Asymptotic Methods

Bifurcation analysis

Bifurcation from a simple eigenvalue

Consider ODE for $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=F(x, \lambda),
$$

and corresponding fixed point equation $F(x, \lambda)=0$.

Bifurcation from a simple eigenvalue

Consider ODE for $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=F(x, \lambda),
$$

and corresponding fixed point equation $F(x, \lambda)=0$.
Fundamental question: If x_{0} is a known fixed point for $\lambda=\lambda_{0}$, are there other fixed points nearby?

Bifurcation from a simple eigenvalue

Consider ODE for $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=F(x, \lambda)
$$

and corresponding fixed point equation $F(x, \lambda)=0$.
Fundamental question: If x_{0} is a known fixed point for $\lambda=\lambda_{0}$, are there other fixed points nearby?

Partial answer: implicit function theorem says that if $\nabla_{x} F\left(x_{0}, \lambda_{0}\right)$ is nonsingular, then there exists a unique branch of fixed points $x(\lambda)$ so that $F(x(\lambda), \lambda)=0$. In this case, there is no bifurcation.

Bifurcation from a simple eigenvalue

Consider ODE for $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=F(x, \lambda)
$$

and corresponding fixed point equation $F(x, \lambda)=0$.
Fundamental question: If x_{0} is a known fixed point for $\lambda=\lambda_{0}$, are there other fixed points nearby?

Partial answer: implicit function theorem says that if $\nabla_{x} F\left(x_{0}, \lambda_{0}\right)$ is nonsingular, then there exists a unique branch of fixed points $x(\lambda)$ so that $F(x(\lambda), \lambda)=0$. In this case, there is no bifurcation.
What if $\nabla_{x} F\left(x_{0}, \lambda_{0}\right)$ has a p - dimensional nullspace spanned by v ? Reduction techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as a p-dimensional problem.

Bifurcation from a simple eigenvalue

Consider ODE for $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=F(x, \lambda)
$$

and corresponding fixed point equation $F(x, \lambda)=0$.
Fundamental question: If x_{0} is a known fixed point for $\lambda=\lambda_{0}$, are there other fixed points nearby?
Partial answer: implicit function theorem says that if $\nabla_{x} F\left(x_{0}, \lambda_{0}\right)$ is nonsingular, then there exists a unique branch of fixed points $x(\lambda)$ so that $F(x(\lambda), \lambda)=0$. In this case, there is no bifurcation.
What if $\nabla_{x} F\left(x_{0}, \lambda_{0}\right)$ has a p-dimensional nullspace spanned by v ? Reduction techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as a p-dimensional problem.
For simplicity consider scalar problem with $x_{0}=0=\lambda_{0}$, and suppose

$$
f(x, \lambda) \sim \lambda x+A x^{n}+\ldots, \quad x \rightarrow 0
$$

Here n is the first nonzero higher order Taylor coefficient.

Bifurcation from a simple eigenvalue

Consider ODE for $x \in \mathbb{R}^{n}$

$$
\frac{d x}{d t}=F(x, \lambda)
$$

and corresponding fixed point equation $F(x, \lambda)=0$.
Fundamental question: If x_{0} is a known fixed point for $\lambda=\lambda_{0}$, are there other fixed points nearby?

Partial answer: implicit function theorem says that if $\nabla_{x} F\left(x_{0}, \lambda_{0}\right)$ is nonsingular, then there exists a unique branch of fixed points $x(\lambda)$ so that $F(x(\lambda), \lambda)=0$. In this case, there is no bifurcation.
What if $\nabla_{x} F\left(x_{0}, \lambda_{0}\right)$ has a p - dimensional nullspace spanned by v ? Reduction techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as a p-dimensional problem.

For simplicity consider scalar problem with $x_{0}=0=\lambda_{0}$, and suppose

$$
f(x, \lambda) \sim \lambda x+A x^{n}+\ldots, \quad x \rightarrow 0
$$

Here n is the first nonzero higher order Taylor coefficient.
Regarding $\epsilon=\lambda-\lambda_{0}$ as the small parameter, we seek solutions to the fixed points equation of the form $x \sim x_{0}+\epsilon^{\alpha} x_{1}+\ldots$, where dominant balance suggests $\lambda x \sim-A x^{n}$, so that $\alpha=1 /(n-1)$ and $x_{1}=-A^{-1 /(n-1)}$.

