Asymptotic Methods

Approximations of integrals: Watson's Lemma and Laplace's method

Laplace's method

Often, the dominant contribution to an integral occurs near just a few values called Laplace points.

Laplace's method

Often, the dominant contribution to an integral occurs near just a few values called Laplace points.

Take as an example

$$
I(x)=\int_{0}^{1} \frac{e^{-x t}}{1+t} d t, \quad x \rightarrow \infty
$$

Expanding $1 /(1+t)=1-t+t^{2}-t^{3}-\ldots$ leads to

$$
I(x) \sim \sum_{n=0}^{\infty} \int_{0}^{1}(-t)^{n} e^{-x t} d t
$$

Unfortunately, term by term integration leads to something quite messy, because of the fact that the upper bound is finite.

Laplace's method, cont.

Writing $\int_{0}^{1}=\int_{0}^{\infty}-\int_{1}^{\infty}$,

$$
\left|\int_{1}^{\infty}(-t)^{n} e^{-x t} d t\right| \leq \int_{1}^{\infty} e^{-x t} d t=\mathcal{O}\left(e^{-x} / x\right) .
$$

This contribution is exponentially small compared to the other term:

$$
\sum_{n=0}^{\infty} \int_{0}^{\infty}(-t)^{n} e^{-x t} d t=\sum_{n=0}^{\infty}(-1)^{n} n!x^{-n-1} d t .
$$

In other words, essentially all the integral's value came from around $t=0$; this observation leads to Laplace's method.

Watson's lemma

The previous intuition can be formalized in a well-known result

Watson's lemma

Suppose $f(t) \sim t^{\alpha}\left(a_{0} t^{\beta}+a_{1} t^{2 \beta}+a_{2} t^{3 \beta}+\ldots\right)$ for $t \rightarrow 0$, then

$$
\int_{0}^{b} f(t) e^{x t} d t \sim \sum_{n=0}^{\infty} \frac{a_{n} \Gamma(\alpha+\beta n+1)}{x^{\alpha+\beta n+1}}, \quad x \rightarrow \infty
$$

Watson's lemma

The previous intuition can be formalized in a well-known result

Watson's lemma

Suppose $f(t) \sim t^{\alpha}\left(a_{0} t^{\beta}+a_{1} t^{2 \beta}+a_{2} t^{3 \beta}+\ldots\right)$ for $t \rightarrow 0$, then

$$
\int_{0}^{b} f(t) e^{\chi t} d t \sim \sum_{n=0}^{\infty} \frac{a_{n} \Gamma(\alpha+\beta n+1)}{x^{\alpha+\beta n+1}}, \quad x \rightarrow \infty
$$

Many Laplace integrals are not exactly of this form, but the same intuition applies. Consider

$$
I(x)=\int_{a}^{b} e^{x \phi(t)} f(t) d t
$$

Two common cases are:

Watson's lemma

The previous intuition can be formalized in a well-known result

Watson's lemma

Suppose $f(t) \sim t^{\alpha}\left(a_{0} t^{\beta}+a_{1} t^{2 \beta}+a_{2} t^{3 \beta}+\ldots\right)$ for $t \rightarrow 0$, then

$$
\int_{0}^{b} f(t) e^{\chi t} d t \sim \sum_{n=0}^{\infty} \frac{a_{n} \Gamma(\alpha+\beta n+1)}{x^{\alpha+\beta n+1}}, \quad x \rightarrow \infty
$$

Many Laplace integrals are not exactly of this form, but the same intuition applies. Consider

$$
I(x)=\int_{a}^{b} e^{x \phi(t)} f(t) d t
$$

Two common cases are:
(I) $\phi(x)$ has a unique maximum at $x=a$. Then

$$
I \sim \int_{a}^{\infty} f(a) e^{x\left(\phi(a)+\phi^{\prime}(a)(t-a)\right)} d t=-\frac{f(a) e^{x \phi(a)}}{x \phi^{\prime}(a)}
$$

