Asymptotic Methods
Homogenization

Elimination of small scales

A wide variety of models are multiscale in space (composite materials, fluid flow through porous media, local social dynamics which influence global behaviors), time (molecular versus cellular processes in biology, mechanical vibrations), or both.

Elimination of small scales

A wide variety of models are multiscale in space (composite materials, fluid flow through porous media, local social dynamics which influence global behaviors), time (molecular versus cellular processes in biology, mechanical vibrations), or both.

The goal of homogenization is to replace a multiscale model with an "effective" set of equations which do not have the same multiscale structure.

An example of this are the amplitude/envelope equations we derived in pattern-forming equations.

Example

Consider boundary value problem with rapidly varying coefficients

$$
\left[D(x) u^{\prime}\right]^{\prime}=f(x), \quad u(0)=a, u(1)=b,
$$

where $D=D(x, x / \epsilon)$ with $0<D_{\text {min }}<D<D_{\max }$ and $\epsilon \ll 1$.

Example

Consider boundary value problem with rapidly varying coefficients

$$
\left[D(x) u^{\prime}\right]^{\prime}=f(x), \quad u(0)=a, u(1)=b
$$

where $D=D(x, x / \epsilon)$ with $0<D_{\min }<D<D_{\max }$ and $\epsilon \ll 1$.
Natural to use a multiscale expansion $u(x, y)=u_{0}(x, y)+\epsilon u_{1}(x, y)+\epsilon^{2} u_{2}(x, y)+\ldots$ where $y=x / \epsilon$ is the fine-scale variable. This leads to

$$
\left(\partial_{y}+\epsilon \partial_{x}\right)\left[D(x, y)\left(\partial_{y}+\epsilon \partial_{x}\right) u\right]=\epsilon^{2} f(x)
$$

Example

Consider boundary value problem with rapidly varying coefficients

$$
\left[D(x) u^{\prime}\right]^{\prime}=f(x), \quad u(0)=a, u(1)=b
$$

where $D=D(x, x / \epsilon)$ with $0<D_{\min }<D<D_{\max }$ and $\epsilon \ll 1$.
Natural to use a multiscale expansion $u(x, y)=u_{0}(x, y)+\epsilon u_{1}(x, y)+\epsilon^{2} u_{2}(x, y)+\ldots$ where $y=x / \epsilon$ is the fine-scale variable. This leads to

$$
\left(\partial_{y}+\epsilon \partial_{x}\right)\left[D(x, y)\left(\partial_{y}+\epsilon \partial_{x}\right) u\right]=\epsilon^{2} f(x)
$$

Leading order problem is $\left(D(x, y) u_{0 y}\right)_{y}=0$, which may be integrated to

$$
u_{0}=c_{1}(x)+c_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}
$$

Note $\int_{0}^{y} d s / D(x, s) \geq y / D_{\max }$, so that $u_{0}=\mathcal{O}\left(\epsilon^{-1}\right)$ unless $c_{0}(x)=0$. It follows that $u_{0}=u_{0}(x)$.

Example, cont.

At $\mathcal{O}(\epsilon)$, get $\left(D u_{1 y}\right)=-\left(u_{0 x}\right) D_{y}$, so that

$$
u_{1}=b_{1}(x)+b_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-y u_{0 x} .
$$

Need to ensure u_{1} is not $\mathcal{O}(\epsilon)$, so need

$$
\lim _{y \rightarrow \infty} \frac{1}{y}\left[b_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-y u_{0 x}\right]=0,
$$

or $u_{0 x}=b_{0}(x)\left\langle D^{-1}\right\rangle$ where $\left\langle D^{-1}\right\rangle=\lim _{y \rightarrow \infty} \frac{1}{y} \int_{0}^{y} \frac{d s}{D(x, s)}$.

Example, cont.

