## Asymptotic Methods

Applications to Fourier integrals in PDEs

## Example: large time behavior of diffusion

Consider the diffusion equation

$$
u_{t}=u_{x x}, \quad u(x, 0)=f(x), \quad-\infty<x<\infty .
$$

## Example: large time behavior of diffusion

Consider the diffusion equation

$$
u_{t}=u_{x x}, \quad u(x, 0)=f(x), \quad-\infty<x<\infty .
$$

The Fourier transform

$$
\hat{u}(k, t)=\int_{-\infty}^{\infty} e^{-i k x} u(x, t) d t
$$

satisfies the initial value problem $\hat{u}_{t}=-k^{2} \hat{u}$ with $\hat{u}(k, 0)=\hat{f}(k)$, and the PDE solution is given by the inverse transform

$$
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-k^{2} t+i k x} \hat{f}(k) d k
$$

## Example: large time behavior of diffusion

Consider the diffusion equation

$$
u_{t}=u_{x x}, \quad u(x, 0)=f(x), \quad-\infty<x<\infty .
$$

The Fourier transform

$$
\hat{u}(k, t)=\int_{-\infty}^{\infty} e^{-i k x} u(x, t) d t
$$

satisfies the initial value problem $\hat{u}_{t}=-k^{2} \hat{u}$ with $\hat{u}(k, 0)=\hat{f}(k)$, and the PDE solution is given by the inverse transform

$$
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-k^{2} t+i k x} \hat{f}(k) d k
$$

For $t \gg 0$, this is a Laplace integral with Laplace point $k=0$. For $x$ fixed, the behavior is

$$
u(x, t) \sim \frac{\hat{f}(0)}{2 \pi}\left(\frac{\pi}{t}\right)^{1 / 2}=\frac{\hat{f}(0)}{\sqrt{4 \pi t}}
$$

## Example: large time behavior of diffusion

Consider the diffusion equation

$$
u_{t}=u_{x x}, \quad u(x, 0)=f(x), \quad-\infty<x<\infty .
$$

The Fourier transform

$$
\hat{u}(k, t)=\int_{-\infty}^{\infty} e^{-i k x} u(x, t) d t
$$

satisfies the initial value problem $\hat{u}_{t}=-k^{2} \hat{u}$ with $\hat{u}(k, 0)=\hat{f}(k)$, and the PDE solution is given by the inverse transform

$$
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-k^{2} t+i k x} \hat{f}(k) d k
$$

For $t \gg 0$, this is a Laplace integral with Laplace point $k=0$. For $x$ fixed, the behavior is

$$
u(x, t) \sim \frac{\hat{f}(0)}{2 \pi}\left(\frac{\pi}{t}\right)^{1 / 2}=\frac{\hat{f}(0)}{\sqrt{4 \pi t}}
$$

This approximation is not uniform in $x$, however. Instead, only expanding $\hat{f}$ at Laplace point gives

$$
u(x, t) \sim \frac{\hat{f}(0)}{2 \pi} \int_{-\infty}^{\infty} e^{-k^{2} t+i k x} d k=\frac{\hat{f}(0)}{\sqrt{4 \pi t}} e^{-x^{2} / 4 t}
$$

In other words, the diffusion equation "forgets" the initial data!

## Example: large time behavior of a dispersive waves

Consider the Schrödinger equation

$$
i u_{t}+u_{x x}=0, \quad u(x, 0)=f(x)
$$

whose Fourier solution is

$$
u(x, t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} \hat{f}(k) e^{i\left(k x-k^{2} t\right)} d k
$$

## Example: large time behavior of a dispersive waves

Consider the Schrödinger equation

$$
i u_{t}+u_{x x}=0, \quad u(x, 0)=f(x)
$$

whose Fourier solution is

$$
u(x, t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} \hat{f}(k) e^{i\left(k x-k^{2} t\right)} d k
$$

Set $x / t=v$ and consider $t \rightarrow \infty$ :

$$
u(x, t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} \hat{f}(k) e^{i\left(k v-k^{2}\right) t} d k
$$

This is a stationary phase type integral, with stationary phase point $k^{*}=v / 2$,

$$
u(x, t) \sim \frac{\hat{f}(v / 2)}{2 \pi} \int_{\infty}^{\infty} \exp \left(i\left(v^{2} t / 4-\left(k-k^{*}\right)^{2}\right)\right) d k=\frac{\hat{f}(v / 2)}{\sqrt{4 \pi t}} e^{i v^{t} / 4}
$$

## Example: large time behavior of a dispersive waves

Consider the Schrödinger equation

$$
i u_{t}+u_{x x}=0, \quad u(x, 0)=f(x)
$$

whose Fourier solution is

$$
u(x, t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} \hat{f}(k) e^{i\left(k x-k^{2} t\right)} d k
$$

Set $x / t=v$ and consider $t \rightarrow \infty$ :

$$
u(x, t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} \hat{f}(k) e^{i\left(k v-k^{2}\right) t} d k
$$

This is a stationary phase type integral, with stationary phase point $k^{*}=v / 2$,

$$
u(x, t) \sim \frac{\hat{f}(v / 2)}{2 \pi} \int_{\infty}^{\infty} \exp \left(i\left(v^{2} t / 4-\left(k-k^{*}\right)^{2}\right)\right) d k=\frac{\hat{f}(v / 2)}{\sqrt{4 \pi t}} e^{i v^{t} / 4}
$$

Suppose that $\hat{f}$ describes a "wave packet" with maximum at $k_{\text {max }}$. How can we run along side the wave so that the amplitude is maximum?

## Example: large time behavior of a dispersive waves

Consider the Schrödinger equation

$$
i u_{t}+u_{x x}=0, \quad u(x, 0)=f(x)
$$

whose Fourier solution is

$$
u(x, t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} \hat{f}(k) e^{i\left(k x-k^{2} t\right)} d k
$$

Set $x / t=v$ and consider $t \rightarrow \infty$ :

$$
u(x, t)=\frac{1}{2 \pi} \int_{\infty}^{\infty} \hat{f}(k) e^{i\left(k v-k^{2}\right) t} d k
$$

This is a stationary phase type integral, with stationary phase point $k^{*}=v / 2$,

$$
u(x, t) \sim \frac{\hat{f}(v / 2)}{2 \pi} \int_{\infty}^{\infty} \exp \left(i\left(v^{2} t / 4-\left(k-k^{*}\right)^{2}\right)\right) d k=\frac{\hat{f}(v / 2)}{\sqrt{4 \pi t}} e^{i v^{t} / 4}
$$

Suppose that $\hat{f}$ describes a "wave packet" with maximum at $k_{\text {max }}$. How can we run along side the wave so that the amplitude is maximum?
The correct choice should be $v=2 k_{\max }$; this is the group velocity.