Watson's lemma

The previous intuition can be formalized in a well-known result

Watson's lemma

Suppose $f(t) \sim t^{\alpha}\left(a_{0} t^{\beta}+a_{1} t^{2 \beta}+a_{2} t^{3 \beta}+\ldots\right)$ for $t \rightarrow 0$, then

$$
\int_{0}^{b} f(t) e^{\chi t} d t \sim \sum_{n=0}^{\infty} \frac{a_{n} \Gamma(\alpha+\beta n+1)}{x^{\alpha+\beta n+1}}, \quad x \rightarrow \infty
$$

Many Laplace integrals are not exactly of this form, but the same intuition applies. Consider

$$
I(x)=\int_{a}^{b} e^{x \phi(t)} f(t) d t
$$

Two common cases are:
(I) $\phi(x)$ has a unique maximum at $x=a$. Then

$$
I \sim \int_{a}^{\infty} f(a) e^{x\left(\phi(a)+\phi^{\prime}(a)(t-a)\right)} d t=-\frac{f(a) e^{x \phi(a)}}{x \phi^{\prime}(a)}
$$

(II) $\phi(x)$ has a unique maximum at $x=c, a<c<b$. Then

$$
I \sim \int_{-\infty}^{\infty} f(a) e^{x\left(\phi(a)+\phi^{\prime \prime}(c)(t-c)^{2} / 2\right)} d t=\frac{\sqrt{2 \pi} f(c) e^{x \phi(c)}}{\sqrt{-x \phi^{\prime \prime}(c)}}
$$

More generally, heuristic idea is to expand both $f()$ and ϕ "enough" so that a

Examples

Example 1:

$$
I(x)=\int_{-1}^{1} e^{x t^{2}} d t
$$

Examples

Example 1:

$$
I(x)=\int_{-1}^{1} e^{x t^{2}} d t
$$

The Laplace points are ± 1, and they both contribute equally. By symmetry considerations,

$$
I(x) \sim 2 \int_{-1}^{\infty} e^{x(1-2(t+1))} d t=e^{x} / x
$$

Examples

Example 1:

$$
I(x)=\int_{-1}^{1} e^{x t^{2}} d t
$$

The Laplace points are ± 1, and they both contribute equally. By symmetry considerations,

$$
I(x) \sim 2 \int_{-1}^{\infty} e^{x(1-2(t+1))} d t=e^{x} / x
$$

Example 2:

$$
\int_{0}^{1} \ln (1+t) e^{-x \sin ^{4} t} d t
$$

Examples

Example 1:

$$
I(x)=\int_{-1}^{1} e^{x t^{2}} d t
$$

The Laplace points are ± 1, and they both contribute equally. By symmetry considerations,

$$
I(x) \sim 2 \int_{-1}^{\infty} e^{x(1-2(t+1))} d t=e^{x} / x
$$

Example 2:

$$
\int_{0}^{1} \ln (1+t) e^{-x \sin ^{4} t} d t
$$

The Laplace point here is $t=0$, and $\phi(t)=-\sin ^{4} t \sim-t^{4}$ has a fourth-order maximum there. Also, $\ln (1+t) \sim t$ for $t \rightarrow 0$.

Examples

Example 1:

$$
I(x)=\int_{-1}^{1} e^{x t^{2}} d t
$$

The Laplace points are ± 1, and they both contribute equally. By symmetry considerations,

$$
I(x) \sim 2 \int_{-1}^{\infty} e^{x(1-2(t+1))} d t=e^{x} / x
$$

Example 2:

$$
\int_{0}^{1} \ln (1+t) e^{-x \sin ^{4} t} d t
$$

The Laplace point here is $t=0$, and $\phi(t)=-\sin ^{4} t \sim-t^{4}$ has a fourth-order maximum there. Also, $\ln (1+t) \sim t$ for $t \rightarrow 0$. Therefore

$$
I(x) \sim \int_{0}^{\infty} t \exp \left(-x t^{4}\right) d t=\frac{1}{4 x^{1 / 2}} \int_{0}^{\infty} s^{-1 / 2} e^{-s} d s=\frac{\Gamma(1 / 2)}{4 x^{1 / 2}}
$$

Exact transformation to Watson

If more than a leading order approximation is desired, an exact change of variables allows Watson's lemma to be used.

