Asymptotic Methods
Asymptotic series and approximations

Asymptotic sequences and series

Definition

The sequence of functions $\phi_{1}(\epsilon), \phi_{2}(\epsilon), \ldots$ is an asymptotic sequence for $\epsilon \rightarrow 0$ if $\phi_{n+1}(\epsilon)=o\left(\phi_{n}(\epsilon)\right)$ for any n.

Definition

The sequence of functions $\phi_{1}(\epsilon), \phi_{2}(\epsilon), \ldots$ is an asymptotic sequence for $\epsilon \rightarrow 0$ if $\phi_{n+1}(\epsilon)=o\left(\phi_{n}(\epsilon)\right)$ for any n.

Example 1: increasing powers of ϵ such as $1, \epsilon, \epsilon^{2}, \ldots$ form an asymptotic sequence.
Example 2: $\ln \left(\epsilon^{-1}\right), \ln \left(\ln \left(\epsilon^{-1}\right)\right), 1, \ldots, \exp \left(-\epsilon^{-1}\right)$

Asymptotic sequences and series

Definition

The sequence of functions $\phi_{1}(\epsilon), \phi_{2}(\epsilon), \ldots$ is an asymptotic sequence for $\epsilon \rightarrow 0$ if $\phi_{n+1}(\epsilon)=o\left(\phi_{n}(\epsilon)\right)$ for any n.
Example 1: increasing powers of ϵ such as $1, \epsilon, \epsilon^{2}, \ldots$ form an asymptotic sequence.
Example 2: $\ln \left(\epsilon^{-1}\right), \ln \left(\ln \left(\epsilon^{-1}\right)\right), 1, \ldots, \exp \left(-\epsilon^{-1}\right)$

Definition

The quantity $f(\epsilon)$ has an asymptotic expansion (or series)

$$
f(\epsilon) \sim \sum_{k=1}^{n} a_{k} \phi_{k}(\epsilon)
$$

with $n \leq \infty$, in the asymptotic sequence $\phi_{1}(\epsilon), \phi_{2}(\epsilon), \ldots$, provided

$$
f(\epsilon)-\sum_{k=1}^{m} a_{k} \phi_{k}(\epsilon)=o\left(\phi_{m}\right), \quad \epsilon \rightarrow 0
$$

for any $1 \leq m \leq n$.

Asymptotic expansions, examples

Example 1: Taylor's theorem for analytic functions says

$$
f(\epsilon) \sim \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \epsilon^{k}
$$

Asymptotic expansions, examples

Example 1: Taylor's theorem for analytic functions says

$$
f(\epsilon) \sim \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \epsilon^{k}
$$

Example 2: Often Taylor expansion of terms within an expression lead to an expansion:

$$
\begin{aligned}
\frac{1}{1-e^{\epsilon}} & \sim \frac{1}{1-\left(1+\epsilon+\epsilon^{2} / 2!+\ldots\right)}=-\epsilon^{-1} \frac{1}{1+\epsilon / 2!+\epsilon^{2} / 3!+\ldots} \\
& =-\epsilon^{-1}\left(1-\epsilon / 2!-\epsilon^{2} / 3!-\ldots+\left(\epsilon / 2!+\epsilon^{2} / 3!+\ldots\right)^{2}+\ldots\right) \\
& =-\epsilon^{-1}+\frac{1}{2}-\frac{1}{12} \epsilon+\ldots
\end{aligned}
$$

Asymptotic expansions, examples

Example 3: Expand $(1+x / n)^{n}$ for $n \rightarrow \infty$.

Asymptotic expansions, examples

Example 3: Expand $(1+x / n)^{n}$ for $n \rightarrow \infty$. Write

$$
\left(1+\frac{x}{n}\right)^{n}=\exp [n \ln (1+x / n)] .
$$

Example 3: Expand $(1+x / n)^{n}$ for $n \rightarrow \infty$. Write

$$
\left(1+\frac{x}{n}\right)^{n}=\exp [n \ln (1+x / n)] .
$$

Since x / n is small, can expand the logarithm

$$
\begin{aligned}
\exp [n \ln (1+x / n)] & \sim \exp \left[x-x^{2} /(2 n)+x^{3} /\left(3 n^{2}\right)-\ldots\right] \\
& =\exp (x) \exp \left(-x^{2} / 2 n+x^{3} /\left(3 n^{2}\right)+\ldots\right) \\
& =\exp (x)\left[1-x^{2} /(2 n)+x^{3} /\left(3 n^{2}\right)+\mathcal{O}\left(n^{-4}\right] .\right.
\end{aligned}
$$

Asymptotic expansions, examples

Example 4: expand $y=\tanh ^{-1}(1-\epsilon)$ for $\epsilon \rightarrow 0$.

Asymptotic expansions, examples

Example 4: expand $y=\tanh ^{-1}(1-\epsilon)$ for $\epsilon \rightarrow 0$.
Observe $\epsilon \rightarrow 0$ means $y \rightarrow \infty$; write

$$
1-\epsilon=\tanh y=\frac{1-e^{-2 y}}{1+e^{-2 y}} \sim 1-2 e^{-2 y}+2 e^{-4 y}+\ldots, \quad y \rightarrow \infty
$$

Dominant balance: largest terms in this expression yield $\epsilon \sim 2 e^{-2 y}$ or $y \sim-\frac{1}{2} \ln (\epsilon / 2)$.

