
Asymptotic Methods

Homogenization



Elimination of small scales

A wide variety of models are multiscale in space (composite materials, fluid
flow through porous media, local social dynamics which influence global
behaviors), time (molecular versus cellular processes in biology, mechanical
vibrations), or both.

The goal of homogenization is to replace a multiscale model with an
“effective” set of equations which do not have the same multiscale structure.

An example of this are the amplitude/envelope equations we derived in
pattern-forming equations.
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Example

Consider boundary value problem with rapidly varying coefficients

[D(x)u′]′ = f (x), u(0) = a, u(1) = b,

where D = D(x , x/ε) with 0 < Dmin < D < Dmax and ε� 1.

Natural to use a multiscale expansion
u(x , y) = u0(x , y) + εu1(x , y) + ε2u2(x , y) + . . . where y = x/ε is the fine-scale
variable. This leads to

(∂y + ε∂x)[D(x , y)(∂y + ε∂x)u] = ε2f (x).

Leading order problem is (D(x , y)u0y )y = 0, which may be integrated to

u0 = c1(x) + c0(x)

∫ y

0

ds

D(x , s)
.

Note
∫ y

0
ds/D(x , s) ≥ y/Dmax , so that u0 = O(ε−1) unless c0(x) = 0. It

follows that u0 = u0(x).
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Example, cont.

At O(ε), get (Du1y ) = −(u0x)Dy , so that

u1 = b1(x) + b0(x)

∫ y

0

ds

D(x , s)
− yu0x .

Need to ensure u1 is not O(ε), so need

lim
y→∞

1

y

[
b0(x)

∫ y

0

ds

D(x , s)
− yu0x

]
= 0,

or u0x = b0(x)〈D−1〉 where 〈D−1〉 = limy→∞
1
y

∫ y

0
ds

D(x,s)
.

At O(ε2), (Du2y )y = f (x)− b′0(x)− (Du1x)y , so that

u2 = d1(x) + d0(x)

∫ y

0

ds

D(x , s)
−
∫ y

0

u1x(x , s)ds + [f (x)− b′0(x)]

∫ y

0

s ds

D(x , s)
.

The last integral is O(y 2), and therefore the expansion becomes disordered
unless f (x) = b′0(x).

Plugging into above expression, get homogenized equation

(Du0x)x = f (x).

where D = 1/〈D−1〉.
For example, if D is p-periodic in y , D(x) = (p−1

∫ p

0
ds/D(x , s))−1, i.e.

harmonic average of D.
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Multiple dimensions

Consider
∇·(D∇u) = f (x), x ∈ Ω ⊂ Rn,

Where D(x , y) = D(x , y + p) with y = x/ε.

Assume u(x , y) is periodic in y , and expand as before to obtain

(∇y + ε∇x) · [D(x , y)(∇y + ε∇x)u] = ε2f (x).

Leading order is ∇y · (D∇yu0) = 0. We can show:

Lemma: If u0 is periodic in y then u0 = u0(x).
Proof: multiply by u0 integrate over cell B:

0 =

∫
B

u0∇y · (D∇u0)dy = −
∫

D|∇yu0|2dy ,

and therefore ∇yu0 = 0.
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Multiple dimensions,cont.

At O(ε), have ∇y · (D∇yu1) = −∇yD · ∇xu0. This equation is linear and
inhomogeneous, and by lemma complimentary solution is a function of x alone.
The particular solution is a linear combination u1 = a(y) · ∇xu0 where each
component of the vector a solves a cell problem on B,

∇y · (D∇yai ) = −∂yiD,

subject to periodic boundary conditions.

At O(ε2), have

∇y · (D∇yu2) = −∇y · (D∇xu1)−∇x · (D∇yu1)−∇x · (D∇xu0) + f (x).

This inhomogeneous equation has a solvability condition using the inner
product 〈u, v〉 =

∫
B
uv dy . Note that the nullspace is simply constants in y.
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Multiple dimensions,cont.

Write |B|−1〈u, 1〉 = 〈u〉B . Thus solvability condition is just averaging the
equation over the cell. We have

〈f (x)〉B = f (x), 〈∇x ·(D∇xu0)〉B = ∇x ·(〈D〉B∇xu0), ∇y ·(〈D〉B∇xu1) = 0,

where the last equality uses the divergence theorem.

In addition,

〈D∇yu1〉B = 〈D∇y (a · ∇u0)〉B =
∑
j

〈D ∂aj
∂yi
〉B
∂u0
∂xj

.

It follows that ∑
i,j

∂

∂xi

(
Tij
∂u0
∂xj

)
= f (x),

which may be written compactly at ∇·(T∇u0) = f (x) where T is a tensor with
components

Tij = 〈D〉Bδij + 〈D∂yiaj〉B .
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Example: Diffusion through rough interface

Consider

∇·(σ∇u) + au = f (x , z), [u] = 0, [σ∇u · n] = 0.

The diffusion constant is σ = σ+ for z > h(x/ε) and σ− otherwise.

Use multiple scale expansion u(x , y , z) = u0(y , x , z) + u1(y , x , z) + . . . where

(σuy )y + ε(σux)y + ε(σuy )x + ε2[(σux)x + (σuz)z + au − f ] = 0,

and
∇u · n = ((∂x + ε−1∂y )u, uz) · n = ε−2uyhy + ε−1uxhy − uz .