At $\mathcal{O}(\epsilon)$, get $\left(D u_{1 y}\right)=-\left(u_{0 x}\right) D_{y}$, so that

$$
u_{1}=b_{1}(x)+b_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-y u_{0 x}
$$

Need to ensure u_{1} is not $\mathcal{O}(\epsilon)$, so need

$$
\lim _{y \rightarrow \infty} \frac{1}{y}\left[b_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-y u_{0 x}\right]=0
$$

or $u_{0 x}=b_{0}(x)\left\langle D^{-1}\right\rangle$ where $\left\langle D^{-1}\right\rangle=\lim _{y \rightarrow \infty} \frac{1}{y} \int_{0}^{y} \frac{d s}{D(x, s)}$.
At $\mathcal{O}\left(\epsilon^{2}\right),\left(D u_{2 y}\right)_{y}=f(x)-b_{0}^{\prime}(x)-\left(D u_{1 x}\right)_{y}$, so that
$u_{2}=d_{1}(x)+d_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-\int_{0}^{y} u_{1 x}(x, s) d s+\left[f(x)-b_{0}^{\prime}(x)\right] \int_{0}^{y} \frac{s d s}{D(x, s)}$.

Example, cont.

At $\mathcal{O}(\epsilon)$, get $\left(D u_{1 y}\right)=-\left(u_{0 x}\right) D_{y}$, so that

$$
u_{1}=b_{1}(x)+b_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-y u_{0 x}
$$

Need to ensure u_{1} is not $\mathcal{O}(\epsilon)$, so need

$$
\lim _{y \rightarrow \infty} \frac{1}{y}\left[b_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-y u_{0 x}\right]=0
$$

or $u_{0 x}=b_{0}(x)\left\langle D^{-1}\right\rangle$ where $\left\langle D^{-1}\right\rangle=\lim _{y \rightarrow \infty} \frac{1}{y} \int_{0}^{y} \frac{d s}{D(x, s)}$.
At $\mathcal{O}\left(\epsilon^{2}\right),\left(D u_{2 y}\right)_{y}=f(x)-b_{0}^{\prime}(x)-\left(D u_{1 x}\right)_{y}$, so that

$$
u_{2}=d_{1}(x)+d_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-\int_{0}^{y} u_{1 x}(x, s) d s+\left[f(x)-b_{0}^{\prime}(x)\right] \int_{0}^{y} \frac{s d s}{D(x, s)}
$$

The last integral is $\mathcal{O}\left(y^{2}\right)$, and therefore the expansion becomes disordered unless $f(x)=b_{0}^{\prime}(x)$.

Example, cont.

At $\mathcal{O}(\epsilon)$, get $\left(D u_{1 y}\right)=-\left(u_{0 x}\right) D_{y}$, so that

$$
u_{1}=b_{1}(x)+b_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-y u_{0 x}
$$

Need to ensure u_{1} is not $\mathcal{O}(\epsilon)$, so need

$$
\lim _{y \rightarrow \infty} \frac{1}{y}\left[b_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-y u_{0 x}\right]=0
$$

or $u_{0 x}=b_{0}(x)\left\langle D^{-1}\right\rangle$ where $\left\langle D^{-1}\right\rangle=\lim _{y \rightarrow \infty} \frac{1}{y} \int_{0}^{y} \frac{d s}{D(x, s)}$.
At $\mathcal{O}\left(\epsilon^{2}\right),\left(D u_{2 y}\right)_{y}=f(x)-b_{0}^{\prime}(x)-\left(D u_{1 x}\right)_{y}$, so that

$$
u_{2}=d_{1}(x)+d_{0}(x) \int_{0}^{y} \frac{d s}{D(x, s)}-\int_{0}^{y} u_{1 x}(x, s) d s+\left[f(x)-b_{0}^{\prime}(x)\right] \int_{0}^{y} \frac{s d s}{D(x, s)}
$$

The last integral is $\mathcal{O}\left(y^{2}\right)$, and therefore the expansion becomes disordered unless $f(x)=b_{0}^{\prime}(x)$.
Plugging into above expression, get homogenized equation

$$
\left(\bar{D} u_{0 x}\right)_{x}=f(x)
$$

where $\bar{D}=1 /\left\langle D^{-1}\right\rangle$.
For example, if D is p-periodic in $y, \bar{D}(x)=\left(p^{-1} \int_{0}^{p} d s / D(x, s)\right)^{-1}$, i.e. harmonic average of D.

