Asymptotic Methods

Approximations of integrals: introduction

Approximating integrals

Encountering uncomputable integrals is very common. Here we look for approximations to $\int_{a}^{b} f(t ; x) d t$, where either $x \rightarrow 0$ or $x \rightarrow \infty$.

Approximating integrals

Encountering uncomputable integrals is very common. Here we look for approximations to $\int_{a}^{b} f(t ; x) d t$, where either $x \rightarrow 0$ or $x \rightarrow \infty$.
The simplest case is where the integrand possess an expansion $f(t ; x) \sim \sum_{k=0}^{\infty} f_{k}(t) \phi_{k}(x)$ which is uniform in $t \in[a, b]$. This means that for any $C>0, x$ can be chosen small (or large) enough so that

$$
\left|f(t ; x)-\sum_{k=0}^{N} f_{k}(t) \phi_{k}(x)\right|=C \phi_{k}(x), \quad \text { for each } N=1,2,3, \ldots
$$

In other words, the quality of the approximation is the same over the whole domain, independent of t; this is similar to how uniform convergence is defined.

Approximating integrals

Encountering uncomputable integrals is very common. Here we look for approximations to $\int_{a}^{b} f(t ; x) d t$, where either $x \rightarrow 0$ or $x \rightarrow \infty$.
The simplest case is where the integrand possess an expansion $f(t ; x) \sim \sum_{k=0}^{\infty} f_{k}(t) \phi_{k}(x)$ which is uniform in $t \in[a, b]$. This means that for any $C>0, x$ can be chosen small (or large) enough so that

$$
\left|f(t ; x)-\sum_{k=0}^{N} f_{k}(t) \phi_{k}(x)\right|=C \phi_{k}(x), \quad \text { for each } N=1,2,3, \ldots
$$

In other words, the quality of the approximation is the same over the whole domain, independent of t; this is similar to how uniform convergence is defined.

Theorem

$$
\int_{a}^{b} f(t ; x) d t \sim \sum_{k=0}^{N} \phi_{k}(x) \int_{a}^{b} f_{k}(t) d t
$$

provided the integrals on the right converge.

Approximating integrals

Encountering uncomputable integrals is very common. Here we look for approximations to $\int_{a}^{b} f(t ; x) d t$, where either $x \rightarrow 0$ or $x \rightarrow \infty$.
The simplest case is where the integrand possess an expansion $f(t ; x) \sim \sum_{k=0}^{\infty} f_{k}(t) \phi_{k}(x)$ which is uniform in $t \in[a, b]$. This means that for any $C>0, x$ can be chosen small (or large) enough so that

$$
\left|f(t ; x)-\sum_{k=0}^{N} f_{k}(t) \phi_{k}(x)\right|=C \phi_{k}(x), \quad \text { for each } N=1,2,3, \ldots
$$

In other words, the quality of the approximation is the same over the whole domain, independent of t; this is similar to how uniform convergence is defined.

Theorem

$$
\int_{a}^{b} f(t ; x) d t \sim \sum_{k=0}^{N} \phi_{k}(x) \int_{a}^{b} f_{k}(t) d t
$$

provided the integrals on the right converge.
For example, as $x \rightarrow 0$,
$\int_{0}^{1} \frac{\sin (t x)}{t} d t \sim \int_{0}^{1} \frac{t x-t^{3} x^{3} / 6+t^{5} x^{5} / 120-\ldots}{t} d t=x-x^{3} / 18+x^{5} / 600-\ldots$
where term-by-term integration was used.

Failure of uniformity

Consider

$$
\int_{0}^{\infty} \frac{d t}{1+x t^{2}} .
$$

Failure of uniformity

Consider

$$
\int_{0}^{\infty} \frac{d t}{1+x t^{2}}
$$

Expanding

$$
\frac{1}{1+x t^{2}} \sim 1-x t^{2}+x^{2} t^{4}-\ldots
$$

produces an asymptotic expansion which is not uniform in t; moreover term-by-term integration would be impossible. In fact, the integral can be computed exactly to give $\pi /(2 \sqrt{x})$.

Example: the Stieltjes integral

Let

$$
I(x)=\int_{0}^{\infty} \frac{e^{-t} d t}{1+x t}
$$

Example: the Stieltjes integral

Let

$$
I(x)=\int_{0}^{\infty} \frac{e^{-t} d t}{1+x t}
$$

For $x \rightarrow 0$, one has

$$
\frac{e^{-t}}{1+x t} \sim e^{-t}\left(1-x t+x^{2} t^{2}-\ldots\right)
$$

which is, in fact, a uniform expansion in x (exercise). Then we compute

$$
I(x) \sim \sum_{n=0} x^{n} \int_{0}^{\infty}(-1)^{n} e^{-t} t^{n} d t \sim \sum_{n=0}^{\infty}(-1)^{n}(n!) x^{n}
$$

This sum is certainly not convergent unless $x=0$.

Example: the Stieltjes integral, cont.

What about $x \rightarrow \infty$? Write

$$
I(x)=\frac{1}{x} \int_{0}^{\infty} \frac{e^{-w / x} d w}{1+w}
$$

Unfortunately, the Taylor expansion of the exponential leads to a non-uniform expansion.

Example: the Stieltjes integral, cont.

