
Asymptotic Methods

Approximations of integrals: introduction



Approximating integrals

Encountering uncomputable integrals is very common. Here we look for
approximations to

∫ b

a
f (t; x)dt, where either x → 0 or x →∞.

The simplest case is where the integrand possess an expansion
f (t; x) ∼

∑∞
k=0 fk(t)φk(x) which is uniform in t ∈ [a, b]. This means that for

any C > 0, x can be chosen small (or large) enough so that∣∣∣f (t; x)−
N∑

k=0

fk(t)φk(x)
∣∣∣ = Cφk(x), for each N = 1, 2, 3, . . .

In other words, the quality of the approximation is the same over the whole
domain, independent of t; this is similar to how uniform convergence is defined.

Theorem ∫ b

a

f (t; x)dt ∼
N∑

k=0

φk(x)

∫ b

a

fk(t) dt.

provided the integrals on the right converge.

For example, as x → 0,∫ 1

0

sin(tx)

t
dt ∼

∫ 1

0

tx − t3x3/6 + t5x5/120− . . .
t

dt = x−x3/18+x5/600−. . .

where term-by-term integration was used.
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Failure of uniformity

Consider ∫ ∞
0

dt

1 + xt2
.

Expanding
1

1 + xt2
∼ 1− xt2 + x2t4 − . . .

produces an asymptotic expansion which is not uniform in t; moreover
term-by-term integration would be impossible. In fact, the integral can be
computed exactly to give π/(2

√
x).
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Example: the Stieltjes integral

Let

I (x) =

∫ ∞
0

e−tdt

1 + xt
.

For x → 0, one has

e−t

1 + xt
∼ e−t(1− xt + x2t2 − . . .),

which is, in fact, a uniform expansion in x (exercise). Then we compute

I (x) ∼
∑
n=0

xn

∫ ∞
0

(−1)ne−ttn dt ∼
∞∑
n=0

(−1)n(n!)xn.

This sum is certainly not convergent unless x = 0.
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Example: the Stieltjes integral, cont.

What about x →∞? Write

I (x) =
1

x

∫ ∞
0

e−w/xdw

1 + w
.

Unfortunately, the Taylor expansion of the exponential leads to a non-uniform
expansion.

Trick: split integral from 0 to x and x to ∞. Then∫ x

0

e−w/xdw

1 + w
=

∫ x

0

1− w/x + w 2/(2x2) + w 3/(6w 2) + . . .

1 + w
dw = ln(x)+O(1).

The other integral is∫ ∞
x

e−w/xdw

1 + w
≤ 1

x

∫ ∞
x

e−w/xdw = 1/e.

We therefore have the first term I (x) ∼ ln(x)/x .
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Another example

The so-called exponential integral is

E1 =

∫ ∞
x

e−t

t
dt.

If we want the behavior for x → 0, it is temping to expand the integrand, but
term-by-term integration is not possible.

The inspiration here is to differentiate and expand,

E ′1(x) = −e−x

x
= − 1

x
+
∞∑
n=1

(−1)n−1 x
n−1

n!
.

Then

E1 = − ln x +
∞∑
n=1

(−1)n−1 xn

n · n!
+ C .

This is clearly an asymptotic series, but what is C?

Add ln x to both sides and take x → 0:

C = lim
x→0+

(∫ ∞
x

e−t

t
dt + ln x

)
=

∫ ∞
0

e−t ln t dt ≡ −γ,

Here integration by parts was used, and γ is the famous EulerMascheroni
constant γ = 0.57721 . . .
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A difficult example

Look for behavior as x →∞ for

I (x) =

∫ 1

0

ex − ext

1− t
dt = ex

∫ 1

0

1− e−xu

u
du.

Simply ignoring the term e−xu leads to a divergent integral. In fact, e−xu is not
small if xu � 1, which suggests splitting the integral as∫ 1/x

0

1− e−xu

u
du +

∫ 1

1/x

1− e−xu

u
du.

The first integral can be written as
∫ 1

0
(1− e−w )/w dw , which is simply a

constant.

The second integral can be written

ln x −
∫ x

1

e−w

w
dw = ln x − E1(1) + E1(x).

So we are left looking for large x behavior of the exponential integral, which
will be investigated in the next topic.



A difficult example

Look for behavior as x →∞ for

I (x) =

∫ 1

0

ex − ext

1− t
dt = ex

∫ 1

0

1− e−xu

u
du.

Simply ignoring the term e−xu leads to a divergent integral. In fact, e−xu is not
small if xu � 1, which suggests splitting the integral as∫ 1/x

0

1− e−xu

u
du +

∫ 1

1/x

1− e−xu

u
du.

The first integral can be written as
∫ 1

0
(1− e−w )/w dw , which is simply a

constant.

The second integral can be written

ln x −
∫ x

1

e−w

w
dw = ln x − E1(1) + E1(x).

So we are left looking for large x behavior of the exponential integral, which
will be investigated in the next topic.



A difficult example

Look for behavior as x →∞ for

I (x) =

∫ 1

0

ex − ext

1− t
dt = ex

∫ 1

0

1− e−xu

u
du.

Simply ignoring the term e−xu leads to a divergent integral. In fact, e−xu is not
small if xu � 1, which suggests splitting the integral as∫ 1/x

0

1− e−xu

u
du +

∫ 1

1/x

1− e−xu

u
du.

The first integral can be written as
∫ 1

0
(1− e−w )/w dw , which is simply a

constant.

The second integral can be written

ln x −
∫ x

1

e−w

w
dw = ln x − E1(1) + E1(x).

So we are left looking for large x behavior of the exponential integral, which
will be investigated in the next topic.