Multiple dimensions

Consider

$$
\nabla \cdot(D \nabla u)=f(x), \quad x \in \Omega \subset \mathbb{R}^{n}
$$

Where $D(x, y)=D(x, y+p)$ with $y=x / \epsilon$.

b

Multiple dimensions

Consider

$$
\nabla \cdot(D \nabla u)=f(x), \quad x \in \Omega \subset \mathbb{R}^{n}
$$

Where $D(x, y)=D(x, y+p)$ with $y=x / \epsilon$.

b

Assume $u(x, y)$ is periodic in y, and expand as before to obtain

$$
\left(\nabla_{y}+\epsilon \nabla_{x}\right) \cdot\left[D(x, y)\left(\nabla_{y}+\epsilon \nabla_{x}\right) u\right]=\epsilon^{2} f(x)
$$

Leading order is $\nabla_{y} \cdot\left(D \nabla_{y} u_{0}\right)=0$. We can show:
Lemma: If u_{0} is periodic in y then $u_{0}=u_{0}(x)$.

Multiple dimensions

Consider

$$
\nabla \cdot(D \nabla u)=f(x), \quad x \in \Omega \subset \mathbb{R}^{n}
$$

Where $D(x, y)=D(x, y+p)$ with $y=x / \epsilon$.

b

Assume $u(x, y)$ is periodic in y, and expand as before to obtain

$$
\left(\nabla_{y}+\epsilon \nabla_{x}\right) \cdot\left[D(x, y)\left(\nabla_{y}+\epsilon \nabla_{x}\right) u\right]=\epsilon^{2} f(x)
$$

Leading order is $\nabla_{y} \cdot\left(D \nabla_{y} u_{0}\right)=0$. We can show:
Lemma: If u_{0} is periodic in y then $u_{0}=u_{0}(x)$.
Proof: multiply by u_{0} integrate over cell B :

$$
0=\int_{B} u_{0} \nabla_{y} \cdot\left(D \nabla u_{0}\right) d y=-\int D\left|\nabla_{y} u_{0}\right|^{2} d y
$$

and therefore $\nabla_{y} u_{0}=0$.

Multiple dimensions,cont.

At $\mathcal{O}(\epsilon)$, have $\nabla_{y} \cdot\left(D \nabla_{y} u_{1}\right)=-\nabla_{y} D \cdot \nabla_{x} u_{0}$. This equation is linear and inhomogeneous, and by lemma complimentary solution is a function of x alone. The particular solution is a linear combination $u_{1}=a(y) \cdot \nabla_{x} u_{0}$ where each component of the vector a solves a cell problem on B,

$$
\nabla_{y} \cdot\left(D \nabla_{y} a_{i}\right)=-\partial y_{i} D
$$

subject to periodic boundary conditions.

Multiple dimensions,cont.

At $\mathcal{O}(\epsilon)$, have $\nabla_{y} \cdot\left(D \nabla_{y} u_{1}\right)=-\nabla_{y} D \cdot \nabla_{x} u_{0}$. This equation is linear and inhomogeneous, and by lemma complimentary solution is a function of x alone. The particular solution is a linear combination $u_{1}=a(y) \cdot \nabla_{x} u_{0}$ where each component of the vector a solves a cell problem on B,

$$
\nabla_{y} \cdot\left(D \nabla_{y} a_{i}\right)=-\partial y_{i} D
$$

subject to periodic boundary conditions.
At $\mathcal{O}\left(\epsilon^{2}\right)$, have

$$
\nabla_{y} \cdot\left(D \nabla_{y} u_{2}\right)=-\nabla_{y} \cdot\left(D \nabla_{x} u_{1}\right)-\nabla_{x} \cdot\left(D \nabla_{y} u_{1}\right)-\nabla_{x} \cdot\left(D \nabla_{x} u_{0}\right)+f(x)
$$

This inhomogeneous equation has a solvability condition using the inner product $\langle u, v\rangle=\int_{B} u v d y$. Note that the nullspace is simply constants in y .

Multiple dimensions,cont.

