
Separation of Variables

A typical starting point to study differential equations is to guess solutions of a certain form.
Since we will deal with linear PDEs, the superposition principle will allow us to form new solu-
tions from linear combinations of our guesses, in many cases solving the entire problem. To begin
with, we will consider functions of two variables u(v1, v2) (for example u(x, y) or u(r, θ)), where
the domain is very particular: it must be of the form (v1, v2) ∈ [a, b] × [c, d]. It will also be nec-
essary to have homogeneous boundary conditions on opposite boundaries v1 = a and v1 = b (or
alternatively v2 = c and v2 = d).

0.1 The separation principle

Suppose we have a problem with variables x1, x2, . . . , xn, and let f1(x1), f2(x2), . . . , fn(xn) be func-
tions of one variable each. If it happens that

f1(x1) + f2(x2) + . . .+ fn(xn) = 0, for all (x1, x2, . . . , xn) ∈ Ω (1)

then each term in (1) is a constant. This is easy to show: just take partial derivatives of the left
hand expression with respect to each xi. This gives f ′i(xi) = 0 so fi(xi) = λi; each λi are called
separation constants. The point of separation of variables is to get to equation (1) to begin with,
which can be done for a good number of homogeneous linear equations.

1 The wave equation

As a first example, consider the wave equation with boundary and initial conditions

utt = c2uxx, u(0, t) = 0 = u(L, t), u(x, 0) = φ(x), ut(x, 0) = ψ(x). (2)

We attempt an educated guess: find solutions of the form u(x, t) = X(x)T (t) which satisfy ev-
erything except the inhomogeneous initial conditions. These will be called separated solutions. Of
course, not every solution will be found this way, but we have a trick up our sleeve: the superpo-
sition principle guarantees that linear combinations of separated solutions will also satisfy both
the equation and the homogeneous boundary conditions. The proper choice of linear combination
will allow for the initial conditions to be satisfied.

Inserting u(x, t) = X(x)T (t) into the equation in (2) gives XT ′′ = c2TX ′′. We can separate the
x- and t- dependence by dividing to give

T ′′

c2T
=
X ′′

X
.

Using the separation principle, it follows that the left and right hand sides are equal to a constant,
which we will call −λ. Similarly, inserting u(x, t) = X(x)T (t) into the boundary conditions in (2)
means that X(0) and X(L) must be zero. We therefore get two ODEs: a boundary value problem
for X

X ′′ + λX = 0, X(0) = 0 = X(L), (3)

and an unconstrained equation for T ,

T ′′ + c2λT = 0. (4)
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Notice immediately that the problem for X is actually an eigenvalue problem which was solved
previously. We have a countable number of solutions

Xn = sin
(nπx
L

)
, λn =

(nπ
L

)2
, n = 1, 2, 3, . . .

Equation (4) has two linearly independent solutions: sin(c
√
λt) and cos(c

√
λt). Setting λ = λn for

each n, we find that separated solutions have the form

sin(cnπt/L) sin(nπx/L), cos(cnπt/L) sin(nπx/L), n = 1, 2, 3, . . . .

We might hope that a linear combination of separated solutions solves the whole problem,

u(x, t) =

∞∑
n=1

[An cos(cnπt/L) +Bn sin(cnπt/L)] sin
(nπx
L

)
. (5)

Using the initial conditions in (2) means that

φ(x) =
∞∑
n=1

An sin
(nπx
L

)
, ψ(x) =

∞∑
n=1

(nπc
L

)
Bn sin

(nπx
L

)
.

These are simply Fourier sine series, and determining the coefficients is just a matter of taking
inner products of both sides with the orthogonal eigenfunctions Xn = sin(nπx/L). This gives

An =
〈φ,Xn〉
〈Xn, Xn〉

, Bn =

(
L

nπc

)
〈ψ,Xn〉
〈Xn, Xn〉

, (6)

where 〈·, ·〉 is the usual L2 inner product.
At this point, the result (5) may seem anti-climatic. It’s difficult to imagine exactly what a

superposition of an infinite number of oscillations might even look like. It turns out that we are
often more interested in the individual components of the solution, the separated solutions whose
spatial and temporal structure is easy to understand. The eigenfunctions that make up the spatial
dependence are often called modes (or normal modes) whose shape defines the underlying waves.
Each mode has its own frequency of oscillation,

ωn =
nπc

L
, n = 1, 2, 3, . . .

In many problems, in fact, the set of frequencies {ωn} is much more interesting than the complete
solution (5)! These frequencies form the basis for the description of many physical phenomenon,
including the production of sound waves and atomic spectra.

