Asymptotic Methods

Approximations of integrals: Watson’s Lemma and Laplace’s method
Laplace’s method

Often, the dominant contribution to an integral occurs near just a few values called Laplace points.
Laplace’s method

Often, the dominant contribution to an integral occurs near just a few values called Laplace points.

Take as an example

\[I(x) = \int_{0}^{1} \frac{e^{-xt}}{1 + t} \, dt, \quad x \to \infty \]

Expanding \(1/(1 + t) = 1 - t + t^2 - t^3 - \ldots \) leads to

\[I(x) \sim \sum_{n=0}^{\infty} \int_{0}^{1} (-t)^n e^{-xt} \, dt. \]

Unfortunately, term by term integration leads to something quite messy, because of the fact that the upper bound is finite.
Writing \(\int_0^1 = \int_0^\infty - \int_1^\infty \),

\[
\left| \int_1^\infty (-t)^n e^{-xt} \, dt \right| \leq \int_1^\infty e^{-xt} \, dt = O(e^{-x}/x).
\]

This contribution is exponentially small compared to the other term:

\[
\sum_{n=0}^\infty \int_0^\infty (-t)^n e^{-xt} \, dt = \sum_{n=0}^\infty (-1)^n n! x^{-n-1} \, dt.
\]

In other words, essentially all the integral’s value came from around \(t = 0 \); this observation leads to Laplace’s method.
Watson’s lemma

The previous intuition can be formalized in a well-known result

Watson’s lemma

Suppose \(f(t) \sim t^\alpha (a_0 t^\beta + a_1 t^{2\beta} + a_2 t^{3\beta} + \ldots) \) for \(t \to 0 \), then

\[
\int_0^b f(t)e^{xt} \, dt \sim \sum_{n=0}^{\infty} \frac{a_n \Gamma(\alpha + \beta n + 1)}{x^{\alpha+\beta n+1}}, \quad x \to \infty
\]
Watson’s lemma

The previous intuition can be formalized in a well-known result

Watson’s lemma

Suppose \(f(t) \sim t^\alpha (a_0 t^\beta + a_1 t^{2\beta} + a_2 t^{3\beta} + \ldots) \) for \(t \to 0 \), then

\[
\int_0^b f(t)e^{xt} dt \sim \sum_{n=0}^{\infty} \frac{a_n \Gamma(\alpha + \beta n + 1)}{x^{\alpha + \beta n + 1}}, \quad x \to \infty
\]

Many Laplace integrals are not exactly of this form, but the same intuition applies. Consider

\[
l(x) = \int_a^b e^{x\phi(t)} f(t) dt.
\]

Two common cases are:
Watson’s lemma

The previous intuition can be formalized in a well-known result

Watson’s lemma

Suppose $f(t) \sim t^\alpha (a_0 t^\beta + a_1 t^{2\beta} + a_2 t^{3\beta} + \ldots)$ for $t \to 0$, then

$$
\int_0^b f(t) e^{xt} dt \sim \sum_{n=0}^{\infty} \frac{a_n \Gamma(\alpha + \beta n + 1)}{x^{\alpha + \beta n + 1}}, \quad x \to \infty
$$

Many Laplace integrals are not exactly of this form, but the same intuition applies. Consider

$$l(x) = \int_a^b e^{x\phi(t)} f(t) dt.$$

Two common cases are:
(I) $\phi(x)$ has a unique maximum at $x = a$. Then

$$l \sim \int_a^\infty f(a) e^{x(\phi(a) + \phi'(a)(t-a))} dt = - \frac{f(a)e^{x\phi(a)}}{x\phi'(a)}$$
Watson’s lemma

The previous intuition can be formalized in a well-known result

Watson’s lemma

Suppose \(f(t) \sim t^\alpha (a_0 t^\beta + a_1 t^{2\beta} + a_2 t^{3\beta} + \ldots) \) for \(t \to 0 \), then

\[
\int_0^b f(t) e^{xt} dt \sim \sum_{n=0}^{\infty} \frac{a_n \Gamma(\alpha + \beta n + 1)}{x^{\alpha + \beta n + 1}}, \quad x \to \infty
\]

Many Laplace integrals are not exactly of this form, but the same intuition applies. Consider

\[
I(x) = \int_a^b e^{x\phi(t)} f(t) dt.
\]

Two common cases are:

(I) \(\phi(x) \) has a unique maximum at \(x = a \). Then

\[
I \sim \int_a^\infty f(a) e^{x(\phi(a) + \phi'(a)(t-a))} dt = -\frac{f(a)e^{x\phi(a)}}{x\phi'(a)}
\]

(II) \(\phi(x) \) has a unique maximum at \(x = c, a < c < b \). Then

\[
I \sim \int_{-\infty}^\infty f(a) e^{x(\phi(a) + \phi''(c)(t-c)^2/2)} dt = \frac{\sqrt{2\pi} f(c)e^{x\phi(c)}}{\sqrt{-x\phi''(c)}}.
\]

More generally, heuristic idea is to expand both \(f() \) and \(\phi ""enough"" so that a
Examples

Example 1:

\[I(x) = \int_{-1}^{1} e^{xt^2} dt. \]
Example 1:

\[I(x) = \int_{-1}^{1} e^{xt^2} dt. \]

The Laplace points are ±1, and they both contribute equally. By symmetry considerations,

\[I(x) \sim 2 \int_{-1}^{\infty} e^{x(1-2(t+1))} dt = e^x / x. \]
Examples

Example 1:

\[I(x) = \int_{-1}^{1} e^{x t^2} \, dt. \]

The Laplace points are \(\pm 1 \), and they both contribute equally. By symmetry considerations,

\[I(x) \sim 2 \int_{-1}^{\infty} e^{x(1-2(t+1))} \, dt = e^x / x. \]

Example 2:

\[\int_{0}^{1} \ln(1 + t)e^{-x \sin^4 t} \, dt. \]
Example 1:

\[I(x) = \int_{-1}^{1} e^{xt^2} dt. \]

The Laplace points are ±1, and they both contribute equally. By symmetry considerations,

\[I(x) \sim 2 \int_{-1}^{\infty} e^{x(1-2(t+1))} dt = e^x / x. \]

Example 2:

\[\int_{0}^{1} \ln(1 + t)e^{-x \sin^4 t} dt. \]

The Laplace point here is \(t = 0 \), and \(\phi(t) = -\sin^4 t \sim -t^4 \) has a fourth-order maximum there. Also, \(\ln(1 + t) \sim t \) for \(t \to 0 \).
Example 1:

\[I(x) = \int_{-1}^{1} e^{xt^2} \, dt. \]

The Laplace points are \(\pm 1 \), and they both contribute equally. By symmetry considerations,

\[I(x) \sim 2 \int_{-1}^{\infty} e^{x(1-2(t+1))} \, dt = e^x / x. \]

Example 2:

\[\int_{0}^{1} \ln(1 + t) e^{-xt \sin^4 t} \, dt. \]

The Laplace point here is \(t = 0 \), and \(\phi(t) = -\sin^4 t \sim -t^4 \) has a fourth-order maximum there. Also, \(\ln(1 + t) \sim t \) for \(t \to 0 \). Therefore

\[I(x) \sim \int_{0}^{\infty} t \exp(-xt^4) \, dt = \frac{1}{4x^{1/2}} \int_{0}^{\infty} s^{-1/2} e^{-s} \, ds = \frac{\Gamma(1/2)}{4x^{1/2}}. \]
Exact transformation to Watson

If more than a leading order approximation is desired, an exact change of variables allows Watson’s lemma to be used.

Example: modified Bessel functions have the representation

\[K_m(x) = \int_0^\infty e^{-x \cosh t} \cosh(mt) \, dt \]

To put in needed form, let \(v = \cosh(t) - 1 \), so that \(v \sim \frac{1}{2} t^2 \) for small \(t \). To obtain a whole series for \(t \) as a function of \(v \), let \(t = (2v)\frac{1}{2} + c_1v + c_2v^3/2 + \ldots \), and substitute into expansion of \(\cosh^{-1}(t) \):

\[v = \frac{t^2}{2} + \frac{t^4}{4!} + \ldots = v + \sqrt{2}c_1v^3/2 + v^2(\sqrt{2}c_2 + c_2/6 + 1/6) + \ldots \]

Comparing terms on either side, it follows \(c_1 = 0 \) and \(c_2 = -1/(6\sqrt{2}) \).

