, y)

where the notation |y means “treat y as if it were fixed”. We will typically use a more compact
notation ∂xu or ux for partial derivatives (the former is useful when talking about the derivative

1The cynic would say, anything that gets you funding!
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as an operator). Multiple partial derivatives are notated similarly, e.g.

∂2u

∂x∂y
= uxy = ∂xyu.

Recall that if u has continuous derivatives, the order of differentiation does not matter, so uxy =
uyx. A more general notion of partial derivatives comes from specifying a direction d in which the
derivative is to taken. Provided d has unit length, then the directional derivative in this direction
is∇u ·d = ∂u/∂d. For example the derivative in (2) is the derivative in the direction of the normal
vector.

We occasionally need to make use of the chain rule, e.g.

∂

∂r
u(x(r, s), y(r, s)) = ux(x(r, s), y(r, s))xr + uy(x(r, s), y(r, s))yr.

Recall that the idea behind this is simple: just add all possible combinations of one-dimensional
chain rules which link the function and the independent variable.

Often conceptual trouble with partial derivatives comes in situations where variables are used
ambiguously both to name arguments (inputs) of a function as well as label variables which may
comprise the inputs. For example, suppose you have some function of two variables w(x, t) and
want to compute ∂tw(x − ct, t). Does this mean fix x and differentiate with respect to t, or fix the
first input of w and differentiate with respect to the second variable? To clear up this confusion, it
is best to temporarily rename the arguments of w, to (say) w = w(y, s), where y = x− ct and s = t.
Then using the chain rule,

∂tw(x− ct, t) = wyyt + wsst = −cwy(x− ct, t) + ws(x− ct, t)

which is equivalent in original variables to −cwx(x− ct, t) + wt(x− ct, t).
We shall use other types of derivatives, notably gradient and divergence. These operations are

generally only meant to apply only to the spatial variables, so by convention

∇u(x, y, t) = [ux, uy], ∇·[g(x, y, t), h(x, y, t)] = gx + hy,

where vectors are denoted as ordered pairs [x1, x2] In the context of PDEs, there is a special differ-
ential operator which arises frequently, the Laplace operator (or simply Laplacian), which is simply
the divergence of the gradient. In three dimensions, it is notated 2 as

∇·[∇u(x, y, z, t)] = uxx + uyy + uzz ≡ ∆u.

We will study this operator extensively.

2.2 Integration over areas, volumes, curves, surfaces

Multidimensional integration is often encountered in the modeling, analysis and solution of PDEs.
We adopt a generic notation for integrals over a region R of a function whose domain contains R,∫

R
f(x)dx. (3)

Implicit is the fact f is a function of a vector coordinate x. The region R can be a variety of objects
- areas, volumes, curves, surfaces. The notation dx simply means integrate with respect to the

2In physics, the Laplacian is unfortunately written ∇2, even though it is NOT the gradient of a gradient.
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variable(s) denoted by the vector x. This is important since the integrand may be a function of
other variables. For example, it might be that f = f(x1,x2) is a function of two sets of vectors x1

and x2, but we only want to integrate with respect to one of them,
∫
R f(x1,x2)dx1. We treat x2

like a constant in this case, and only x1 ranges over values in the set R.
It is (almost) always better to notate multidimensional integrals like (3) without referring to

a particular coordinate system. When it comes to actually computing these integrals, however,
we sometimes resort to writing everything with respect to coordinates chosen to be convenient
(Cartesian, polar, etc.) and parameterizing R in terms of these coordinates. This usually results in
an iterated integral like ∫ b

a

∫ d

c

∫ f

e
· · · f(x, y, z, . . .)dx dy dz . . .

Such an integral is often mistakenly called a volume integral, but it is not - it is simply an iterated
set of plain one dimensional integrals which happens to represent the multidimensional integral
(3).

A special case of a integral over a curve or surface arises from using the divergence theorem∫
R
∇·F(x)dx =

∫
∂R

F(x) · n̂(x)dx.

The region R is a closed area (in R2) or volume (in R3), and ∂R denotes the boundary of R. The
integral on the right is usually called a flux integral, since it involves the flow of the vector field
F in the direction n̂(x) normal to the boundary. Since the normal vector n̂ depends on the point
on the boundary, it is often necessary to notate it as a function of x (especially if the integrand
happens to depend on two sets of coordinates).
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