2 The diffusion and Laplace equations

The preceding strategy can be immediately adapted to other linear equations with the same do-
main and boundary conditions such as the diffusion equation

ut = Duxx, u(0, t) = 0 = u(L, t), u(x, 0) = φ(x), (7)

and Laplace’s equation

uxx + uyy = 0, u(0, y) = 0 = u(L, y), u(x, 0) = h(x), u(x,H) = g(x), (8)
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For the diffusion equation (7), again set u = X(x)T (t) and separate the variables to give

T ′

T
=
X ′′

X
= −λ.

Remarkably, we obtain exactly the same eigenvalue problem for X and λ as before (3). The differ-
ence is in the equation for T , which reads

T ′ = −DλT,

which has one linearly independent solution T = exp(−Dλt). The separated solutions are there-
fore

exp(−D(nπ/L)2t) sin(nπx/L), n = 1, 2, 3, . . .

In this case, the modes Xn decay in time rather than oscillate. Note that we had predicted exactly
this when discussing conserved and dissipated quantities for the wave and diffusion equations.

A linear combination of separated solutions is

u(x, t) =
∞∑
n=1

An exp(−D(nπ/L)2t) sin
(nπx
L

)
. (9)

Invoking the initial condition, it follows that

φ(x) =
∞∑
n=1

An sin
(nπx
L

)
.

which means the coefficients are the same as in (6).
For the Laplace equation (8), separation of variables u = X(x)Y (y) leads to−Y ′′/Y = X ′′/X =

−λ. We again get the the same eigenvalue problem (3) for X and an equation for Y of the form

Y ′′ = λY.

Since λ is always positive, there are two linearly independent solutions Y = exp(
√
λy) and Y =

exp(−
√
λy). The separated solutions are therefore

exp(nπy/L) sin(nπx/L), exp(−nπy/L) sin(nπx/L), n = 1, 2, 3, . . .

A superposition of these is

u(x, y) =

∞∑
n=1

[An exp(nπy/L) +Bn exp(−nπy/L)] sin
(nπx
L

)
. (10)

We now try to satisfy the inhomogeneous boundary conditions in (8). Setting y = 0 and y = H
gives

h(x) =
∞∑
n=1

(An +Bn) sin
(nπx
L

)
, g(x) =

∞∑
n=1

[An exp(nπH/L) +Bn exp(−nπH/L)] sin
(nπx
L

)
.

Each represents a Fourier sine series, so upon taking inner products with the eigenfunctions Xn =
sin(nπx/L), one gets

An +Bn =
〈h,Xn〉
〈Xn, Xn〉

, An exp(nπH/L) +Bn exp(−nπH/L) =
〈g,Xn〉
〈Xn, Xn〉
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For each value of n, this represents a system of two equations for the two unknownsAn, Bn, which
can be solved in principle.

Note that we could have used different linearly independent solutions for Y ′′ = λY , such as
Y = cosh(

√
λy) and Y = sinh(

√
λy), so that the solution reads

u(x, y) =

∞∑
n=1

[Cn cosh(nπy/L) +Dn sinh(nπy/L)] sin
(nπx
L

)
. (11)

The advantage this confers is that the system for coefficients Cn, Dn is readily decoupled:

Cn =
〈h,Xn〉
〈Xn, Xn〉

, Cn cosh(nπH/L) +Dn sinh(nπH/L) =
〈g,Xn〉
〈Xn, Xn〉

3 Laplace’s equation in polar coordinates and Poisson’s formula

If the domain happens to have circular geometry (a disk, wedge or annulus) it makes sense to use
polar coordinates because the boundaries are just where r or θ are constant. In polar coordinates,
the Laplace operator is

∆u = urr +
ur
r

+
uθθ
r2
.

For a disk-shaped domain, the problem we want to solve is

urr +
ur
r

+
uθθ
r2

= 0, u(a, θ) = h(θ). (12)

This seems different than the previous examples because there are fewer boundary conditions.
There are actually hidden boundary conditions when using polar coordinates. The first is that the
solution should be finite at r = 0; we will note that some of our separated solutions do not have
this property. The second is that solutions should be 2π-periodic in θ, since θ = 0 and θ = 2π are
the same coordinate.

Separating variables u = R(r)Θ(θ) gives R′′Θ + r−1R′Θ + r−2RΘ′′ = 0 or after multiplying by
r2/(RΘ),

Θ′′

Θ
=
−r2R′′ − rR′

R
= −λ. (13)

Since u(r, θ) is 2π periodic, Θ and its derivatives should be also. This is now familiar ground: the
eigenvalue problem to be solved for Θ is

Θ′′ + λΘ = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π).

