
Asymptotic Methods

Bifurcation analysis



Bifurcation from a simple eigenvalue

Consider ODE for x ∈ Rn

dx

dt
= F (x , λ),

and corresponding fixed point equation F (x , λ) = 0.

Fundamental question: If x0 is a known fixed point for λ = λ0, are there other
fixed points nearby?

Partial answer: implicit function theorem says that if ∇xF (x0, λ0) is
nonsingular, then there exists a unique branch of fixed points x(λ) so that
F (x(λ), λ) = 0. In this case, there is no bifurcation.

What if ∇xF (x0, λ0) has a p- dimensional nullspace spanned by v? Reduction
techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as
a p-dimensional problem.

For simplicity consider scalar problem with x0 = 0 = λ0, and suppose

f (x , λ) ∼ λx + Axn + . . . , x → 0.

Here n is the first nonzero higher order Taylor coefficient.

Regarding ε = λ− λ0 as the small parameter, we seek solutions to the fixed
points equation of the form x ∼ x0 + εαx1 + . . ., where dominant balance
suggests λx ∼ −Axn, so that α = 1/(n − 1) and x1 = −A−1/(n−1).



Bifurcation from a simple eigenvalue

Consider ODE for x ∈ Rn

dx

dt
= F (x , λ),

and corresponding fixed point equation F (x , λ) = 0.

Fundamental question: If x0 is a known fixed point for λ = λ0, are there other
fixed points nearby?

Partial answer: implicit function theorem says that if ∇xF (x0, λ0) is
nonsingular, then there exists a unique branch of fixed points x(λ) so that
F (x(λ), λ) = 0. In this case, there is no bifurcation.

What if ∇xF (x0, λ0) has a p- dimensional nullspace spanned by v? Reduction
techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as
a p-dimensional problem.

For simplicity consider scalar problem with x0 = 0 = λ0, and suppose

f (x , λ) ∼ λx + Axn + . . . , x → 0.

Here n is the first nonzero higher order Taylor coefficient.

Regarding ε = λ− λ0 as the small parameter, we seek solutions to the fixed
points equation of the form x ∼ x0 + εαx1 + . . ., where dominant balance
suggests λx ∼ −Axn, so that α = 1/(n − 1) and x1 = −A−1/(n−1).



Bifurcation from a simple eigenvalue

Consider ODE for x ∈ Rn

dx

dt
= F (x , λ),

and corresponding fixed point equation F (x , λ) = 0.

Fundamental question: If x0 is a known fixed point for λ = λ0, are there other
fixed points nearby?

Partial answer: implicit function theorem says that if ∇xF (x0, λ0) is
nonsingular, then there exists a unique branch of fixed points x(λ) so that
F (x(λ), λ) = 0. In this case, there is no bifurcation.

What if ∇xF (x0, λ0) has a p- dimensional nullspace spanned by v? Reduction
techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as
a p-dimensional problem.

For simplicity consider scalar problem with x0 = 0 = λ0, and suppose

f (x , λ) ∼ λx + Axn + . . . , x → 0.

Here n is the first nonzero higher order Taylor coefficient.

Regarding ε = λ− λ0 as the small parameter, we seek solutions to the fixed
points equation of the form x ∼ x0 + εαx1 + . . ., where dominant balance
suggests λx ∼ −Axn, so that α = 1/(n − 1) and x1 = −A−1/(n−1).



Bifurcation from a simple eigenvalue

Consider ODE for x ∈ Rn

dx

dt
= F (x , λ),

and corresponding fixed point equation F (x , λ) = 0.

Fundamental question: If x0 is a known fixed point for λ = λ0, are there other
fixed points nearby?

Partial answer: implicit function theorem says that if ∇xF (x0, λ0) is
nonsingular, then there exists a unique branch of fixed points x(λ) so that
F (x(λ), λ) = 0. In this case, there is no bifurcation.

What if ∇xF (x0, λ0) has a p- dimensional nullspace spanned by v? Reduction
techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as
a p-dimensional problem.

For simplicity consider scalar problem with x0 = 0 = λ0, and suppose

f (x , λ) ∼ λx + Axn + . . . , x → 0.

Here n is the first nonzero higher order Taylor coefficient.

Regarding ε = λ− λ0 as the small parameter, we seek solutions to the fixed
points equation of the form x ∼ x0 + εαx1 + . . ., where dominant balance
suggests λx ∼ −Axn, so that α = 1/(n − 1) and x1 = −A−1/(n−1).