Write $|B|^{-1}\langle u, 1\rangle=\langle u\rangle_{B}$. Thus solvability condition is just averaging the equation over the cell. We have $\langle f(x)\rangle_{B}=f(x), \quad\left\langle\nabla_{x} \cdot\left(D \nabla_{x} u_{0}\right)\right\rangle_{B}=\nabla_{x} \cdot\left(\langle D\rangle_{B} \nabla_{x} u_{0}\right), \quad \nabla_{y} \cdot\left(\langle D\rangle_{B} \nabla_{x} u_{1}\right)=0$, where the last equality uses the divergence theorem.

Multiple dimensions,cont.

Write $|B|^{-1}\langle u, 1\rangle=\langle u\rangle_{B}$. Thus solvability condition is just averaging the equation over the cell. We have
$\langle f(x)\rangle_{B}=f(x), \quad\left\langle\nabla_{x} \cdot\left(D \nabla_{x} u_{0}\right)\right\rangle_{B}=\nabla_{x} \cdot\left(\langle D\rangle_{B} \nabla_{x} u_{0}\right), \quad \nabla_{y} \cdot\left(\langle D\rangle_{B} \nabla_{x} u_{1}\right)=0$,
where the last equality uses the divergence theorem.
In addition,

$$
\left\langle D \nabla_{y} u_{1}\right\rangle_{B}=\left\langle D \nabla_{y}\left(a \cdot \nabla u_{0}\right)\right\rangle_{B}=\sum_{j}\left\langle D \frac{\partial a_{j}}{\partial y_{i}}\right\rangle_{B} \frac{\partial u_{0}}{\partial x_{j}} .
$$

It follows that

$$
\sum_{i, j} \frac{\partial}{\partial x_{i}}\left(T_{i j} \frac{\partial u_{0}}{\partial x_{j}}\right)=f(x)
$$

which may be written compactly at $\nabla \cdot\left(T \nabla u_{0}\right)=f(x)$ where T is a tensor with components

$$
T_{i j}=\langle D\rangle_{B} \delta_{i j}+\left\langle D \partial y_{i} a_{j}\right\rangle_{B}
$$

Example: Diffusion through rough interface

Consider

$$
\nabla \cdot(\sigma \nabla u)+a u=f(x, z), \quad[u]=0, \quad[\sigma \nabla u \cdot n]=0
$$

The diffusion constant is $\sigma=\sigma_{+}$for $z>h(x / \epsilon)$ and σ_{-}otherwise.

where $y=x / \varepsilon$ and $h(y)=h(y+1)$

Example: Diffusion through rough interface

Consider

$$
\nabla \cdot(\sigma \nabla u)+a u=f(x, z), \quad[u]=0, \quad[\sigma \nabla u \cdot n]=0
$$

The diffusion constant is $\sigma=\sigma_{+}$for $z>h(x / \epsilon)$ and σ_{-}otherwise.

Use multiple scale expansion $u(x, y, z)=u_{0}(y, x, z)+u_{1}(y, x, z)+\ldots$ where

$$
\left(\sigma u_{y}\right)_{y}+\epsilon\left(\sigma u_{x}\right)_{y}+\epsilon\left(\sigma u_{y}\right)_{x}+\epsilon^{2}\left[\left(\sigma u_{x}\right)_{x}+\left(\sigma u_{z}\right)_{z}+a u-f\right]=0
$$

and

$$
\nabla u \cdot n=\left(\left(\partial_{x}+\epsilon^{-1} \partial_{y}\right) u, u_{z}\right) \cdot n=\epsilon^{-2} u_{y} h_{y}+\epsilon^{-1} u_{x} h_{y}-u_{z}
$$

We suppose that u_{0}, u_{1}, \ldots are periodic in y.

Diffusion through a rough interface, cont.

Leading order solves $\left(\sigma u_{0 y}\right)_{y}=0$ and $\left[u_{0}\right]=0=\left[\sigma u_{0 y}\right]$ on interface, so that

$$
u_{0}=c_{1}(x, z) \int_{0}^{y} \frac{d s}{\sigma(y)}+c_{2}(x, z)
$$

Periodicity implies $c_{1}=0$.

