Asymptotic Methods

Hopf bifurcations and delay differential equations

Hopf bifurcation and differential delay equations

Suppose dynamical system $\dot{x}=F(x, r)$ has equilibrium $x=0$ for all r. Linearization produces $\dot{x}=\nabla F(0, r) x$. Two common scenarios for instability:
(1) A single real eigenvalue $\lambda(r)$ becomes positive, or
(2) A pair of complex conjugate eigenvalues $\lambda(r), \overline{\lambda(r)}$ cross the imaginary axis at the same time.

Hopf bifurcation and differential delay equations

Suppose dynamical system $\dot{x}=F(x, r)$ has equilibrium $x=0$ for all r. Linearization produces $\dot{x}=\nabla F(0, r) x$. Two common scenarios for instability:
(1) A single real eigenvalue $\lambda(r)$ becomes positive, or
(2) A pair of complex conjugate eigenvalues $\lambda(r), \overline{\lambda(r)}$ cross the imaginary axis at the same time.
The latter case signals a potential Hopf bifurcation; whether this leads to stable oscillations depends on the nonlinear behavior, captured by a normal form calculation.

Hopf bifurcation and differential delay equations

Suppose dynamical system $\dot{x}=F(x, r)$ has equilibrium $x=0$ for all r. Linearization produces $\dot{x}=\nabla F(0, r) x$. Two common scenarios for instability:
(1) A single real eigenvalue $\lambda(r)$ becomes positive, or
(2) A pair of complex conjugate eigenvalues $\lambda(r), \overline{\lambda(r)}$ cross the imaginary axis at the same time.
The latter case signals a potential Hopf bifurcation; whether this leads to stable oscillations depends on the nonlinear behavior, captured by a normal form calculation.

Consider differential delay equation $u_{t}=-a u(t-\tau)+$ nonlinear terms. Inserting $u=e^{i \sigma t}$ into the linear part, get

$$
i \sigma=-a[\cos (\sigma t)-i \sin (\sigma t)]
$$

Hopf must occur where σ is real, i.e. where $\sigma \tau=\pi / 2+n \pi$ and $\sigma=a \sin (\sigma \tau)$. First occurrence is $\tau=\pi /(2 a)$.

Complex GL from a delay PDE

Consider

$$
u_{t}=\epsilon u_{x x}-a u(x, t-\tau)-\epsilon b u^{3} .
$$

Complex GL from a delay PDE

Consider

$$
u_{t}=\epsilon u_{x x}-a u(x, t-\tau)-\epsilon b u^{3} .
$$

Hopf bifurcation is at $\tau_{0}=\pi /(2 a)$, so let $\tau=\tau_{0}+\epsilon$, let $s=\epsilon t$ be slow scale, expand

$$
u=u_{0}(x, t, s)+\epsilon u_{1}(x, t, s)+\ldots
$$

Note delay term expands

$$
u(x, t-\tau, s)=u\left(x, t-\tau_{0}, s\right)-\epsilon u_{t}\left(x, t-\tau_{0}, s\right)-\epsilon \tau_{0} u_{s}\left(x, t-\tau_{0}, s\right)
$$

Complex GL from a delay PDE

Consider

$$
u_{t}=\epsilon u_{x x}-a u(x, t-\tau)-\epsilon b u^{3} .
$$

Hopf bifurcation is at $\tau_{0}=\pi /(2 a)$, so let $\tau=\tau_{0}+\epsilon$, let $s=\epsilon t$ be slow scale, expand

$$
u=u_{0}(x, t, s)+\epsilon u_{1}(x, t, s)+\ldots
$$

Note delay term expands

$$
u(x, t-\tau, s)=u\left(x, t-\tau_{0}, s\right)-\epsilon u_{t}\left(x, t-\tau_{0}, s\right)-\epsilon \tau_{0} u_{s}\left(x, t-\tau_{0}, s\right)
$$

Leading order is $u_{0 t}+a u_{0}\left(x, t-\tau_{0}, s\right)=0$, whose solution (by design) is $u_{0}=A(x, s) e^{i a t}+$ c.c..

Complex GL from a delay PDE

Consider

$$
u_{t}=\epsilon u_{x x}-a u(x, t-\tau)-\epsilon b u^{3}
$$

Hopf bifurcation is at $\tau_{0}=\pi /(2 a)$, so let $\tau=\tau_{0}+\epsilon$, let $s=\epsilon t$ be slow scale, expand

$$
u=u_{0}(x, t, s)+\epsilon u_{1}(x, t, s)+\ldots
$$

Note delay term expands

$$
u(x, t-\tau, s)=u\left(x, t-\tau_{0}, s\right)-\epsilon u_{t}\left(x, t-\tau_{0}, s\right)-\epsilon \tau_{0} u_{s}\left(x, t-\tau_{0}, s\right)
$$

Leading order is $u_{0 t}+a u_{0}\left(x, t-\tau_{0}, s\right)=0$, whose solution (by design) is $u_{0}=A(x, s) e^{i a t}+$ c.c.