Bifurcation from a simple eigenvalue

Consider ODE for x ∈ Rn

dx

dt
= F (x , λ),

and corresponding fixed point equation F (x , λ) = 0.

Fundamental question: If x0 is a known fixed point for λ = λ0, are there other
fixed points nearby?

Partial answer: implicit function theorem says that if ∇xF (x0, λ0) is
nonsingular, then there exists a unique branch of fixed points x(λ) so that
F (x(λ), λ) = 0. In this case, there is no bifurcation.

What if ∇xF (x0, λ0) has a p- dimensional nullspace spanned by v? Reduction
techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as
a p-dimensional problem.

For simplicity consider scalar problem with x0 = 0 = λ0, and suppose

f (x , λ) ∼ λx + Axn + . . . , x → 0.

Here n is the first nonzero higher order Taylor coefficient.

Regarding ε = λ− λ0 as the small parameter, we seek solutions to the fixed
points equation of the form x ∼ x0 + εαx1 + . . ., where dominant balance
suggests λx ∼ −Axn, so that α = 1/(n − 1) and x1 = −A−1/(n−1).



Bifurcation from a simple eigenvalue

Consider ODE for x ∈ Rn

dx

dt
= F (x , λ),

and corresponding fixed point equation F (x , λ) = 0.

Fundamental question: If x0 is a known fixed point for λ = λ0, are there other
fixed points nearby?

Partial answer: implicit function theorem says that if ∇xF (x0, λ0) is
nonsingular, then there exists a unique branch of fixed points x(λ) so that
F (x(λ), λ) = 0. In this case, there is no bifurcation.

What if ∇xF (x0, λ0) has a p- dimensional nullspace spanned by v? Reduction
techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as
a p-dimensional problem.

For simplicity consider scalar problem with x0 = 0 = λ0, and suppose

f (x , λ) ∼ λx + Axn + . . . , x → 0.

Here n is the first nonzero higher order Taylor coefficient.

Regarding ε = λ− λ0 as the small parameter, we seek solutions to the fixed
points equation of the form x ∼ x0 + εαx1 + . . ., where dominant balance
suggests λx ∼ −Axn, so that α = 1/(n − 1) and x1 = −A−1/(n−1).



Higher dimensional example

Consider the system

ẋ = µx + y + sin x , ẏ = x − y .

For the fixed point (0, 0), linearization gives ∇F =

(
µ+ 1 1

1 −1

)
, which is

singular when µ = −2.

Since the nonlinear term in the equation has a Taylor

expansion sin x = x − x3/6 + . . ., try expansions

x = ε1/2x1 + εx2 + ε3/2x3 + . . . , y = ε1/2y1 + εy2 + ε3/2y3 + . . . ,

where ε = µ+ 2. Inserting into the fixed point equations and collecting powers
of ε gives(

−1 1
1 −1

)(
x1
y1

)
=

(
0
0

)
,

(
−1 1
1 −1

)(
x2
y2

)
=

(
0
0

)
,

(
−1 1
1 −1

)(
x3
y3

)
=

(
−x1 + x31/6

0

)
.

The first two equations say that (x1, y1)T and (x2, y2)T are in the nullspace of
the matrix, therefore (x1, y1)T = c(1, 1)T for some c.

The third equation has a solvability condition, obtained by taking a dot product
with the nullspace eigenvector (1, 1)T , giving (−x1 + x3/6, 0)T · (1, 1)T or
x1 = y1 = ±

√
6.

Therefore, for µ < −2, there is one fixed point, whereas for µ > −2, there are
three branches: (0, 0) and ∼ ±ε1/2(

√
6,
√

6).
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Nonlinear boundary value problem

Consider

uxx + λu + f (u) = 0, u(0) = 0 = u(1), f (u) = Cu3 +O(u4).

Clearly u(x) = 0 is a solution. Are there other solutions which bifurcate from
this as λ is varied?

Linearization about u = 0 gives

Lu ≡ uxx + λu = 0, u(0) = 0 = u(1).

This problem is singular when λ is an eigenvalue, i.e. λ0 = (nπ)2. Note the
corresponding eigenfunction is sin(nπx).
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Nonlinear boundary value problem, cont.

Expanding u = ε1/2u1 + εu2 + ε3/2u3 + . . . with ε = λ− λ0, one obtains
Lu1 = 0, Lu2 = 0 and

Lu3 = −u1 − Cu3
1 .