We suppose that u0, u1, . . . are periodic in y .
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Diffusion through a rough interface, cont.

Leading order solves (σu0y )y = 0 and [u0] = 0 = [σu0y ] on interface, so that

u0 = c1(x , z)

∫ y

0

ds

σ(y)
+ c2(x , z).

Periodicity implies c1 = 0.

At O(ε), have (σu1y + σu0x)y = 0 whose interface conditions are
[u1] = 0 = [σ(u1y + u0x)]. Let v(x , y) be defined by vu0x = u1 + yu0x so that
vyu0x = u1y + u0x . Then

(σvy )y =
1

u0x
[σ(u1y + u0x)]y = 0, [v ] = 0, [σvy ] = 0.

This means that σvy is independent of y , so let it equal σe(z). Note also that
v = u1/u0x + y , so by periodicity v(x , y + 1, z) = v(x , y , z) + 1.
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Diffusion through a rough interface, cont.

Let y = y1,2(z) define each part
of the interface.

Integrate equation for v from y1 to y ,

v = v(x , y1, z) +

{
(σe/σ+)(y − y1), y1 < y < y2,

(σe/σ+)(y2 − y1) + (σe/σ−)(y − y2), y2 < y < y1 + 1.

Using v(x , y + 1, z) = v(x , y , z) + 1, have

v(x , y1, z) + (σe/σ+)(y2 − y1) + (σe/σ−)(y1 + 1− y2) = v(x , y1, z) + 1

which means σe(z) = [(y2(z)− y1(z))/σ+ + (y1(z)− y2(z) + 1)/σ−]−1.
Observe σe interpolates between σ±.
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Diffusion through a rough interface, cont.

Order ε2 has

(σu2y + σu1x)y = −(σu1y + σu0x)x − (σu0)zz − au0 − f .

and [u2] = 0 = [σ(u2yhy + u1xhy − u0z)].

Use u1y + u0x = vyu0x , and average over fine scale by integrating y from 0 to 1:

σeu0xx + 〈σ〉u0zz + au0 − f = −
∫ 1

0

σ(u2y + σu1x)ydy .

where 〈σ〉 =
∫ 1

0
σdy = σ+(y2(z)− y1(z)) + σ−(1− y2(z) + y1(z)).

The integral has a discontinuous integrand, and evaluates to

[σ(u2y + u1x)]y=y1 + [σ(u2y + u1x)]y=y2 =
[σu0z ]y1
hy (y1)

+
[σu0z ]y2
hy (y2)

= (σ+ − σ−)[1/hy (y2)− 1/hy (y1)]u0z = 〈σ〉z .

Finally, the homogenized equation can be written as

(〈σ〉u0z)z + σeu0xx + au0 = f .
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Flow through porous media

Consider a random but prescribed characteristic function ω : R3 → R,

ω(x) =

{
1, x in fluid region F ,

0, x in solid region S

which varies on a fine scale y = x/ε.

Flow field v(x) and pressure satisfy the the Stokes equations

µ∆v = ∇p, x ∈ F ,

∇·v = 0, x ∈ F ,

v = 0, x ∈ ∂F .



Flow through porous media, cont.

We use multiscale expansion v = ε2v0(x , y) + ε3v1(x , y) + . . . and
p = p0(x) + εp1(x , y) and obtain

µ∆yv0 = ∇yp1 +∇xp0

∇y · v0 = 0

∇x · v0 +∇y · v1 = 0.

Homogenization is obtained by averaging over ensemble. Define
U(x) = 〈v0〉(x). Third equation averages to ∇x · U + 〈∇y · v1〉 = 0.

Since 〈∇y · v1〉 is independent of y , letting BR be a ball we can write

〈∇y · v1〉 =
1

|BR |

∫
BR

〈∇y · v1〉dy =
1

|BR |

〈∫
BR

∇y · v1dy
〉

=

〈
1

|BR |

∫
∂F

v1 · n dy
〉

+

〈
1

|BR |

∫
∂BR

v1 · n dy
〉
.

Taking R →∞ gives zero, so we conclude ∇·U = 0.
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µ∆yv0 = ∇yp1 +∇xp0

∇y · v0 = 0

∇x · v0 +∇y · v1 = 0.

Homogenization is obtained by averaging over ensemble. Define
U(x) = 〈v0〉(x). Third equation averages to ∇x · U + 〈∇y · v1〉 = 0.

Since 〈∇y · v1〉 is independent of y , letting BR be a ball we can write

〈∇y · v1〉 =
1

|BR |

∫
BR

〈∇y · v1〉dy =
1

|BR |

〈∫
BR

∇y · v1dy
〉

=

〈
1

|BR |

∫
∂F

v1 · n dy
〉

+

〈
1

|BR |

∫
∂BR

v1 · n dy
〉
.

Taking R →∞ gives zero, so we conclude ∇·U = 0.



Flow through porous media

Let matrix W and vector Π solve

∆W = ∇Π− I , x ∈ F ,

∇·W = 0, x ∈ F ,

W = 0, x ∈ ∂F .

Then v0 = −(1/µ)W · p0 and p1 = Π · ∇p0. Averaging the former gives

U(x) = − 1

µ
〈W 〉 · ∇p0.

The quantity 〈W 〉 is called the permeability tensor. Together with the
incompressibility condition ∇·U = 0, we obtain Darcy’s law.
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