The boundary conditions are considered homogeneous since any linear combination of periodic
solutions will also be periodic. If λ > 0, it is easiest to write the general solution as Θ = exp(±i

√
λθ)

(recall that the real and imaginary parts are also solutions of the ODE). Clearly this is 2π periodic
only when

√
λ is a positive integer n. If λ = 0, the only periodic solution is a constant. Finally, if

λ < 0, solutions are exponentials which can never be periodic. The complete set of eigenvalues
and eigenfunctions is therefore

Θ =


1 λ = 0

cos(nθ) λ = n2

sin(nθ) λ = n2,
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where n = 1, 2, 3, . . .. These are sometimes called the circular harmonics and a linear combination of
these forms the standard real Fourier series. (By the way, if we wanted complex-valued solutions
for Θ instead, then one would have eigenfunctions Θ = exp(±inθ) which comprise the complex
Fourier series).

The equation for the radial component in (13) reads

r2R′′ + rR′ − λR = 0.

This is called the Euler or equidimensional equation, and it is easy to solve! For λ > 0, solutions are
just powers R = rα. Plugging in one gets

[α(α− 1) + α− λ]rα = 0,

so that α = ±
√
λ. If λ = 0, one can solve for R′ first (using separation of variables for ODEs) and

then integrating again. This leads to linearly independent solutions 1 and ln r.
We are ready to put together everything we know about separated solutions. Notice that some

solutions will not be continuous at the origin – those involving ln r and r−α – so we must reject
them. The remaining separated solutions have the form 1, rn cos(nθ) and rn sin(nθ). Therefore the
most general solution we might hope to find is the superposition

u = A0/2 +

∞∑
n=1

rn[An cos(nθ) +Bn sin(nθ)]. (14)

Finally, satisfying the boundary condition in (12) means that

h(θ) = A0/2 +

∞∑
n=1

an[An cos(nθ) +Bn sin(nθ)].

We can see that this is a Fourier series with cosine coefficients anAn and sine coefficients anBn, so
that (using the known formulas)

An =
1

πan

∫ 2π

0
h(φ) cos(nφ)dφ, Bn =

1

πan

∫ 2π

0
h(φ) sin(nφ)dφ.

Note this works for A0 also since we cleverly wrote the first term as A0/2.
Usually, series solutions like (14) cannot be summed analytically, but remarkably it can be done

here. Inserting the coefficient formulas into (14) gives

u(r, θ) =
1

2π

∫ 2π

0
h(φ)dφ+

∞∑
n=1

rn

πan

∫ 2π

0
h(φ)[cos(nφ) cos(nθ) + sin(nφ) sin(nθ)]dφ.

We can use the identity cos(nφ) cos(nθ) + sin(nφ) sin(nθ) = cos(n(θ − φ)) and reverse the order of
summation and integration,

u(r, θ) =
1

2π

∫ 2π

0
h(φ)

{
1 + 2

∞∑
n=1

(r
a

)n
cos(n(θ − φ))

}
dφ.

The sum is not as bad as it seems; in fact, it is a geometric series in disguise! In particular,

1 + 2

∞∑
n=1

(r
a

)n
cos(n(θ − φ)) = 1 + 2Re

∞∑
n=1

(
rei(θ−φ)

a

)n

= 1 + 2Re
rei(θ−φ)

a− rei(θ−φ)

=
a2 − r2

a2 − 2ar cos(θ − φ) + r2
.
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We therefore have an integral, known as Poisson’s formula, for the solution:

u(r, θ) =

∫ 2π

0
P (r, θ − φ)h(φ)dφ, P (r, θ) =

1

2π

a2 − r2

a2 − 2ar cos(θ) + r2
. (15)

Formula (15) provides a nice interpretation to Laplace’s equation. Setting r = 0, one immedi-
ately obtains

u(0, θ) =
1

2π

∫ 2π

0
u(a, θ)dθ. (16)

This says that a solution of Laplace’s equation at a point is equal to the average of its values on a
circle about that point; this is the mean value property. The circle does not have to be the domain
boundary, by the way; it simply must reside inside the closure of the problem domain.

A simple consequence of the mean value property is the maximum principle. This says that the
maximum (and minimum) of solutions to Laplace’s equation are obtained on the domain bound-
ary. For example, if u(x, y) represents the steady-state temperature of an object, then the hottest
and coldest points can’t be in the interior of the object unless the temperature is constant through-
out. The maximum principle has many extensions to time-dependent and nonlinear equations.