Finally, after the change of variables in the integral, the expansions are inserted and Watson’s lemma applies:

\[e^{-x} \int_0^\infty e^{-xv} \left[1 + m^2 t^2/2! + \ldots \right] \left(\frac{dt}{dv} \right) \, dv = e^{-x} \int_0^\infty e^{-xv} \left(\sqrt{2}v - 1/2 + v^2(\sqrt{2}m^2/2 - 1/4) + \ldots \right) \, dv = e^{-x} \sqrt{\pi/2} x \left[1 + 1/2 (m^2 - 1/4) x + \ldots \right] \]
If more than a leading order approximation is desired, an exact change of variables allows Watson’s lemma to be used.

Example: modified Bessel functions have the representation

\[K_m(x) = \int_0^\infty e^{-x \cosh t} \cosh(mt) \, dt \]
If more than a leading order approximation is desired, an exact change of variables allows Watson’s lemma to be used.

Example: modified Bessel functions have the representation

\[K_m(x) = \int_0^\infty e^{-x \cosh t} \cosh(mt) \, dt \]

To put in needed form, let \(v = \cosh(t) - 1 \), so that \(v \sim \frac{1}{2} t^2 \) for small \(t \). To obtain a whole series for \(t \) as a function of \(v \), let

\[t = (2v)^{1/2} + c_1 v_1 + c_2 v^{3/2} + \ldots, \]

and substitute into expansion of \(\cosh(t) - 1 \):

\[v = \frac{t^2}{2!} + \frac{t^4}{4!} + \ldots = v + \sqrt{2} c_1 v^{3/2} + \nu^2 (\sqrt{2} c_2 + c_1^2 / 6 + 1/6) + \ldots \]

Comparing terms on either side, it follows \(c_1 = 0 \) and \(c_2 = -1/(6\sqrt{2}) \).
Exact transformation to Watson

If more than a leading order approximation is desired, an exact change of variables allows Watson’s lemma to be used.

Example: modified Bessel functions have the representation

\[K_m(x) = \int_0^\infty e^{-x \cosh t} \cosh(mt) \, dt \]

To put in needed form, let \(v = \cosh(t) - 1 \), so that \(v \sim \frac{1}{2} t^2 \) for small \(t \). To obtain a whole series for \(t \) as a function of \(v \), let \(t = (2v)^{1/2} + c_1 v_1 + c_2 v^{3/2} + \ldots \), and substitute into expansion of \(\cosh(t) - 1 \):

\[v = \frac{t^2}{2!} + \frac{t^4}{4!} + \ldots = v + \sqrt{2} c_1 v^{3/2} + v^2 (\sqrt{2} c_2 + c_1^2 / 6 + 1/6) + \ldots \]

Comparing terms on either side, it follows \(c_1 = 0 \) and \(c_2 = -1/(6\sqrt{2}) \).

Finally, after the change of variables in the integral, the expansions are inserted and Watson’s lemma applies:

\[
e^{-x} \int_0^\infty e^{-xv} \left[1 + m^2 t^2 / 2! + \ldots \right] (dt/dv) \, dv = e^{-x} \int_0^\infty e^{-xv} \left(\sqrt{2} v^{-1/2} / 2 + v^{1/2} [\sqrt{2} m^2 / 2 - 1/(4\sqrt{2})] + \ldots \right) \, dv = e^{-x} \frac{\sqrt{\pi}}{2x} \left[1 + \frac{1}{2} \left(m^2 - 1/4 \right) \frac{1}{x} + \ldots \right].
\]
For an integral like

\[\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} \, dt = \int_0^\infty e^{x \ln t - t} / t \, dt, \]

the maximum of the exponent \(x \ln t - t \) is obtained at \(t = x \).
For an integral like

\[\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt = \int_0^\infty e^{x \ln t - t} / t dt, \]

the maximum of the exponent \(x \ln t - t \) is obtained at \(t = x \).

Remedy is a change of variables which makes maximum stationary.

Letting \(t = sx \),

\[\Gamma(x) = x^x \int_0^\infty e^{-x(s - \ln s)} / s ds. \]
For an integral like

\[\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt = \int_0^\infty e^{x \ln t - t} / t \ dt, \]

the maximum of the exponent \(x \ln t - t \) is obtained at \(t = x \).