Order ϵ terms give

$$
u_{1 t}=u_{0 x x}-b u_{0}^{3}-u_{0 s}\left(x, t-\tau_{0}, s\right)+a u_{0 t}\left(x, t-\tau_{0}, s\right)+a \tau_{0} u_{0 s}\left(x, t-\tau_{0}, s\right)
$$

Complex GL from a delay PDE

Consider

$$
u_{t}=\epsilon u_{x x}-a u(x, t-\tau)-\epsilon b u^{3}
$$

Hopf bifurcation is at $\tau_{0}=\pi /(2 a)$, so let $\tau=\tau_{0}+\epsilon$, let $s=\epsilon t$ be slow scale, expand

$$
u=u_{0}(x, t, s)+\epsilon u_{1}(x, t, s)+\ldots
$$

Note delay term expands

$$
u(x, t-\tau, s)=u\left(x, t-\tau_{0}, s\right)-\epsilon u_{t}\left(x, t-\tau_{0}, s\right)-\epsilon \tau_{0} u_{s}\left(x, t-\tau_{0}, s\right)
$$

Leading order is $u_{0 t}+a u_{0}\left(x, t-\tau_{0}, s\right)=0$, whose solution (by design) is $u_{0}=A(x, s) e^{i a t}+$ c.c.

Order ϵ terms give

$$
u_{1 t}=u_{0 x x}-b u_{0}^{3}-u_{0 s}\left(x, t-\tau_{0}, s\right)+a u_{0 t}\left(x, t-\tau_{0}, s\right)+a \tau_{0} u_{0 s}\left(x, t-\tau_{0}, s\right)
$$

Observe that $u_{0}\left(x, t-\tau_{0}, s\right)=A e^{-i \pi / 2} e^{i a t}=-i A e^{i a t}$, and the cubic term expands

$$
\left(A e^{i a t}+\text { c.c. }\right)^{3}=|A|^{2} A e^{i a t}+\text { c.c. }+ \text { non-secular terms }
$$

Therefore to avoid resonance, get complex Ginzburg-Landau equation

$$
(1+i \pi / 2) A_{s}=A_{x x}+A\left(a^{2}-3 b|A|^{2}\right)
$$

Epidemic model with delayed infection

SIQR model with delayed infection (Wang \& Chen, 2016)

$$
\begin{aligned}
\dot{S} & =\Lambda-\frac{\beta S(t-\tau) I(t-\tau)}{S(t-\tau)+I(t-\tau)}-d S \\
\dot{I} & =\frac{\beta S(t-\tau) I(t-\tau)}{S(t-\tau)+I(t-\tau)}-\left(c_{1}+k+d+\mu_{1}\right) I \\
\dot{Q} & =k I-\left(c_{2}+d+\mu_{2}\right) Q \\
\dot{R} & =c_{1} I+c_{2} Q-d R
\end{aligned}
$$

Equilibrium:

$$
\begin{aligned}
S^{*} & =\frac{\Lambda}{\beta+d-\left(c_{1}+k+d+\mu_{1}\right)} \\
I^{*} & =\frac{\left[\beta-\left(c_{1}+k+d+\mu_{1}\right)\right] \Lambda}{\left(c_{1}+k+d+\mu_{1}\right)\left[\beta+d-\left(c_{1}+k+d+\mu_{1}\right)\right]}
\end{aligned}
$$

There are several intervals $\left[\tau_{c}, \tau_{c}^{-}\right]$where Hopf bifurcation exists.

Normal form via multiple scales

Expand just past onset $\tau=\tau_{c}+\epsilon$,

$$
\begin{aligned}
\mathbf{x}(t)= & \varepsilon \mathbf{x}_{1}\left(T_{0}, T_{2}\right)+\varepsilon^{2} \mathbf{x}_{2}\left(T_{0}, T_{2}\right)+\varepsilon^{3} \mathbf{x}_{3}\left(T_{0}, T_{2}\right) \\
& +O\left(\varepsilon^{4}\right)
\end{aligned}
$$

where $T_{n}=\epsilon^{n} t$. Leading order solution:

$$
\mathbf{x}_{1}=A\left(T_{2}\right) \mathbf{u} e^{i \omega T_{0}}+\bar{A}\left(T_{2}\right) \overline{\mathbf{u}} e^{-i \omega T_{0}}
$$

After a long calculation, get normal form

$$
\begin{aligned}
& \dot{a}=a R_{1}+\frac{1}{4} R_{11 \overline{1}} a^{3}, \\
& \dot{\theta}=I_{1}+\frac{1}{4} I_{11 \overline{1}} a^{2},
\end{aligned}
$$

where $A=\operatorname{aexp}(i \theta)$. If $R_{111}<0$ supercritical, i.e. exists stable oscillations