What about $x \rightarrow \infty$? Write

$$
I(x)=\frac{1}{x} \int_{0}^{\infty} \frac{e^{-w / x} d w}{1+w}
$$

Unfortunately, the Taylor expansion of the exponential leads to a non-uniform expansion.

Trick: split integral from 0 to x and x to ∞. Then
$\int_{0}^{x} \frac{e^{-w / x} d w}{1+w}=\int_{0}^{x} \frac{1-w / x+w^{2} /\left(2 x^{2}\right)+w^{3} /\left(6 w^{2}\right)+\ldots}{1+w} d w=\ln (x)+\mathcal{O}(1)$.

Example: the Stieltjes integral, cont.

What about $x \rightarrow \infty$? Write

$$
I(x)=\frac{1}{x} \int_{0}^{\infty} \frac{e^{-w / x} d w}{1+w}
$$

Unfortunately, the Taylor expansion of the exponential leads to a non-uniform expansion.
Trick: split integral from 0 to x and x to ∞. Then
$\int_{0}^{x} \frac{e^{-w / x} d w}{1+w}=\int_{0}^{x} \frac{1-w / x+w^{2} /\left(2 x^{2}\right)+w^{3} /\left(6 w^{2}\right)+\ldots}{1+w} d w=\ln (x)+\mathcal{O}(1)$.
The other integral is

$$
\int_{x}^{\infty} \frac{e^{-w / x} d w}{1+w} \leq \frac{1}{x} \int_{x}^{\infty} e^{-w / x} d w=1 / e
$$

We therefore have the first term $I(x) \sim \ln (x) / x$.

Another example

The so-called exponential integral is

$$
E_{1}=\int_{x}^{\infty} \frac{e^{-t}}{t} d t
$$

If we want the behavior for $x \rightarrow 0$, it is temping to expand the integrand, but term-by-term integration is not possible.

Another example

The so-called exponential integral is

$$
E_{1}=\int_{x}^{\infty} \frac{e^{-t}}{t} d t
$$

If we want the behavior for $x \rightarrow 0$, it is temping to expand the integrand, but term-by-term integration is not possible.
The inspiration here is to differentiate and expand,

$$
E_{1}^{\prime}(x)=-\frac{e^{-x}}{x}=-\frac{1}{x}+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n-1}}{n!}
$$

Then

$$
E_{1}=-\ln x+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n \cdot n!}+C
$$

This is clearly an asymptotic series, but what is C ?

Another example

The so-called exponential integral is

$$
E_{1}=\int_{x}^{\infty} \frac{e^{-t}}{t} d t
$$

If we want the behavior for $x \rightarrow 0$, it is temping to expand the integrand, but term-by-term integration is not possible.
The inspiration here is to differentiate and expand,

$$
E_{1}^{\prime}(x)=-\frac{e^{-x}}{x}=-\frac{1}{x}+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n-1}}{n!}
$$

Then

$$
E_{1}=-\ln x+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n \cdot n!}+C
$$

This is clearly an asymptotic series, but what is C ?
Add $\ln x$ to both sides and take $x \rightarrow 0$:

$$
C=\lim _{x \rightarrow 0^{+}}\left(\int_{x}^{\infty} \frac{e^{-t}}{t} d t+\ln x\right)=\int_{0}^{\infty} e^{-t} \ln t d t \equiv-\gamma
$$

Here integration by parts was used, and γ is the famous EulerMascheroni constant $\gamma=0.57721 \ldots$

A difficult example

Look for behavior as $x \rightarrow \infty$ for

$$
I(x)=\int_{0}^{1} \frac{e^{x}-e^{x t}}{1-t} d t=e^{x} \int_{0}^{1} \frac{1-e^{-x u}}{u} d u
$$

A difficult example

Look for behavior as $x \rightarrow \infty$ for

$$
I(x)=\int_{0}^{1} \frac{e^{x}-e^{x t}}{1-t} d t=e^{x} \int_{0}^{1} \frac{1-e^{-x u}}{u} d u .
$$

Simply ignoring the term $e^{-x u}$ leads to a divergent integral. In fact, $e^{-x u}$ is not small if $x u \ll 1$, which suggests splitting the integral as

$$
\int_{0}^{1 / x} \frac{1-e^{-x u}}{u} d u+\int_{1 / x}^{1} \frac{1-e^{-x u}}{u} d u .
$$

The first integral can be written as $\int_{0}^{1}\left(1-e^{-w}\right) / w d w$, which is simply a constant.

A difficult example

Look for behavior as $x \rightarrow \infty$ for

$$
I(x)=\int_{0}^{1} \frac{e^{x}-e^{x t}}{1-t} d t=e^{x} \int_{0}^{1} \frac{1-e^{-x u}}{u} d u
$$

Simply ignoring the term $e^{-x u}$ leads to a divergent integral. In fact, $e^{-x u}$ is not small if $x u \ll 1$, which suggests splitting the integral as

$$
\int_{0}^{1 / x} \frac{1-e^{-x u}}{u} d u+\int_{1 / x}^{1} \frac{1-e^{-x u}}{u} d u
$$

The first integral can be written as $\int_{0}^{1}\left(1-e^{-w}\right) / w d w$, which is simply a constant.

The second integral can be written

$$
\ln x-\int_{1}^{x} \frac{e^{-w}}{w} d w=\ln x-E_{1}(1)+E_{1}(x)
$$

So we are left looking for large x behavior of the exponential integral, which will be investigated in the next topic.