It follows that u1,2 = A1,2 sin(nπx). The equation for u3 has a solvability
condition obtained by multiplying by the nullspace element sin(nπx) and
integrating, giving∫

A sin2(nπx) + A3C sin4(nπx) dx = 0, or A = ±
√
−4/3C .

Notice that if C < 0, one has a supercritical pitchfork, but if C > 0, there are
no bifurcations.
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An ecological example

Consider a population density u(x , t) of fish, trapped between the shore and
shark-infested deep water. Subject to logistic growth and diffusion, this satisfies

ut = Duxx + u(1− u), ux(0, t) = 0, u(1, t) = 0.

Intuition: if diffusion is large, fish will constantly swim into the shark infested
region and the population will die out. Therefore small α = 1/

√
D should be

explored to see if steady solutions bifurcate from u = 0.

Steady solutions satisfy a nonlinear BVP

uxx + α2u(1− u) = 0, ux(0) = 0, u(1) = 0.

Linearizing about u = 0, we have the eigenvalue problem

uxx + α2u = 0, ux(0) = 0, u(1) = 0.

In this case, bifurcations might be expected when α = π/2 + nπ, n = 0, 1, 2, . . .
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Ecological example, cont.

Consider n = 0 case, and let α = (π/2)(1 + α1ε), u ∼ εu1 + ε2u2 + . . ., where
ε� 1. At leading order, one has

Lu1 ≡ u1xx +
π2

4
u1 = 0, u1x(0) = 0, u1(1) = 0.

Therefore u1 = A cos(πx/2).

At order ε2, the problem is

Lu2 = −π
2

4
(2α1u1 − u2

1), u2x(0) = 0, u2(1) = 0.

Solvability is obtained by taking an inner product with cos(πx/2), leading to

π2

4

∫ 1

0

A2 cos3(πx/2)− 2α1A cos2(πx/2) dx = 0, or α = 4A/(3π)
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Ecological example, cont.

What about stability of both u = 0 and the bifurcating solution? Returning to
the time dependent problem,

ut = Duxx + u(1− u), ux(0, t) = 0, u(1, t) = 0,

first linearize about u = 0, giving

vt = Dvxx + v , vx(0, t) = 0, v(1, t) = 0.

With v = eλtφ(x), get eigenvalue problem

φxx + α2(1− λ)φ = 0, φx(0) = 0, φ(1) = 0.

The eigenvalues compute to be

λ = 1− κ2
j /α

2, κj = (2j − 1)π/2, j = 1, 2, 3, . . .

Then u = 0 is unstable precisely when α > π/2, i.e. where the bifurcating
solution appears.
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Ecological example, cont.

What about stability of nontrivial steady states? Let w(x) be any steady
solution; with u(x , t) = w(x) + v(x , t), linearization produces

vt = Dvxx + (1− 2w)v , vx(0, t) = 0, v(1, t) = 0.

Again with v = eλtφ(x), get eigenvalue problem

φxx + α2((1− 2w(x))− λ)φ = 0, φx(0) = 0, φ(1) = 0.

Even if we knew an exact expression for w(x), this would be a hard problem
since the coefficients are not constant. We can, however, approximate this
problem near the bifurcation value α ≈ π/2.

Let w = ε cos(πx/2) + . . . and α = π/2(1 + 4ε/(3π) + . . .). Inserting this into
the eigenvalue problem and approximating at leading order, one gets

φxx +
π2

4
(1− λ)φ = 0, φx(0) = 0, φ(1) = 0,

which produces eigenvalues λj = 1− (2j − 1)2 for j = 1, 2, 3, . . .. All of these
are negative except λ1 = 0.
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Ecological example, cont.

To sort out the true size of the leading eigenvalue, we should have tried
λ = ελ1, and expanded further as φ = cos(πx/2) + εφ1. The ε size terms in
the eigenvalue problem give

φ1xx +
π2

4
φ1 =

π2

4
(2 cos(πx/2) + λ1)− 4

3
cos(πx/2).

This is inhomogeneous, and has a solvability condition which is obtained as
before, giving

λ1 = − 4

π2

(π2/2− 4/3)
∫ 1

0
cos2(πx/2) dx∫ 1

0
cos(πx/2) dx

≤ 0.

The nonzero solution branch is in fact stable. This situation is an example of a
transcritical bifurcation.
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