Diffusion through a rough interface, cont.

Leading order solves $\left(\sigma u_{0 y}\right)_{y}=0$ and $\left[u_{0}\right]=0=\left[\sigma u_{0 y}\right]$ on interface, so that

$$
u_{0}=c_{1}(x, z) \int_{0}^{y} \frac{d s}{\sigma(y)}+c_{2}(x, z)
$$

Periodicity implies $c_{1}=0$.
At $\mathcal{O}(\epsilon)$, have $\left(\sigma u_{1 y}+\sigma u_{0 x}\right)_{y}=0$ whose interface conditions are $\left[u_{1}\right]=0=\left[\sigma\left(u_{1 y}+u_{0 x}\right)\right]$. Let $v(x, y)$ be defined by $v u_{0 x}=u_{1}+y u_{0 x}$ so that $v_{y} u_{0 x}=u_{1 y}+u_{0 x}$.

Leading order solves $\left(\sigma u_{0 y}\right)_{y}=0$ and $\left[u_{0}\right]=0=\left[\sigma u_{0 y}\right]$ on interface, so that

$$
u_{0}=c_{1}(x, z) \int_{0}^{y} \frac{d s}{\sigma(y)}+c_{2}(x, z) .
$$

Periodicity implies $c_{1}=0$.
At $\mathcal{O}(\epsilon)$, have $\left(\sigma u_{1 y}+\sigma u_{0 x}\right)_{y}=0$ whose interface conditions are $\left[u_{1}\right]=0=\left[\sigma\left(u_{1 y}+u_{0 x}\right)\right]$. Let $v(x, y)$ be defined by $v u_{0 x}=u_{1}+y u_{0 x}$ so that $v_{y} u_{0 x}=u_{1 y}+u_{0 x}$. Then

$$
\left(\sigma v_{y}\right)_{y}=\frac{1}{u_{0 x}}\left[\sigma\left(u_{1 y}+u_{0 x}\right)\right]_{y}=0, \quad[v]=0, \quad\left[\sigma v_{y}\right]=0
$$

This means that σv_{y} is independent of y, so let it equal $\sigma_{e}(z)$. Note also that $v=u_{1} / u_{0 x}+y$, so by periodicity $v(x, y+1, z)=v(x, y, z)+1$.

Diffusion through a rough interface, cont.

Let $y=y_{1,2}(z)$ define each part of the interface.

Integrate equation for v from y_{1} to y,

$$
v=v\left(x, y_{1}, z\right)+ \begin{cases}\left(\sigma_{e} / \sigma_{+}\right)\left(y-y_{1}\right), & y_{1}<y<y_{2} \\ \left(\sigma_{e} / \sigma_{+}\right)\left(y_{2}-y_{1}\right)+\left(\sigma_{e} / \sigma_{-}\right)\left(y-y_{2}\right), & y_{2}<y<y_{1}+1\end{cases}
$$

Let $y=y_{1,2}(z)$ define each part of the interface.

Integrate equation for v from y_{1} to y,

$$
v=v\left(x, y_{1}, z\right)+ \begin{cases}\left(\sigma_{e} / \sigma_{+}\right)\left(y-y_{1}\right), & y_{1}<y<y_{2} \\ \left(\sigma_{e} / \sigma_{+}\right)\left(y_{2}-y_{1}\right)+\left(\sigma_{e} / \sigma_{-}\right)\left(y-y_{2}\right), & y_{2}<y<y_{1}+1\end{cases}
$$

Using $v(x, y+1, z)=v(x, y, z)+1$, have

$$
v\left(x, y_{1}, z\right)+\left(\sigma_{e} / \sigma_{+}\right)\left(y_{2}-y_{1}\right)+\left(\sigma_{e} / \sigma_{-}\right)\left(y_{1}+1-y_{2}\right)=v\left(x, y_{1}, z\right)+1
$$

which means $\sigma_{e}(z)=\left[\left(y_{2}(z)-y_{1}(z)\right) / \sigma_{+}+\left(y_{1}(z)-y_{2}(z)+1\right) / \sigma_{-}\right]^{-1}$.
Observe σ_{e} interpolates between $\sigma_{ \pm}$.

