Asymptotic Methods

Approximations of integrals: Watson's Lemma and
Laplace’'s method
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Often, the dominant contribution to an integral occurs near just a few values
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Take as an example

1 e—xt
I(x):/ dt, x— o0
o 1+t

Expanding 1/(1+t)=1—t+t*—t>— ... leads to

/(x)N;/O (—t)"e dt.

Unfortunately, term by term integration leads to something quite messy,
because of the fact that the upper bound is finite.



Laplace’s method, cont.

Writing fol = fooo _floo'

/ (—t)"e dt
1

This contribution is exponentially small compared to the other term:

§/ e dt = O(e™*/x).
1

oo
=0

Z/ (—t)"edt = > (~1)"nlx~""d.
n=0"0 n

In other words, essentially all the integral’'s value came from around t = 0; this
observation leads to Laplace’s method.
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Watson’s lemma

The previous intuition can be formalized in a well-known result

Watson’s lemma

Suppose f(t) ~ t%(aot? + a1t?® + axt® +...) for t — 0, then
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Many Laplace integrals are not exactly of this form, but the same intuition
applies. Consider

Two common cases are:
(1) ¢(x) has a unique maximum at x = a. Then

oo X¢
N x(9(a)+" (a)(t—2) _f(a)e™?
I /a f(a)e dt = xqﬁ’(a)

(I1) é(x) has a unique maximum at x = ¢, a < ¢ < b. Then
[ / ¥ f(a)eEe e/ gy V2TF (c)ex
oo —x¢"(c)

More cenerallv. heuristic idea is to expand both f() and & "enough” so that a
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I(x) = / & dt.
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The Laplace points are £1, and they both contribute equally. By symmetry
considerations,
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Example 2:
1 .
/ In(1+ t)efxs'"4 tdt.
0

The Laplace point here is t = 0, and ¢(t) = —sin* t ~ —t* has a fourth-order
maximum there. Also, In(1+ t) ~ t for t — 0. Therefore

< a1 * s, T(1/2)
I(X) N/O texp(fxt )dt = W/O S e “ds = W.
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Example: modified Bessel functions have the representation
Km(x) = / e X" cosh(mt) dt
0

To put in needed form, let v = cosh(t) — 1, so that v ~ 3t* for small t. To
obtain a whole series for t as a function of v, let
t=(2v)"2 4+ cavi + &v¥/2 4+ ..., and substitute into expansion of cosh(t) — 1:
2t
=gt teo=vE V2av? + V3 (V2e + ¢ /6 +1/6) + ...
Comparing terms on either side, it follows ¢; = 0 and & = —1/(6v/2).

Finally, after the change of variables in the integral, the expansions are inserted
and Watson's lemma applies:

e_X/ e [1+ m’t? /2 + .. ](dt/dv)dv
0

e /°° o (ﬁv‘1/2/2 FV2[V2m? )2 — 1)(4v2)] + . ..)dv

= *X‘[[H ~(m? —1/4)%
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Moving maxima

For an integral like

r(x):/ e’ttx’ldt:/ ettt dt,
0 0

the maximum of the exponent xInt — t is obtained at t = x.

Remedy is a change of variables which makes maximum stationary.
Letting t = sx,

M(x) = XX/ e X(s=n 5)/5 ds.
0

The Laplace point is at s = 1, and represents a quadratic maximum of
¢(s) =Ins—s. Thus

oo
M(x) ~ XX/ e_x(l_(s_1)2/s)(1)ds =x"e "/ 21
oo x

This is known as Stirling's approximation.
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1/e e Xt
I(x):/ ——dt, x— oo
0 Int

Since there is no way to expand In t near zero, can’t use Laplace’s method.

One possible way forward is a change of variables z = xt,

x/e —z
I(x) = 1/ B
0

X Inz—Inx

Can't expand in geometric series unless |In z| < |In x|, so split integral

o +fzxc/e, where cutoff must be chosen so | Inzc| < |Inx]|, e.g. ze = x~'/2,
Then
—1/2 —1/2
L S N A SR
- Iz — zZ = X.
x Jo Inz—Inx ~ = x J, Inx=1/2 —Inx x3/2
and

x/e e ? 1 oo
dz = — Inx)~* = “*(Inz)*dz.
/X_1/2 Inz—Inx"" xlnxzck(nx) r Gk /0 e “(Inz)"dz
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Laplace integrals in probability

What is the probability of a rare event, and what does it look like?
Take for simplicity a normally distributed variable t, so that the probability of

Suppose A = LY25 where S is some fixed set; would like behavior for L — co.
The integral may be written
1/2
P(A) = L7 i et ds,
which is of Laplace form. The Laplace point is s* = min(S) > 0, so that

1172 (e Pane . e—L(s*)2
P(A) ~ —L[(s*)"+2s" (s—s )]d _ )
(A~ =7 | e $ T 271125

This is an example of a large deviation result.