Asymptotic expansions, examples

Example 4: expand $y=\tanh ^{-1}(1-\epsilon)$ for $\epsilon \rightarrow 0$.
Observe $\epsilon \rightarrow 0$ means $y \rightarrow \infty$; write

$$
1-\epsilon=\tanh y=\frac{1-e^{-2 y}}{1+e^{-2 y}} \sim 1-2 e^{-2 y}+2 e^{-4 y}+\ldots, \quad y \rightarrow \infty
$$

Dominant balance: largest terms in this expression yield $\epsilon \sim 2 e^{-2 y}$ or $y \sim-\frac{1}{2} \ln (\epsilon / 2)$.
To find next term in expansion, let $y \sim-\frac{1}{2} \ln (\epsilon / 2)+y_{1}$ with $y_{1}=o(1)$, and repeat dominant balance argument:

$$
\begin{aligned}
1-\epsilon & \sim 1-2 \exp \left(\ln (\epsilon / 2)-2 y_{1}\right)+2 \exp \left(2 \ln (\epsilon / 2)-4 y_{1}\right) \\
& =1-\epsilon \exp \left(-2 y_{1}\right)+\frac{\epsilon^{2}}{2} \exp \left(-4 y_{1}\right) \\
& \sim 1-\epsilon\left(1-2 y_{1}+\ldots\right)+\frac{\epsilon^{2}}{2}\left(1-4 y_{1}+\ldots\right)
\end{aligned}
$$

Asymptotic expansions, examples

Example 4: expand $y=\tanh ^{-1}(1-\epsilon)$ for $\epsilon \rightarrow 0$.
Observe $\epsilon \rightarrow 0$ means $y \rightarrow \infty$; write

$$
1-\epsilon=\tanh y=\frac{1-e^{-2 y}}{1+e^{-2 y}} \sim 1-2 e^{-2 y}+2 e^{-4 y}+\ldots, \quad y \rightarrow \infty
$$

Dominant balance: largest terms in this expression yield $\epsilon \sim 2 e^{-2 y}$ or $y \sim-\frac{1}{2} \ln (\epsilon / 2)$.
To find next term in expansion, let $y \sim-\frac{1}{2} \ln (\epsilon / 2)+y_{1}$ with $y_{1}=o(1)$, and repeat dominant balance argument:

$$
\begin{aligned}
1-\epsilon & \sim 1-2 \exp \left(\ln (\epsilon / 2)-2 y_{1}\right)+2 \exp \left(2 \ln (\epsilon / 2)-4 y_{1}\right) \\
& =1-\epsilon \exp \left(-2 y_{1}\right)+\frac{\epsilon^{2}}{2} \exp \left(-4 y_{1}\right) \\
& \sim 1-\epsilon\left(1-2 y_{1}+\ldots\right)+\frac{\epsilon^{2}}{2}\left(1-4 y_{1}+\ldots\right)
\end{aligned}
$$

After cancellation, dominant terms give $0 \sim 2 \epsilon y_{1}-\epsilon^{2} / 2$, so that $y_{1}=\epsilon / 4$. Further corrections could be obtained using $y \sim-\frac{1}{2} \ln (\epsilon / 2)+\epsilon / 4+y_{2}$.

Remarks

- If the form of the expansion is known in advance, i.e.

$$
f(x) \sim a_{1} \phi_{1}(\epsilon)+a_{2} \phi_{2}(\epsilon)+a_{3} \phi_{3}(\epsilon)+\ldots,
$$

it can be substituted into the problem, and terms of each order $\phi_{1}, \phi_{2}, \phi_{3}, \ldots$ can be equated. Typically, all but the leading order term a_{1} satisfies a linear equation. This feature makes finding expansions tractable.

Remarks

- If the form of the expansion is known in advance, i.e.

$$
f(x) \sim a_{1} \phi_{1}(\epsilon)+a_{2} \phi_{2}(\epsilon)+a_{3} \phi_{3}(\epsilon)+\ldots,
$$

it can be substituted into the problem, and terms of each order $\phi_{1}, \phi_{2}, \phi_{3}, \ldots$ can be equated. Typically, all but the leading order term a_{1} satisfies a linear equation. This feature makes finding expansions tractable.

- An infinite asymptotic series does not need to converge. For example, formally computing

$$
\begin{aligned}
\int_{0}^{\infty} \frac{e^{-t}}{1+\epsilon t} d t & \sim \int_{0}^{\infty} e^{-t}\left(\sum_{n=0}^{\infty}(-1)^{n} t^{n} \epsilon^{n}\right) d t \\
& \sim \sum_{n=0}^{\infty}(-1)^{n} n!\epsilon^{n}
\end{aligned}
$$

leads to series that clearly does not converge unless $\epsilon=0$, but can be shown to be asymptotic.