Remedy is a change of variables which makes maximum stationary. Letting \(t = sx \),

\[\Gamma(x) = x^x \int_0^\infty e^{-x(s-\ln s)} / s \ ds. \]

The Laplace point is at \(s = 1 \), and represents a quadratic maximum of \(\phi(s) = \ln s - s \). Thus

\[\Gamma(x) \sim x^x \int_{-\infty}^\infty e^{-x(1-(s-1)^2)/s}(1) ds = x^x e^{-x} \sqrt{\frac{2\pi}{x}}. \]

This is known as Stirling’s approximation.
Consider the integral

\[I(x) = \int_{0}^{1/e} \frac{e^{-xt}}{\ln t} \, dt, \quad x \to \infty. \]

Since there is no way to expand \(\ln t \) near zero, can’t use Laplace’s method.
Consider the integral

\[I(x) = \int_{0}^{1/e} \frac{e^{-xt}}{\ln t} \, dt, \quad x \to \infty. \]

Since there is no way to expand \(\ln t \) near zero, can’t use Laplace’s method. One possible way forward is a change of variables \(z = xt \),

\[I(x) = \frac{1}{x} \int_{0}^{x/e} \frac{e^{-z}}{\ln z - \ln x} \, dz. \]

Can’t expand in geometric series unless \(|\ln z| < |\ln x| \), so split integral \(\int_{0}^{z_c} + \int_{z_c}^{x/e} \), where cutoff must be chosen so \(|\ln z_c| < |\ln x| \), e.g. \(z_c = x^{-1/2} \).
Consider the integral

\[I(x) = \int_0^{1/e} \frac{e^{-xt}}{\ln t} \, dt, \quad x \to \infty. \]

Since there is no way to expand \(\ln t \) near zero, can’t use Laplace’s method. One possible way forward is a change of variables \(z = xt \),

\[I(x) = \frac{1}{x} \int_0^{x/e} \frac{e^{-z}}{\ln z - \ln x} \, dz. \]

Can’t expand in geometric series unless \(|\ln z| < |\ln x| \), so split integral

\[\int_0^{x/e} + \int_{z_c}^{x/e}, \]

where cutoff must be chosen so \(|\ln z_c| < |\ln x| \), e.g. \(z_c = x^{-1/2} \). Then

\[\frac{1}{x} \int_0^{x^{-1/2}} \frac{e^{-z}}{\ln z - \ln x} \, dz \leq \frac{1}{x} \int_0^{x^{-1/2}} \frac{e^{-z}}{\ln z - \ln x} \, dz = \frac{2}{x^{3/2}} \ln x. \]

and

\[\int_{x^{-1/2}}^{x/e} \frac{e^{-z}}{\ln z - \ln x} \, dz = -\frac{1}{x \ln x} \sum c_k (\ln x)^{-k}, \quad c_k = \int_0^\infty e^{-z}(\ln z)^k \, dz. \]
Laplace integrals in probability

What is the probability of a rare event, and what does it look like?
What is the probability of a rare event, and what does it look like? Take for simplicity a normally distributed variable t, so that the probability of $t \in A$ is

$$P(A) = \frac{1}{Z} \int_A e^{-t^2} dt.$$

Suppose $A = L^{1/2} S$ where S is some fixed set; would like behavior for $L \to \infty$.

The integral may be written

$$P(A) = \frac{1}{Z} \int_S e^{-Ls^2} ds,$$

which is of Laplace form. The Laplace point is $s^* = \min(S) > 0$, so that

$$P(A) \sim \frac{1}{Z} \int_S e^{-L(s^* + (s - s^*)^2 / 2)} ds = e^{-L(s^*)^2 / 2}.$$

This is an example of a large deviation result.
What is the probability of a rare event, and what does it look like? Take for simplicity a normally distributed variable t, so that the probability of $t \in A$ is

$$P(A) = \frac{1}{Z} \int_A e^{-t^2} dt.$$

Suppose $A = L^{1/2} S$ where S is some fixed set; would like behavior for $L \to \infty$. The integral may be written

$$P(A) = \frac{L^{1/2}}{Z} \int_S e^{-Ls^2} ds,$$

which is of Laplace form. The Laplace point is $s^* = \text{min}(S) > 0$, so that

$$P(A) \sim \frac{L^{1/2}}{Z} \int_S e^{-L[(s^*)^2 + 2s^*(s-s^*)]} ds = \frac{e^{-L(s^*)^2}}{2ZL^{1/2}s^*}.$$

This is an example of a large deviation result.