Exact transformation to Watson

If more than a leading order approximation is desired, an exact change of variables allows Watson's lemma to be used.

Example: modified Bessel functions have the representation

$$
K_{m}(x)=\int_{0}^{\infty} e^{-x \cosh t} \cosh (m t) d t
$$

Exact transformation to Watson

If more than a leading order approximation is desired, an exact change of variables allows Watson's lemma to be used.

Example: modified Bessel functions have the representation

$$
K_{m}(x)=\int_{0}^{\infty} e^{-x \cosh t} \cosh (m t) d t
$$

To put in needed form, let $v=\cosh (t)-1$, so that $v \sim \frac{1}{2} t^{2}$ for small t. To obtain a whole series for t as a function of v, let $t=(2 v)^{1 / 2}+c_{1} v_{1}+c_{2} v^{3 / 2}+\ldots$, and substitute into expansion of $\cosh (t)-1$:

$$
v=\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\ldots=v+\sqrt{2} c_{1} v^{3 / 2}+v^{2}\left(\sqrt{2} c_{2}+c_{1}^{2} / 6+1 / 6\right)+\ldots
$$

Comparing terms on either side, it follows $c_{1}=0$ and $c_{2}=-1 /(6 \sqrt{2})$.

Exact transformation to Watson

If more than a leading order approximation is desired, an exact change of variables allows Watson's lemma to be used.

Example: modified Bessel functions have the representation

$$
K_{m}(x)=\int_{0}^{\infty} e^{-x \cosh t} \cosh (m t) d t
$$

To put in needed form, let $v=\cosh (t)-1$, so that $v \sim \frac{1}{2} t^{2}$ for small t. To obtain a whole series for t as a function of v, let $t=(2 v)^{1 / 2}+c_{1} v_{1}+c_{2} v^{3 / 2}+\ldots$, and substitute into expansion of $\cosh (t)-1$:

$$
v=\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\ldots=v+\sqrt{2} c_{1} v^{3 / 2}+v^{2}\left(\sqrt{2} c_{2}+c_{1}^{2} / 6+1 / 6\right)+\ldots
$$

Comparing terms on either side, it follows $c_{1}=0$ and $c_{2}=-1 /(6 \sqrt{2})$.
Finally, after the change of variables in the integral, the expansions are inserted and Watson's lemma applies:

$$
\begin{aligned}
& e^{-x} \int_{0}^{\infty} e^{-x v}\left[1+m^{2} t^{2} / 2!+\ldots\right](d t / d v) d v \\
& =e^{-x} \int_{0}^{\infty} e^{-x v}\left(\sqrt{2} v^{-1 / 2} / 2+v^{1 / 2}\left[\sqrt{2} m^{2} / 2-1 /(4 \sqrt{2})\right]+\ldots\right) d v \\
& =e^{-x} \frac{\sqrt{\pi}}{2 x}\left[1+\frac{1}{2}\left(m^{2}-1 / 4\right) \frac{1}{x}+\ldots\right]
\end{aligned}
$$

Moving maxima

For an integral like

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t=\int_{0}^{\infty} e^{x \ln t-t} / t d t
$$

the maximum of the exponent $x \ln t-t$ is obtained at $t=x$.

Moving maxima

For an integral like

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t=\int_{0}^{\infty} e^{x \ln t-t} / t d t
$$

the maximum of the exponent $x \ln t-t$ is obtained at $t=x$.
Remedy is a change of variables which makes maximum stationary. Letting $t=s x$,

$$
\Gamma(x)=x^{x} \int_{0}^{\infty} e^{-x(s-\ln s)} / s d s
$$

Moving maxima

For an integral like

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t=\int_{0}^{\infty} e^{x \ln t-t} / t d t
$$

the maximum of the exponent $x \ln t-t$ is obtained at $t=x$.
Remedy is a change of variables which makes maximum stationary.
Letting $t=s x$,

$$
\Gamma(x)=x^{x} \int_{0}^{\infty} e^{-x(s-\ln s)} / s d s
$$

The Laplace point is at $s=1$, and represents a quadratic maximum of $\phi(s)=\ln s-s$. Thus

$$
\Gamma(x) \sim x^{x} \int_{-\infty}^{\infty} e^{-x\left(1-(s-1)^{2} / s\right)}(1) d s=x^{x} e^{-x} \sqrt{\frac{2 \pi}{x}}
$$

This is known as Stirling's approximation.

