
Asymptotic Methods

Algebraic equations



Regular perturbations

Consider a problem f (x ; ε) = 0. If the solution set for ε = 0 is qualitatively the
same as for small, nonzero ε, the problem is a regular perturbation of
f (x ; 0) = 0.

Example: Solve x3 − x + ε = 0 if ε� 1.

Insert predefined expansion x = x0 + εx1 + ε2x2 + . . . into equation and sort
terms by powers of ε:

0 = (x3
0 − x0) + ε(3x2

0 x1 − x1 + 1) + ε2(3x2
0 x2 − x2 + 3x0x

2
1 ) + . . .

Solving order by order gives x3
0 − x0 = 0 so x0 = 0,±1.

At O(ε), 3x2
0 x1 − x1 + 1 = 0 so that x1 = 1/(1− 3x2

0 ).
At O(ε2), 3x2

0 x2 − x2 + 3x0x
2
1 = 0 so that x2 = 3x0x

2
1/(1− 3x2

0 ).
Notice that there are always three solutions for ε = 0.
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Singular perturbations

Problems which are not regular perturbations are called singular perturbations.
In these cases, the form of the expansion cannot always be guessed ahead of
time, and each term is found by successive use of the method of dominant
balance.

Example: Solve εx3 − x + 1 = 0 for small ε.

Using x = x0 + εx1 + ε2x2 + . . . as before, one obtains

−x0 + 1 = 0, −x1 + x3
0 = 0, −x2 + 3x2

0 x1 = 0, . . .

So that x0 = 1, x1 = 1 and x2 = 3. But this is insufficient since it does not find
the other roots!

Notice that εx3 was assumed smaller than 1 above, and dominant balance was
between the last two terms. Must this always be the case?

Suppose instead dominant balance between first two terms, so that εx3 − x ∼ 0
which produces x ∼ ±ε−1/2.
To find correction term, insert x ∼ ±ε−1/2 + x1 where x1 = o(ε−1/2):

0 = ε(±ε−1/2 + x1)3 − (±ε−1/2 + x1) + 1 = 2x1 + 1 + o(1),

which means x1 = −1/2.

Finally, it is possible to have dominant balance between the first and third
terms? If that were the case, then εx3 + 1 ∼ 0 or x = O(ε−1/3). But then the
second term would actually be bigger than the other two, not smaller.
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Dominant balance at lower orders

It can happen that further expansion terms also need to check various cases for
dominant balance.

Example: Solve (1− ε)x2 − 2x + 1 = 0 for ε→ 0+.

For the leading order problem, εx2 is always smaller than the other terms, hence

x2
0 − 2x0 + 1 = 0

so that x0 = 1. For a correction term, set x ∼ 1 + x1 with x1 = o(1), giving

0 ∼ (1− ε)(1 + 2x1 + x2
1 )− 2(1 + x1) + 1

= x2
1 − ε− 2εx1 − εx2

1 .

Since x1 = o(1), then 2εx1 << ε and εx2
1 << ε, therefore the only two terms

that can balance give 0 = x2
1 − ε, or x1 = ±ε1/2. Notice here ε must be positive

to have any solutions at all.
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Transcendental equations

For transcendental equations, order functions may not be powers.

Example: Solve xe−x = ε for small ε.

First write this as
ln x − x = ln ε.

There are three cases for dominant balance to consider:
Case I: ln x − x ∼ 0. Here, there is no solution at all! Even if there were, then
x = O(1) which would mean that the ln ε term is dominant instead.

Case II: ln x ∼ ln ε. Then x ∼ ε, which is allowed by dominant balance since
the −x term is smaller than the other two. In fact, a whole series
x = ε+ a2ε

2 + a3ε
3 + . . . can be developed. Inserting into the equation and

(Taylor) expanding the logarithm,

ln ε+ εa2 − 2ε2a3 + . . .− (ε+ a2ε
2 + a3ε

3 + . . .) = ln ε,

so that, for example, εa2 = ε or a2 = 1.
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Transcendental equation example, cont.

Case III: x ∼ ln(1/ε), which also works for dominant balance. Inserting
x = ln(1/ε) + x1 with x1 = o(ln(1/ε)),

0 ∼ ln(ln(1/ε) + x1)− x1 ∼ ln ln(1/ε)− x1,

so that x1 = ln ln(1/ε). Inserting x = ln(1/ε) + ln ln(1/ε) + x2 produces

0 ∼ ln ln(1/ε)

ln(1/ε)
− x2.

Thus we have x = ln(1/ε) + ln ln(1/ε) + ln ln(1/ε)
ln(1/ε)

+ . . ..

Remark: another way to generate an expansion is by the (contractive) mapping

xn+1 = ln xn + ln(1/ε),

which generates the same sequence of approximations.
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