Higher dimensional example

Consider the system

$$
\dot{x}=\mu x+y+\sin x, \quad \dot{y}=x-y
$$

For the fixed point $(0,0)$, linearization gives $\nabla F=\left(\begin{array}{cc}\mu+1 & 1 \\ 1 & -1\end{array}\right)$, which is singular when $\mu=-2$.

Higher dimensional example

Consider the system

$$
\dot{x}=\mu x+y+\sin x, \quad \dot{y}=x-y .
$$

For the fixed point $(0,0)$, linearization gives $\nabla F=\left(\begin{array}{cc}\mu+1 & 1 \\ 1 & -1\end{array}\right)$, which is singular when $\mu=-2$. Since the nonlinear term in the equation has a Taylor expansion $\sin x=x-x^{3} / 6+\ldots$, try expansions

$$
x=\epsilon^{1 / 2} x_{1}+\epsilon x_{2}+\epsilon^{3 / 2} x_{3}+\ldots, \quad y=\epsilon^{1 / 2} y_{1}+\epsilon y_{2}+\epsilon^{3 / 2} y_{3}+\ldots,
$$

where $\epsilon=\mu+2$.

Higher dimensional example

Consider the system

$$
\dot{x}=\mu x+y+\sin x, \quad \dot{y}=x-y .
$$

For the fixed point $(0,0)$, linearization gives $\nabla F=\left(\begin{array}{cc}\mu+1 & 1 \\ 1 & -1\end{array}\right)$, which is singular when $\mu=-2$. Since the nonlinear term in the equation has a Taylor expansion $\sin x=x-x^{3} / 6+\ldots$, try expansions

$$
x=\epsilon^{1 / 2} x_{1}+\epsilon x_{2}+\epsilon^{3 / 2} x_{3}+\ldots, \quad y=\epsilon^{1 / 2} y_{1}+\epsilon y_{2}+\epsilon^{3 / 2} y_{3}+\ldots,
$$

where $\epsilon=\mu+2$. Inserting into the fixed point equations and collecting powers of ϵ gives

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{y_{1}}=\binom{0}{0}, \quad\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{2}}{y_{2}}=\binom{0}{0}, \quad\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{3}}{y_{3}}=\binom{-x_{1}+x_{1}^{3} / 6}{0} .
$$

Higher dimensional example

Consider the system

$$
\dot{x}=\mu x+y+\sin x, \quad \dot{y}=x-y .
$$

For the fixed point $(0,0)$, linearization gives $\nabla F=\left(\begin{array}{cc}\mu+1 & 1 \\ 1 & -1\end{array}\right)$, which is singular when $\mu=-2$. Since the nonlinear term in the equation has a Taylor expansion $\sin x=x-x^{3} / 6+\ldots$, try expansions

$$
x=\epsilon^{1 / 2} x_{1}+\epsilon x_{2}+\epsilon^{3 / 2} x_{3}+\ldots, \quad y=\epsilon^{1 / 2} y_{1}+\epsilon y_{2}+\epsilon^{3 / 2} y_{3}+\ldots,
$$

where $\epsilon=\mu+2$. Inserting into the fixed point equations and collecting powers of ϵ gives

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{y_{1}}=\binom{0}{0}, \quad\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{2}}{y_{2}}=\binom{0}{0}, \quad\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{3}}{y_{3}}=\binom{-x_{1}+x_{1}^{3} / 6}{0} .
$$

The first two equations say that $\left(x_{1}, y_{1}\right)^{T}$ and $\left(x_{2}, y_{2}\right)^{T}$ are in the nullspace of the matrix, therefore $\left(x_{1}, y_{1}\right)^{T}=c(1,1)^{T}$ for some c.