An exception

Consider the integral

$$
I(x)=\int_{0}^{1 / e} \frac{e^{-x t}}{\ln t} d t, \quad x \rightarrow \infty
$$

Since there is no way to expand $\ln t$ near zero, can't use Laplace's method.

An exception

Consider the integral

$$
I(x)=\int_{0}^{1 / e} \frac{e^{-x t}}{\ln t} d t, \quad x \rightarrow \infty
$$

Since there is no way to expand $\ln t$ near zero, can't use Laplace's method.
One possible way forward is a change of variables $z=x t$,

$$
I(x)=\frac{1}{x} \int_{0}^{x / e} \frac{e^{-z}}{\ln z-\ln x} d z
$$

Can't expand in geometric series unless $|\ln z|<|\ln x|$, so split integral $\int_{0}^{z_{c}}+\int_{z_{c}}^{x / e}$, where cutoff must be chosen so $\left|\ln z_{c}\right|<|\ln x|$, e.g. $z_{c}=x^{-1 / 2}$.

An exception

Consider the integral

$$
I(x)=\int_{0}^{1 / e} \frac{e^{-x t}}{\ln t} d t, \quad x \rightarrow \infty
$$

Since there is no way to expand $\ln t$ near zero, can't use Laplace's method.
One possible way forward is a change of variables $z=x t$,

$$
I(x)=\frac{1}{x} \int_{0}^{x / e} \frac{e^{-z}}{\ln z-\ln x} d z
$$

Can't expand in geometric series unless $|\ln z|<|\ln x|$, so split integral $\int_{0}^{z_{c}}+\int_{z_{c}}^{x / e}$, where cutoff must be chosen so $\left|\ln z_{c}\right|<|\ln x|$, e.g. $z_{c}=x^{-1 / 2}$. Then

$$
\frac{1}{x} \int_{0}^{x^{-1 / 2}} \frac{e^{-z}}{\ln z-\ln x} d z \leq \frac{1}{x} \int_{0}^{x^{-1 / 2}} \frac{e^{-z}}{\ln x^{-1 / 2}-\ln x} d z=\frac{2}{x^{3 / 2}} \ln x
$$

and

$$
\int_{x^{-1 / 2}}^{x / e} \frac{e^{-z}}{\ln z-\ln x} d z=-\frac{1}{x \ln x} \sum c_{k}(\ln x)^{-k}, \quad c_{k}=\int_{0}^{\infty} e^{-z}(\ln z)^{k} d z
$$

Laplace integrals in probability

What is the probability of a rare event, and what does it look like?

Laplace integrals in probability

What is the probability of a rare event, and what does it look like?
Take for simplicity a normally distributed variable t, so that the probability of $t \in A$ is

$$
P(A)=\frac{1}{Z} \int_{A} e^{-t^{2}} d t
$$

Suppose $A=L^{1 / 2} S$ where S is some fixed set; would like behavior for $L \rightarrow \infty$.

Laplace integrals in probability

What is the probability of a rare event, and what does it look like?
Take for simplicity a normally distributed variable t, so that the probability of $t \in A$ is

$$
P(A)=\frac{1}{Z} \int_{A} e^{-t^{2}} d t
$$

Suppose $A=L^{1 / 2} S$ where S is some fixed set; would like behavior for $L \rightarrow \infty$.
The integral may be written

$$
P(A)=\frac{L^{1 / 2}}{Z} \int_{S} e^{-L s^{2}} d s
$$

which is of Laplace form. The Laplace point is $s^{*}=\min (S)>0$, so that

$$
P(A) \sim \frac{L^{1 / 2}}{Z} \int_{S} e^{-L\left[\left(s^{*}\right)^{2}+2 s^{*}\left(s-s^{*}\right)\right]} d s=\frac{e^{-L\left(s^{*}\right)^{2}}}{2 Z L^{1 / 2} s^{*}}
$$

This is an example of a large deviation result.