Diffusion through a rough interface, cont.

Order ϵ^{2} has

$$
\left(\sigma u_{2 y}+\sigma u_{1 x}\right)_{y}=-\left(\sigma u_{1 y}+\sigma u_{0 x}\right)_{x}-\left(\sigma u_{0}\right)_{z z}-a u_{0}-f .
$$

$$
\text { and }\left[u_{2}\right]=0=\left[\sigma\left(u_{2 y} h_{y}+u_{1 x} h_{y}-u_{0 z}\right)\right] \text {. }
$$

Diffusion through a rough interface, cont.

Order ϵ^{2} has

$$
\left(\sigma u_{2 y}+\sigma u_{1 x}\right)_{y}=-\left(\sigma u_{1 y}+\sigma u_{0 x}\right)_{x}-\left(\sigma u_{0}\right)_{z z}-a u_{0}-f .
$$

and $\left[u_{2}\right]=0=\left[\sigma\left(u_{2 y} h_{y}+u_{1 x} h_{y}-u_{0 z}\right)\right]$.
Use $u_{1 y}+u_{0 x}=v_{y} u_{0 x}$, and average over fine scale by integrating y from 0 to 1 :

$$
\sigma_{e} u_{0 x x}+\langle\sigma\rangle u_{0 z z}+a u_{0}-f=-\int_{0}^{1} \sigma\left(u_{2 y}+\sigma u_{1 x}\right)_{y} d y
$$

where $\langle\sigma\rangle=\int_{0}^{1} \sigma d y=\sigma_{+}\left(y_{2}(z)-y_{1}(z)\right)+\sigma_{-}\left(1-y_{2}(z)+y_{1}(z)\right)$.

Diffusion through a rough interface, cont.

Order ϵ^{2} has

$$
\left(\sigma u_{2 y}+\sigma u_{1 x}\right)_{y}=-\left(\sigma u_{1 y}+\sigma u_{0 x}\right)_{x}-\left(\sigma u_{0}\right)_{z z}-a u_{0}-f .
$$

and $\left[u_{2}\right]=0=\left[\sigma\left(u_{2 y} h_{y}+u_{1 x} h_{y}-u_{0 z}\right)\right]$.
Use $u_{1 y}+u_{0 x}=v_{y} u_{0 x}$, and average over fine scale by integrating y from 0 to 1 :

$$
\sigma_{e} u_{0 x x}+\langle\sigma\rangle u_{0 z z}+a u_{0}-f=-\int_{0}^{1} \sigma\left(u_{2 y}+\sigma u_{1 x}\right)_{y} d y
$$

where $\langle\sigma\rangle=\int_{0}^{1} \sigma d y=\sigma_{+}\left(y_{2}(z)-y_{1}(z)\right)+\sigma_{-}\left(1-y_{2}(z)+y_{1}(z)\right)$.
The integral has a discontinuous integrand, and evaluates to

$$
\begin{aligned}
& {\left[\sigma\left(u_{2 y}+u_{1 x}\right)\right]_{y}=y_{1}+\left[\sigma\left(u_{2 y}+u_{1 x}\right)\right]_{y=y_{2}}=\frac{\left[\sigma u_{0 z}\right]_{y_{1}}}{h_{y}\left(y_{1}\right)}+\frac{\left[\sigma u_{0 z}\right]_{y_{2}}}{h_{y}\left(y_{2}\right)} } \\
&=\left(\sigma_{+}-\sigma-\right)\left[1 / h_{y}\left(y_{2}\right)-1 / h_{y}\left(y_{1}\right)\right] u_{0 z}=\langle\sigma\rangle_{z} .
\end{aligned}
$$

Finally, the homogenized equation can be written as

$$
\left(\langle\sigma\rangle u_{0 z}\right)_{z}+\sigma_{e} u_{0 x x}+a u_{0}=f
$$

Flow through porous media

Consider a random but prescribed characteristic function $\omega: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
\omega(x)= \begin{cases}1, & x \text { in fluid region } F, \\ 0, & x \text { in solid region } S\end{cases}
$$

which varies on a fine scale $y=x / \epsilon$.