Higher dimensional example

Consider the system

$$
\dot{x}=\mu x+y+\sin x, \quad \dot{y}=x-y .
$$

For the fixed point $(0,0)$, linearization gives $\nabla F=\left(\begin{array}{cc}\mu+1 & 1 \\ 1 & -1\end{array}\right)$, which is singular when $\mu=-2$. Since the nonlinear term in the equation has a Taylor expansion $\sin x=x-x^{3} / 6+\ldots$, try expansions

$$
x=\epsilon^{1 / 2} x_{1}+\epsilon x_{2}+\epsilon^{3 / 2} x_{3}+\ldots, \quad y=\epsilon^{1 / 2} y_{1}+\epsilon y_{2}+\epsilon^{3 / 2} y_{3}+\ldots,
$$

where $\epsilon=\mu+2$. Inserting into the fixed point equations and collecting powers of ϵ gives

$$
\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{y_{1}}=\binom{0}{0}, \quad\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{2}}{y_{2}}=\binom{0}{0}, \quad\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x_{3}}{y_{3}}=\binom{-x_{1}+x_{1}^{3} / 6}{0} .
$$

The first two equations say that $\left(x_{1}, y_{1}\right)^{T}$ and $\left(x_{2}, y_{2}\right)^{T}$ are in the nullspace of the matrix, therefore $\left(x_{1}, y_{1}\right)^{T}=c(1,1)^{T}$ for some c.
The third equation has a solvability condition, obtained by taking a dot product with the nullspace eigenvector $(1,1)^{T}$, giving $\left(-x_{1}+x^{3} / 6,0\right)^{T} \cdot(1,1)^{T}$ or $x_{1}=y_{1}= \pm \sqrt{6}$.
Therefore, for $\mu<-2$, there is one fixed point, whereas for $\mu>-2$, there are three branches: $(0,0)$ and $\sim \pm \epsilon^{1 / 2}(\sqrt{6}, \sqrt{6})$.

Nonlinear boundary value problem

Consider

$$
u_{x x}+\lambda u+f(u)=0, \quad u(0)=0=u(1), \quad f(u)=C u^{3}+\mathcal{O}\left(u^{4}\right)
$$

Clearly $u(x)=0$ is a solution. Are there other solutions which bifurcate from this as λ is varied?

Nonlinear boundary value problem

Consider

$$
u_{x x}+\lambda u+f(u)=0, \quad u(0)=0=u(1), \quad f(u)=C u^{3}+\mathcal{O}\left(u^{4}\right)
$$

Clearly $u(x)=0$ is a solution. Are there other solutions which bifurcate from this as λ is varied?
Linearization about $u=0$ gives

$$
\mathcal{L} u \equiv u_{x x}+\lambda u=0, \quad u(0)=0=u(1)
$$

This problem is singular when λ is an eigenvalue, i.e. $\lambda_{0}=(n \pi)^{2}$. Note the corresponding eigenfunction is $\sin (n \pi x)$.

Nonlinear boundary value problem, cont.

Expanding $u=\epsilon^{1 / 2} u_{1}+\epsilon u_{2}+\epsilon^{3 / 2} u_{3}+\ldots$ with $\epsilon=\lambda-\lambda_{0}$, one obtains $\mathcal{L} u_{1}=0, \mathcal{L} u_{2}=0$ and

$$
\mathcal{L} u_{3}=-u_{1}-C u_{1}^{3} .
$$

It follows that $u_{1,2}=A_{1,2} \sin (n \pi x)$. The equation for u_{3} has a solvability condition obtained by multiplying by the nullspace element $\sin (n \pi x)$ and integrating, giving

$$
\int A \sin ^{2}(n \pi x)+A^{3} C \sin ^{4}(n \pi x) d x=0, \quad \text { or } A= \pm \sqrt{-4 / 3 C}
$$

Nonlinear boundary value problem, cont.

Expanding $u=\epsilon^{1 / 2} u_{1}+\epsilon u_{2}+\epsilon^{3 / 2} u_{3}+\ldots$ with $\epsilon=\lambda-\lambda_{0}$, one obtains $\mathcal{L} u_{1}=0, \mathcal{L} u_{2}=0$ and

$$
\mathcal{L} u_{3}=-u_{1}-C u_{1}^{3} .
$$

It follows that $u_{1,2}=A_{1,2} \sin (n \pi x)$. The equation for u_{3} has a solvability condition obtained by multiplying by the nullspace element $\sin (n \pi x)$ and integrating, giving

$$
\int A \sin ^{2}(n \pi x)+A^{3} C \sin ^{4}(n \pi x) d x=0, \quad \text { or } A= \pm \sqrt{-4 / 3 C}
$$

Notice that if $C<0$, one has a supercritical pitchfork, but if $C>0$, there are no bifurcations.