4 Dealing with inhomogeneous equations or side conditions

Notice that in separating variables for u(v1, v2), either the boundaries corresponding to constant
v1 or constant v2 must have homogeneous conditions to obtain an eigenvalue problem. And if the
equation is not homogeneous, it will be impossible to separate variables at all. Luckily, linearity
can come to the rescue in these cases. The idea is first find a particular solution which satisfies the
equation and/or the inhomogeneous boundary conditions. Then by subtracting off the particu-
lar solution, a problem suitable for separation of variables is obtained. The main difficulty is in
finding a particular solution; in simple problems, guessing is often effective.

4.1 Inhomogeneous equations

Recall the inhomogeneous superposition principle which says that if up is a particular solution
satisfying an inhomogeneous equation also satisfied by u, then w = u − up satisfies a homoge-
neous equation. Then it might be the case that the new problem for w is suitable for separation of
variables.

Consider the Poisson equation (the inhomogeneous version of the Laplace equation)

∆u = uxx + uyy = 1, u(0, y) = 0 = u(1, y), u(x, 0) = 0 = u(x, 1).

We must find a particular solution so that ∆up = 1, so we guess up = Ax2 +Bx+C. Plugging into
the equation gives 2A = 1 or A = 1

2 . We also want up to be zero on the lateral boundaries just like
Laplace equation problem above. We do this by inserting up into the boundary conditions, giving
C = 0, B = −1

2 , so that

up =
1

2
x(x− 1).

Now we formulate a problem for w = u − up by subtracting each equation and side conditions,
which leads to

wxx + wyy = 0, w(0, y) = 0 = w(1, y), w(x, 0) = −1

2
x(x− 1) = w(x, 1).
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This problem can now be solved by separation of variables; it is a special case of (8) so we can
quote the solution

w(x, y) =
∞∑
n=1

[An exp(nπy) +Bn exp(−nπy)] sin(nπx),

where

An +Bn = −
〈12x(x− 1), Xn〉
〈Xn, Xn〉

, An exp(nπ) +Bn exp(−nπ) = −
〈12x(x− 1), Xn〉
〈Xn, Xn〉

and from direct computation of integrals,

〈12x(x− 1), Xn〉
〈Xn, Xn〉

= − 2

π4n3
[cos(πn)− 1].

4.2 Inhomogeneous boundary conditions

In this case we seek a particular solution up which satisfies both the equation and inhomogeneous
boundary conditions. Then u − up will have (at least some) homogeneous boundary conditions
and might be suitable for separation of variables.

Suppose we wanted to solve the diffusion equation

ut = Duxx, u(0, t) = ul, u(L, t) = ur, u(x, 0) = φ(x). (17)

We need a particular solution to the equation up which satisfies up(0, t) = ur and up(L, t) = ul.
The reason for this is that w = u−up will also solve the equation but with homogeneous boundary
conditions

wt = Dwxx, w(0, t) = 0, w(L, t) = 0, w(x, 0) = φ(x)− up. (18)

which we have already solved. Notice that for the initial condition to make sense, the particular
solution should only be a function of x. A reasonable guess is a linear function up = Ax + B.
Clearly this solves the equation, and if B = ul and A = (ur − ul)/L then the boundary conditions
are also satisfied.

As another example, consider the Laplace equation

uxx + uyy = 0, u(0, y) = p(y), u(L, y) = q(y), u(x, 0) = h(x), u(x,H) = g(x), (19)

where there are no homogeneous boundary conditions. One needs either p, q = 0 or h, g = 0 in
order to use separation of variables. Therefore, consider the solutions v and w to two separate
problems which we have solved before:

vxx + vyy = 0, v(0, y) = 0, v(L, y) = 0, v(x, 0) = h(x), v(x,H) = g(x),

wxx + wyy = 0, w(0, y) = p(y), w(L, y) = q(y), w(x, 0) = 0, w(x,H) = 0.

(Note that when separating variables w = X(x)Y (y), it will be Y (y) that satisfies the eigenvalue
problem). Now convince yourself that v + w solves original problem (19).
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5 Limitations and extensions to separation of variables

We should acknowledge the limitations of the procedure that is outlined. The first is the essential
nature of linearity, which allowed the use the superposition principle. The second is having homo-
geneous boundary conditions on two opposite sides of the domain. Without these, the boundary
value problem would not be an eigenvalue problem at all, and it is unlikely that enough separated
solutions could be found to solve the entire problem. The final limitation is the geometry of the
domain. In Cartesian coordinates, we are limited to rectangles, and in polar coordinates we are
limited to circles, wedges, and annuli.

We shall also consider separation of variables in higher dimensions later on. This will require
solution of higher dimensional eigenvalue problems, which will be solved by (you guessed it!)
further separation of variables. We will also have the same limitations on geometry: domains in
three variables will be limited to rectangular boxes, cylinders and spheres.
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