Asymptotic Methods

Bifurcation analysis
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What if V<F(xo, o) has a p- dimensional nullspace spanned by v? Reduction
techniques (Lyapunov-Schmidt, center manifold) can be used to reformulate as
a p-dimensional problem.

For simplicity consider scalar problem with xg = 0 = Ao, and suppose
f(x,A) ~Ax+AxX"+ ..., x—0.

Here n is the first nonzero higher order Taylor coefficient.

Regarding ¢ = A\ — Ao as the small parameter, we seek solutions to the fixed
points equation of the form x ~ xp + €%*x1 + ..., where dominant balance
suggests Ax ~ —Ax", so that a = 1/(n— 1) and x; = —A~Y/("~1),
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For the fixed point (0,0), linearization gives VF = < , which is

expansion sinx = x — x>/6 + ..., try expansions
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The first two equations say that (X1,y1)T and (Xz,yg)T are in the nullspace of
the matrix, therefore (x1,y1)" = ¢(1,1)" for some c.

The third equation has a solvability condition, obtained by taking a dot product
with the nullspace eigenvector (1,1)7, giving (—x1 + x3/6,0)7 - (1,1)7 or

X1 =y¥V1 = :t\/é

Therefore, for u < —2, there is one fixed point, whereas for y > —2, there are
three branches: (0,0) and ~ +¢'/2(1/6,/6).
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U + Au+f(u) =0, wu(0)=0=u(l), f(u)=Cs’+O(u).

Clearly u(x) = 0 is a solution. Are there other solutions which bifurcate from
this as A is varied?

Linearization about u = 0 gives
Lu=ux+Au=0, u(0)=0=u(l).

This problem is singular when X is an eigenvalue, i.e. Ao = (nm)?. Note the
corresponding eigenfunction is sin(nmrx).
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integrating, giving

/Asin2(n7rx) + A*Csin*(nmx)dx =0, or A=+,/—4/3C.



Nonlinear boundary value problem, cont.

Expanding u = €?u; + eun + €/%us + ... with e = A — \o, one obtains
Luy =0, Lur =0 and

Luz = —u — Cuf.
It follows that u1» = Aisin(nmx). The equation for uz has a solvability
condition obtained by multiplying by the nullspace element sin(n7x) and
integrating, giving

/Asin2(n7rx) + A*Csin*(nmx)dx =0, or A=+,/—4/3C.

Notice that if C < 0, one has a supercritical pitchfork, but if C > 0, there are
no bifurcations.
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Consider a population density u(x, t) of fish, trapped between the shore and
shark-infested deep water. Subject to logistic growth and diffusion, this satisfies

us = Due + u(l —u), ux(0,t) =0, u(l,t)=0.
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Steady solutions satisfy a nonlinear BVP
U +u(l —u) =0, u(0)=0, u(l)=0.
Linearizing about u = 0, we have the eigenvalue problem
U +°u=0, u(0)=0, u(l)=0.

In this case, bifurcations might be expected when o = /24 nw, n=0,1,2,...
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Consider n = 0 case, and let o = (7/2)(1 + ai¢), u ~ ety + Eur + ..., where
€ < 1. At leading order, one has
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L = v + %ul =0, w(0)=0, w(l)=0.
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Consider n = 0 case, and let o = (7/2)(1 + ai¢), u ~ ety + Eur + ..., where
€ < 1. At leading order, one has
2

L = v + %ul =0, w(0)=0, w(l)=0.

Therefore u; = Acos(mx/2).
At order €2, the problem is
7T2 2
Lup = —T(2a1u1 —uy), wx(0)=0, w(l)=0.
Solvability is obtained by taking an inner product with cos(mx/2), leading to

7r2

1
i / A? cos®(mx/2) — 2a1Acos’(mx/2) dx = 0, or a = 4A/(37)
0
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What about stability of both u = 0 and the bifurcating solution? Returning to
the time dependent problem,

ur = Dug +u(l —u), wuc(0,t)=0, u(l,t)=0,
first linearize about u = 0, giving
ve = Dv+v, w(0,t)=0, v(1,t)=0.
With v = e*¢(x), get eigenvalue problem
b+ (1 =A)p =0, ¢(0)=0, ¢(1)=0.
The eigenvalues compute to be
A=1-ki/a®, K= (2j—1)m/2, j=1,2,3,...

Then u = 0 is unstable precisely when oo > 7/2, i.e. where the bifurcating
solution appears.
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since the coefficients are not constant. We can, however, approximate this
problem near the bifurcation value o = /2.
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Even if we knew an exact expression for w(x), this would be a hard problem
since the coefficients are not constant. We can, however, approximate this
problem near the bifurcation value o = /2.

Let w = ecos(mx/2) + ... and a = 7/2(1 + 4¢/(37) + ...). Inserting this into
the eigenvalue problem and approximating at leading order, one gets

2
¢xx + %(1 — )\)¢ = 07 (z)X(O) = 07 ¢(1) = 07

which produces eigenvalues \; = 1 — (2j — 1) for j = 1,2,3,.... All of these
are negative except A\; = 0.
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To sort out the true size of the leading eigenvalue, we should have tried
A = €)1, and expanded further as ¢ = cos(mx/2) + ep1. The € size terms in
the eigenvalue problem give

7_(_2

2
D1x + %¢1 = 7(2 cos(mx/2) + A1) — gcos(wx/2).

This is inhomogeneous, and has a solvability condition which is obtained as
before, giving
4 (7/2 —4/3) [ cos?(mx/2) dx

A\ =
' us fol cos(mx/2) dx

<0.

The nonzero solution branch is in fact stable. This situation is an example of a
transcritical bifurcation.