An ecological example

Consider a population density $u(x, t)$ of fish, trapped between the shore and shark-infested deep water. Subject to logistic growth and diffusion, this satisfies

$$
u_{t}=D u_{x x}+u(1-u), \quad u_{x}(0, t)=0, \quad u(1, t)=0 .
$$

An ecological example

Consider a population density $u(x, t)$ of fish, trapped between the shore and shark-infested deep water. Subject to logistic growth and diffusion, this satisfies

$$
u_{t}=D u_{x x}+u(1-u), \quad u_{x}(0, t)=0, \quad u(1, t)=0 .
$$

Intuition: if diffusion is large, fish will constantly swim into the shark infested region and the population will die out. Therefore small $\alpha=1 / \sqrt{D}$ should be explored to see if steady solutions bifurcate from $u=0$.

An ecological example

Consider a population density $u(x, t)$ of fish, trapped between the shore and shark-infested deep water. Subject to logistic growth and diffusion, this satisfies

$$
u_{t}=D u_{x x}+u(1-u), \quad u_{x}(0, t)=0, \quad u(1, t)=0
$$

Intuition: if diffusion is large, fish will constantly swim into the shark infested region and the population will die out. Therefore small $\alpha=1 / \sqrt{D}$ should be explored to see if steady solutions bifurcate from $u=0$.
Steady solutions satisfy a nonlinear BVP

$$
u_{x x}+\alpha^{2} u(1-u)=0, \quad u_{x}(0)=0, \quad u(1)=0
$$

Linearizing about $u=0$, we have the eigenvalue problem

$$
u_{x x}+\alpha^{2} u=0, \quad u_{x}(0)=0, \quad u(1)=0
$$

In this case, bifurcations might be expected when $\alpha=\pi / 2+n \pi, n=0,1,2, \ldots$

Ecological example, cont.

Consider $n=0$ case, and let $\alpha=(\pi / 2)\left(1+\alpha_{1} \epsilon\right), u \sim \epsilon u_{1}+\epsilon^{2} u_{2}+\ldots$, where $\epsilon \ll 1$. At leading order, one has

$$
\mathcal{L} u_{1} \equiv u_{1 x x}+\frac{\pi^{2}}{4} u_{1}=0, \quad u_{1 \times}(0)=0, \quad u_{1}(1)=0
$$

Therefore $u_{1}=A \cos (\pi x / 2)$.

Ecological example, cont.

Consider $n=0$ case, and let $\alpha=(\pi / 2)\left(1+\alpha_{1} \epsilon\right), u \sim \epsilon u_{1}+\epsilon^{2} u_{2}+\ldots$, where $\epsilon \ll 1$. At leading order, one has

$$
\mathcal{L} u_{1} \equiv u_{1 x x}+\frac{\pi^{2}}{4} u_{1}=0, \quad u_{1 \times}(0)=0, \quad u_{1}(1)=0
$$

Therefore $u_{1}=A \cos (\pi x / 2)$.
At order ϵ^{2}, the problem is

$$
\mathcal{L} u_{2}=-\frac{\pi^{2}}{4}\left(2 \alpha_{1} u_{1}-u_{1}^{2}\right), \quad u_{2 x}(0)=0, \quad u_{2}(1)=0
$$

Solvability is obtained by taking an inner product with $\cos (\pi x / 2)$, leading to

$$
\frac{\pi^{2}}{4} \int_{0}^{1} A^{2} \cos ^{3}(\pi x / 2)-2 \alpha_{1} A \cos ^{2}(\pi x / 2) d x=0, \quad \text { or } \alpha=4 A /(3 \pi)
$$

Ecological example, cont.

What about stability of both $u=0$ and the bifurcating solution? Returning to the time dependent problem,

$$
u_{t}=D u_{x x}+u(1-u), \quad u_{x}(0, t)=0, \quad u(1, t)=0
$$

first linearize about $u=0$, giving

$$
v_{t}=D v_{x x}+v, \quad v_{x}(0, t)=0, \quad v(1, t)=0
$$

Ecological example, cont.