Flow field $v(x)$ and pressure satisfy the the Stokes equations

$$
\begin{aligned}
\mu \Delta v & =\nabla p, \quad x \in F \\
\nabla \cdot v & =0, \quad x \in F \\
v & =0, \quad x \in \partial F
\end{aligned}
$$

Flow through porous media, cont.

We use multiscale expansion $v=\epsilon^{2} v_{0}(x, y)+\epsilon^{3} v_{1}(x, y)+\ldots$ and $p=p_{0}(x)+\epsilon p_{1}(x, y)$ and obtain

$$
\begin{aligned}
\mu \Delta_{y} v_{0} & =\nabla_{y} p_{1}+\nabla_{x} p_{0} \\
\nabla_{y} \cdot v_{0} & =0 \\
\nabla_{x} \cdot v_{0}+\nabla_{y} \cdot v_{1} & =0 .
\end{aligned}
$$

Homogenization is obtained by averaging over ensemble. Define $U(x)=\left\langle v_{0}\right\rangle(x)$. Third equation averages to $\nabla_{x} \cdot U+\left\langle\nabla_{y} \cdot v_{1}\right\rangle=0$.

Flow through porous media, cont.

We use multiscale expansion $v=\epsilon^{2} v_{0}(x, y)+\epsilon^{3} v_{1}(x, y)+\ldots$ and $p=p_{0}(x)+\epsilon p_{1}(x, y)$ and obtain

$$
\begin{aligned}
\mu \Delta_{y} v_{0} & =\nabla_{y} p_{1}+\nabla_{x} p_{0} \\
\nabla_{y} \cdot v_{0} & =0 \\
\nabla_{x} \cdot v_{0}+\nabla_{y} \cdot v_{1} & =0 .
\end{aligned}
$$

Homogenization is obtained by averaging over ensemble. Define $U(x)=\left\langle v_{0}\right\rangle(x)$. Third equation averages to $\nabla_{x} \cdot U+\left\langle\nabla_{y} \cdot v_{1}\right\rangle=0$.

Since $\left\langle\nabla_{y} \cdot v_{1}\right\rangle$ is independent of y, letting B_{R} be a ball we can write

$$
\begin{aligned}
\left\langle\nabla_{y} \cdot v_{1}\right\rangle & =\frac{1}{\left|B_{R}\right|} \int_{B_{R}}\left\langle\nabla_{y} \cdot v_{1}\right\rangle d y=\frac{1}{\left|B_{R}\right|}\left\langle\int_{B_{R}} \nabla_{y} \cdot v_{1} d y\right\rangle \\
& =\left\langle\frac{1}{\left|B_{R}\right|} \int_{\partial F} v_{1} \cdot n d y\right\rangle+\left\langle\frac{1}{\left|B_{R}\right|} \int_{\partial B_{R}} v_{1} \cdot n d y\right\rangle .
\end{aligned}
$$

Taking $R \rightarrow \infty$ gives zero, so we conclude $\nabla \cdot U=0$.

Let matrix W and vector Π solve

$$
\begin{aligned}
\Delta W & =\nabla \Pi-I, \quad x \in F \\
\nabla \cdot W & =0, \quad x \in F \\
W & =0, \quad x \in \partial F
\end{aligned}
$$

Let matrix W and vector Π solve

$$
\begin{aligned}
\Delta W & =\nabla \Pi-I, \quad x \in F \\
\nabla \cdot W & =0, \quad x \in F \\
W & =0, \quad x \in \partial F
\end{aligned}
$$

Then $v_{0}=-(1 / \mu) W \cdot p_{0}$ and $p_{1}=\Pi \cdot \nabla p_{0}$. Averaging the former gives

$$
U(x)=-\frac{1}{\mu}\langle W\rangle \cdot \nabla p_{0}
$$

The quantity $\langle W\rangle$ is called the permeability tensor. Together with the incompressibility condition $\nabla \cdot U=0$, we obtain Darcy's law.

