Asymptotic Methods

Applications to Fourier integrals in PDEs



Example: large time behavior of diffusion

Consider the diffusion equation

ur = Uy, U(x,0)="f(x), —oo<x< oo.
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satisfies the initial value problem @i = —k?@ with &i(k,0) = 7(k), and the PDE
solution is given by the inverse transform

u(x, t) = % / e KR (k) dk.
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For t > 0, this is a Laplace integral with Laplace point k = 0. For x fixed, the
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This approximation is not uniform in x, however. Instead, only expanding 7 at
Laplace point gives

u(x,t) ~
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In other words, the diffusion equation “forgets” the initial data!
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This is a stationary phase type integral, with stationary phase point k* = v/2,
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u(x,t)NT/oo exp(l(v t/4— (k— k) ))dk: e /4




Example: large time behavior of a dispersive waves

Consider the Schrodinger equation
ius + u =0, u(x,0) = f(x),
whose Fourier solution is

u(x,t) = %/ ?(k)e"(kxszt) dk.

Set x/t = v and consider t — oo:

u(x,t) = i/ ?(k)ei(kv_kQ)t dk.

2m J o

This is a stationary phase type integral, with stationary phase point k* = v/2,
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u(x,t) ~ % /: exp (i(v2t/4 — (k — K°))) dk =

Suppose that f describes a “wave packet” with maximum at kmax. How can we
run along side the wave so that the amplitude is maximum?
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Suppose that f describes a “wave packet” with maximum at kmax. How can we
run along side the wave so that the amplitude is maximum?
The correct choice should be v = 2knax; this is the group velocity.