What about stability of both $u=0$ and the bifurcating solution? Returning to the time dependent problem,

$$
u_{t}=D u_{x x}+u(1-u), \quad u_{x}(0, t)=0, \quad u(1, t)=0
$$

first linearize about $u=0$, giving

$$
v_{t}=D v_{x x}+v, \quad v_{x}(0, t)=0, \quad v(1, t)=0 .
$$

With $v=e^{\lambda t} \phi(x)$, get eigenvalue problem

$$
\phi_{x x}+\alpha^{2}(1-\lambda) \phi=0, \quad \phi_{x}(0)=0, \quad \phi(1)=0
$$

The eigenvalues compute to be

$$
\lambda=1-\kappa_{j}^{2} / \alpha^{2}, \quad \kappa_{j}=(2 j-1) \pi / 2, \quad j=1,2,3, \ldots
$$

Then $u=0$ is unstable precisely when $\alpha>\pi / 2$, i.e. where the bifurcating solution appears.

Ecological example, cont.

Ecological example, cont.

What about stability of nontrivial steady states? Let $w(x)$ be any steady solution; with $u(x, t)=w(x)+v(x, t)$, linearization produces

$$
v_{t}=D v_{x x}+(1-2 w) v, \quad v_{x}(0, t)=0, \quad v(1, t)=0
$$

Again with $v=e^{\lambda t} \phi(x)$, get eigenvalue problem

$$
\phi_{x x}+\alpha^{2}((1-2 w(x))-\lambda) \phi=0, \quad \phi_{x}(0)=0, \quad \phi(1)=0
$$

Even if we knew an exact expression for $w(x)$, this would be a hard problem since the coefficients are not constant. We can, however, approximate this problem near the bifurcation value $\alpha \approx \pi / 2$.

Ecological example, cont.

What about stability of nontrivial steady states? Let $w(x)$ be any steady solution; with $u(x, t)=w(x)+v(x, t)$, linearization produces

$$
v_{t}=D v_{x x}+(1-2 w) v, \quad v_{x}(0, t)=0, \quad v(1, t)=0
$$

Again with $v=e^{\lambda t} \phi(x)$, get eigenvalue problem

$$
\phi_{x x}+\alpha^{2}((1-2 w(x))-\lambda) \phi=0, \quad \phi_{x}(0)=0, \quad \phi(1)=0
$$

Even if we knew an exact expression for $w(x)$, this would be a hard problem since the coefficients are not constant. We can, however, approximate this problem near the bifurcation value $\alpha \approx \pi / 2$.
Let $w=\epsilon \cos (\pi x / 2)+\ldots$ and $\alpha=\pi / 2(1+4 \epsilon /(3 \pi)+\ldots)$. Inserting this into the eigenvalue problem and approximating at leading order, one gets

$$
\phi_{x x}+\frac{\pi^{2}}{4}(1-\lambda) \phi=0, \quad \phi_{x}(0)=0, \quad \phi(1)=0
$$

which produces eigenvalues $\lambda_{j}=1-(2 j-1)^{2}$ for $j=1,2,3, \ldots$. All of these are negative except $\lambda_{1}=0$.

Ecological example, cont.

To sort out the true size of the leading eigenvalue, we should have tried $\lambda=\epsilon \lambda_{1}$, and expanded further as $\phi=\cos (\pi x / 2)+\epsilon \phi_{1}$. The ϵ size terms in the eigenvalue problem give

$$
\phi_{1 x x}+\frac{\pi^{2}}{4} \phi_{1}=\frac{\pi^{2}}{4}\left(2 \cos (\pi x / 2)+\lambda_{1}\right)-\frac{4}{3} \cos (\pi x / 2)
$$

Ecological example, cont.

To sort out the true size of the leading eigenvalue, we should have tried $\lambda=\epsilon \lambda_{1}$, and expanded further as $\phi=\cos (\pi x / 2)+\epsilon \phi_{1}$. The ϵ size terms in the eigenvalue problem give

$$
\phi_{1 x x}+\frac{\pi^{2}}{4} \phi_{1}=\frac{\pi^{2}}{4}\left(2 \cos (\pi x / 2)+\lambda_{1}\right)-\frac{4}{3} \cos (\pi x / 2) .
$$

This is inhomogeneous, and has a solvability condition which is obtained as before, giving

$$
\lambda_{1}=-\frac{4}{\pi^{2}} \frac{\left(\pi^{2} / 2-4 / 3\right) \int_{0}^{1} \cos ^{2}(\pi x / 2) d x}{\int_{0}^{1} \cos (\pi x / 2) d x} \leq 0
$$

The nonzero solution branch is in fact stable. This situation is an example of a transcritical bifurcation.

