
Quasi-linear equations: shocks and rarefactions

Consider the the first order “quasi-linear” equation and initial condition

ut + c(u)ux = 0, u(x, 0) = f(x) −∞ < x <∞ (1)

If we knew u to begin with, then we could find the characteristics by solving X ′(T ) = c(u(X(T ), T )),
X(t) = x. Since along characteristics u = U(T ) is a constant, the solution must be u(x, t) =
u(X(0), 0) = f(X(0)). But since we don’t know the solution u in advance, how are we to find
the initial position of the characteristic X(0)? The answer is, we must find the characteristic X(T )
and the solution value on the characteristic U simultaneously, in a way that is compatible with the
initial condition.

Example. Suppose we want to solve ut +3uux = 0 with u(x, t) = x. Characteristics solve X ′(T ) =
3U which is a constant, subject to X(t) = x. The resulting solution is

X(T ) = 3U(T − t) + x.

Then the starting point of the characteristic is X(0) = x− 3Ut, and at that point the solution value
must match the initial condition

U = u(X(0), 0) = X(0) = x− 3Ut.

This equation gives U implicitly, and solving for U gives the desired solution

u(x, t) = U =
x

1 + 3t
.

Since the solution is constant on each characteristic for equations of the form (1), each charac-
teristic has constant speed, which means that each one is a straight line. This creates two problems.
The first is that characteristics will intersect if their speed to the left (on the x axis) is greater than
their speed to the right. This leads to ambiguity as to how to assign the solutions value. The
second problem is that characteristics emanating from the t = 0 axis don’t have to pass through
every point (x, t) for t > 0. Let’s look at each case separately.

1 Shocks

Consider the problem

ut + uux = 0, u(x, 0) =

{
2 x < 0

1 x > 0
(2)

The characteristics which begin where x < 0 have speed 2, whereas those that begin where x > 0
have speed 1. Thus if t < x < 2t, there are two different characteristics which terminate at (x, t).

The resolution of this issue is to allow the solution to be discontinuous,

u(x, t) =

{
2 x < xs(t)

1 x > xs(t)

where xs(t) is a curve which is called a shock. Discontinuous solutions of partial differential equa-
tions is a familiar idea from the discussion of Green’s functions, and does not pose a problem if
derivatives are interpreted in the sense of distributions. For a moving discontinuity, both ut and
ux are delta functions and the speed is chosen so that they balance in equation (1).
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1.1 Shock speed

The moving discontinuity xs(t) will in general solve an initial value problem of the form x′s =
cs(xs) where xs(0) = initial location of shock. To find the shock speed cs(xs), it is useful to first
rewrite (1) in conservation form

ut + J(u)x = 0, J ′(u) = c(u). (3)

Assume first there is a smooth “step-like” solution traveling at speed cs of the form u = h(x− cst)
with

h→

{
uL x→ −∞
uR x→ +∞.

Plugging this into the equation, we find

−csh′ + J(h)′ = 0, (4)

which integrated from −∞ to∞ gives −cs(uR − uL) + J(uR)− J(uL) = 0 or

cs =
J(uR)− J(uL)

uR − uL
. (5)

This gives us a formula for the speed of the shock known as the Rankine-Hugoniot condition. In
general, uL and uR are known in advance; they are simply the usual method of characteristics
solutions on either side of the shock, evaluated at xs. For the above example, J(u) = u2/2, and
therefore the shock speed is dxs/dt = [J(2)− J(1)]/(2− 1) = 3/2. To be consistent with the initial
condition xs(0) = 0, so that xs(t) = 3/2t.

2 Rarefactions

Consider a modification of the above example problem

ut + uux = 0, u(x, 0) =

{
1 x < 0

2 x > 0
(6)

The characteristics which begin where x < 0 have speed 1, whereas those that begin for x > 0
have speed 2. Thus if t < x < 2t, there are no characteristics in this set which terminate at (x, t).
This region is called a rarefaction.

It turns out that there are an infinite number of ways to specify u in this region to get a solution.
This is problematic, and points to failure of the model itself. In these circumstances, one needs an
extra condition to “pick out” the most meaningful solution. The principle we will rely on is often
called the entropy condition, which can be stated informally as

“Characteristics cannot emerge from other characteristics.”

This means that the characteristics in the rarefaction (which are still lines) must all start at the
point of discontinuity x = 0, and they fan out as time increases.

