
Asymptotic Methods

Approximations of integrals: Watson’s Lemma and
Laplace’s method



Laplace’s method

Often, the dominant contribution to an integral occurs near just a few values
called Laplace points.

Take as an example

I (x) =

∫ 1

0

e−xt

1 + t
dt, x →∞

Expanding 1/(1 + t) = 1− t + t2 − t3 − . . . leads to

I (x) ∼
∞∑
n=0

∫ 1

0

(−t)ne−xtdt.

Unfortunately, term by term integration leads to something quite messy,
because of the fact that the upper bound is finite.
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Laplace’s method, cont.

Writing
∫ 1

0
=
∫∞
0
−
∫∞
1

,∣∣∣∣∫ ∞
1

(−t)ne−xtdt

∣∣∣∣ ≤ ∫ ∞
1

e−xtdt = O(e−x/x).

This contribution is exponentially small compared to the other term:

∞∑
n=0

∫ ∞
0

(−t)ne−xtdt =
∞∑
n=0

(−1)nn!x−n−1dt.

In other words, essentially all the integral’s value came from around t = 0; this
observation leads to Laplace’s method.



Watson’s lemma

The previous intuition can be formalized in a well-known result

Watson’s lemma

Suppose f (t) ∼ tα(a0t
β + a1t

2β + a2t
3β + . . .) for t → 0, then∫ b

0

f (t)extdt ∼
∞∑
n=0

anΓ(α + βn + 1)

xα+βn+1
, x →∞

Many Laplace integrals are not exactly of this form, but the same intuition
applies. Consider

I (x) =

∫ b

a

exφ(t)f (t)dt.

Two common cases are:
(I) φ(x) has a unique maximum at x = a. Then

I ∼
∫ ∞
a

f (a)ex(φ(a)+φ
′(a)(t−a))dt = − f (a)exφ(a)

xφ′(a)

(II) φ(x) has a unique maximum at x = c, a < c < b. Then

I ∼
∫ ∞
−∞

f (a)ex(φ(a)+φ
′′(c)(t−c)2/2) dt =

√
2πf (c)exφ(c)√
−xφ′′(c)

.

More generally, heuristic idea is to expand both f () and φ ”enough” so that a
nontrivial leading order approximation is obtained.
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Examples

Example 1:

I (x) =

∫ 1

−1

ext
2

dt.

The Laplace points are ±1, and they both contribute equally. By symmetry
considerations,

I (x) ∼ 2

∫ ∞
−1

ex(1−2(t+1))dt = ex/x .

Example 2: ∫ 1

0

ln(1 + t)e−x sin4 t dt.

The Laplace point here is t = 0, and φ(t) = − sin4 t ∼ −t4 has a fourth-order
maximum there. Also, ln(1 + t) ∼ t for t → 0. Therefore

I (x) ∼
∫ ∞
0

t exp(−xt4) dt =
1

4x1/2

∫ ∞
0

s−1/2e−sds =
Γ(1/2)

4x1/2
.
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Exact transformation to Watson

If more than a leading order approximation is desired, an exact change of
variables allows Watson’s lemma to be used.

Example: modified Bessel functions have the representation

Km(x) =

∫ ∞
0

e−x cosh t cosh(mt) dt

To put in needed form, let v = cosh(t)− 1, so that v ∼ 1
2
t2 for small t. To

obtain a whole series for t as a function of v , let
t = (2v)1/2 + c1v1 + c2v

3/2 + . . ., and substitute into expansion of cosh(t)− 1:

v =
t2

2!
+

t4

4!
+ . . . = v +

√
2c1v

3/2 + v 2(
√

2c2 + c21/6 + 1/6) + . . .

Comparing terms on either side, it follows c1 = 0 and c2 = −1/(6
√

2).

Finally, after the change of variables in the integral, the expansions are inserted
and Watson’s lemma applies:

e−x

∫ ∞
0

e−xv [1 + m2t2/2! + . . .](dt/dv)dv

= e−x

∫ ∞
0

e−xv
(√

2v−1/2/2 + v 1/2[
√

2m2/2− 1/(4
√

2)] + . . .
)
dv

= e−x

√
π

2x

[
1 +

1

2
(m2 − 1/4)

1

x
+ . . .

]
.
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Moving maxima

For an integral like

Γ(x) =

∫ ∞
0

e−ttx−1dt =

∫ ∞
0

ex ln t−t/t dt,

the maximum of the exponent x ln t − t is obtained at t = x .

Remedy is a change of variables which makes maximum stationary.
Letting t = sx ,

Γ(x) = xx

∫ ∞
0

e−x(s−ln s)/s ds.

The Laplace point is at s = 1, and represents a quadratic maximum of
φ(s) = ln s − s. Thus

Γ(x) ∼ xx

∫ ∞
−∞

e−x(1−(s−1)2/s)(1)ds = xxe−x

√
2π

x
.

This is known as Stirling’s approximation.
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An exception

Consider the integral

I (x) =

∫ 1/e

0

e−xt

ln t
dt, x →∞.

Since there is no way to expand ln t near zero, can’t use Laplace’s method.

One possible way forward is a change of variables z = xt,

I (x) =
1

x

∫ x/e

0

e−z

ln z − ln x
dz .

Can’t expand in geometric series unless | ln z | < | ln x |, so split integral∫ zc
0

+
∫ x/e

zc
, where cutoff must be chosen so | ln zc | < | ln x |, e.g. zc = x−1/2.

Then

1

x

∫ x−1/2

0

e−z

ln z − ln x
dz ≤ 1

x

∫ x−1/2

0

e−z

ln x−1/2 − ln x
dz =

2

x3/2
ln x .

and∫ x/e

x−1/2

e−z

ln z − ln x
dz = − 1

x ln x

∑
ck(ln x)−k , ck =

∫ ∞
0

e−z(ln z)kdz .
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Laplace integrals in probability

What is the probability of a rare event, and what does it look like?

Take for simplicity a normally distributed variable t, so that the probability of
t ∈ A is

P(A) =
1

Z

∫
A

e−t2dt.

Suppose A = L1/2S where S is some fixed set; would like behavior for L→∞.

The integral may be written

P(A) =
L1/2

Z

∫
S

e−Ls2ds,

which is of Laplace form. The Laplace point is s∗ = min(S) > 0, so that

P(A) ∼ L1/2

Z

∫
S

e−L[(s∗)2+2s∗(s−s∗)]ds =
e−L(s∗)2

2ZL1/2s∗
.

This is an example of a large deviation result.
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