The issue still remains what value of u to assign to each characteristic. Since the speed of
characteristics is related to u, the answer is obvious: in a rarefaction, u(x, t) needs to be made con-
sistent with the speed of the characteristic which goes through (x, t). Rarefaction characteristics
will solve X ′(T ) = c(U) = a constant, with two side conditions

X(t) = x, X(0) = xr, where xr is the starting point of rarefaction fan
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Imposing both conditions leads to an implicit equation for U .
In the above example, rarefaction characteristics solve X ′(T ) = U = a constant, subject to

X(0) = 0 and X(t) = x. Imposing the initial condition first, one gets X(T ) = UT . On the other
hand, letting T = t gives x = Ut which implies u(x, t) = Ux/t. The complete solution is therefore

u(x, t) =


1 x < t

x/t t < x < 2t

2 x > 2t.

3 Examples

Example (non-constant shock speed). Consider

ut + uux = 0, u(x, 0) =


0 x < 0

2x 0 < x < 1

0 x > 1.

There are three regions to consider. The first is where x < 0, in which case all characteristics have
zero speed and the solution is just u = 0. The second region is where 0 < x < xs(t), which has
characteristics with monotonically increasing speed in x, and where the shock location xs is yet to
be determined. The third region is where x > xs(t), where again characteristics have zero speed
and u = 0.

In the second region where 0 < x < xs(t), we have X ′(T ) = U subject to X(t) = x, which has
a solution

X(T ) = U(T − t) + x, so that X(0) = x− Ut.

Since U = u(X(0), 0) = 2X(0), it follows that 2(x− Ut) = U or u(x, t) = U = 2x/(1 + 2t).
Writing the equation in conservation form as ut + J(u)x = 0 with J = u2/2, the shock location

xs(t) evolves according to

x′s(t) =
J(2xs/(1 + 2t))− J(0)

2xs/(1 + 2t)− 0
=

xs
1 + 2t

.

This is a differential equation for xs(t), with initial condition xs(0) = 1. The solution after separat-
ing variables dxs/xs = dt/(1 + 2t) is

xs(t) =
√
1 + 2t.

Example (shock creation) Consider

ut + (u+ 1)ux = 0, u(x, 0) =


1 x < 0

1− x 0 < x < 1

0 x > 1.

Notice that characteristics which start at x = 0 and x = 1 have respective speeds 2 and 1 and
therefore are described by the lines X1(T ) = 2T and X2(T ) = 1 + T . These intersect when X = 2
and T = 1, at which point a shock must be created, whose velocity is

x′s(t) =
J(0)− J(1)

0− 1
, J(u) = u2/2 + u,

3



so that x′s = 3/2. Since xs(1) = 2, xs(t) = 3/2(t− 1) + 2.
On the other hand, before time t = 1, there is no shock at all. For the region X1(t) < x < X2(t),

the characteristics with X(t) = x all have 0 < X(0) < 1, and satisfy X ′(T ) = (U + 1). They are
therefore the lines X(T ) = (U + 1)(T − t) + x. To be consistent with the initial condition,

U = u(X(0), 0) = 1− [x− (U + 1)t],

so that
u(x, t) = U =

1− x+ t

1− t
.

Notice that this solution breaks down at t = 1, which is to be expected since this is when the shock
wave forms.

Example (multiple shocks). Consider

ut + 3u2ux = 0, u(x, 0) =


3 x < 1

2 1 < x < 2

1 x > 2.

At least when t is small, there must be three regions where the characteristic speeds are

X ′(T ) = 3U2 =


27 x < x1(t)

12 x1(t) < x < x2(t)

3 x > x2(t).

There are therefore two shocks with locations x1(t), x2(t). Since conservation form ut + J(u)x = 0
for this equation has J(u) = u3, they satisfy initial value problems

x′1(t) =
23 − 33

2− 3
= 19, x1(0) = 1

and

x′2(t) =
13 − 23

1− 2
= 7, x2(0) = 2,

so that
x1(t) = 19t+ 1, x2(t) = 7t+ 1.

These two lines intersect where t = 1/12 and x = 31/12, and after this point there is only one
shock, denoted x3(t), with u = 3 on the left and u = 1 on the right. This shock evolves according
to

x′3(t) =
13 − 33

1− 3
= 13, x3(1/12) = 32/12,

so that x3(t) = 13(t− 1/12) + 31/12.
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