Asymptotic Methods

Local analysis of ordinary differential equations

Consider linear differential equation

$$y^{(n)}(x) + p_{n-1}y^{(n-1)}(x) + \ldots + p_0(x)y = 0.$$

We would like to know how this behaves in the neighborhood of a point x_0 . Thus we seek an expansion in the small quantity $|x - x_0| \ll 1$.

Consider linear differential equation

$$y^{(n)}(x) + p_{n-1}y^{(n-1)}(x) + \ldots + p_0(x)y = 0.$$

We would like to know how this behaves in the neighborhood of a point x_0 . Thus we seek an expansion in the small quantity $|x - x_0| \ll 1$.

Three cases to consider:

1 If $p_j(x_0)$ are analytic near x_0 , x_0 is called an ordinary point. A theorem due to Fuchs says that y(x) is also analytic, and therefore has a solution as a power series in $x - x_0$.

Consider linear differential equation

$$y^{(n)}(x) + p_{n-1}y^{(n-1)}(x) + \ldots + p_0(x)y = 0.$$

We would like to know how this behaves in the neighborhood of a point x_0 . Thus we seek an expansion in the small quantity $|x - x_0| \ll 1$.

Three cases to consider:

- 1 If $p_j(x_0)$ are analytic near x_0 , x_0 is called an ordinary point. A theorem due to Fuchs says that y(x) is also analytic, and therefore has a solution as a power series in $x x_0$.
- 2 If $p_{n-k}(x)(x-x_0)^k$ are analytic near x_0 , x_0 is called a regular singular point.

Consider linear differential equation

$$y^{(n)}(x) + p_{n-1}y^{(n-1)}(x) + \ldots + p_0(x)y = 0.$$

We would like to know how this behaves in the neighborhood of a point x_0 . Thus we seek an expansion in the small quantity $|x - x_0| \ll 1$.

Three cases to consider:

- 1 If $p_j(x_0)$ are analytic near x_0 , x_0 is called an ordinary point. A theorem due to Fuchs says that y(x) is also analytic, and therefore has a solution as a power series in $x x_0$.
- 2 If $p_{n-k}(x)(x-x_0)^k$ are analytic near x_0 , x_0 is called a regular singular point. Reason for this definition: consider special case $x_0 = 0$ and $p_{n-k}(x)x^k = 1$; this gives an Euler type equation

$$y^{(n)}(x) + \frac{1}{x}y^{(n-1)}(x) + \ldots = 0.$$

The solutions here are generally powers of x, although degeneracy leads to necessary logarithmic corrections. This leads to a general recipe for expansions, known as the method of Frobenius.

Consider linear differential equation

$$y^{(n)}(x) + p_{n-1}y^{(n-1)}(x) + \ldots + p_0(x)y = 0.$$

We would like to know how this behaves in the neighborhood of a point x_0 . Thus we seek an expansion in the small quantity $|x - x_0| \ll 1$.

Three cases to consider:

- 1 If $p_j(x_0)$ are analytic near x_0 , x_0 is called an ordinary point. A theorem due to Fuchs says that y(x) is also analytic, and therefore has a solution as a power series in $x x_0$.
- 2 If $p_{n-k}(x)(x-x_0)^k$ are analytic near x_0 , x_0 is called a regular singular point. Reason for this definition: consider special case $x_0 = 0$ and $p_{n-k}(x)x^k = 1$; this gives an Euler type equation

$$y^{(n)}(x) + \frac{1}{x}y^{(n-1)}(x) + \ldots = 0.$$

The solutions here are generally powers of x, although degeneracy leads to necessary logarithmic corrections. This leads to a general recipe for expansions, known as the method of Frobenius.

3 Everything else gives irregular singular points. Unlike RSP, there is no official algorithm to find an expansion.

We can also classify $x_0 = \infty$ by the substitution t = 1/x and consider t = 0 instead.

For the simple example of a ISP at x = 0, consider $y' = yx^{-p}$. It has the solution

$$y = C \exp\left(\frac{x^{1-p}}{1-p}\right).$$

The behavior for small x is not a power, but a function of an exponential.

For the simple example of a ISP at x = 0, consider $y' = yx^{-p}$. It has the solution

$$y = C \exp\left(\frac{x^{1-p}}{1-p}\right).$$

The behavior for small x is not a power, but a function of an exponential.

A general ansatz that works for ISP is $y \sim \exp(S(x))$. After substitution, a series for S(x) which (hopefully) provides a good approximation for the original problem.

For the simple example of a ISP at x = 0, consider $y' = yx^{-p}$. It has the solution

$$y = C \exp\left(\frac{x^{1-p}}{1-p}\right).$$

The behavior for small x is not a power, but a function of an exponential.

A general ansatz that works for ISP is $y \sim \exp(S(x))$. After substitution, a series for S(x) which (hopefully) provides a good approximation for the original problem.

Simple lemma: If $S(x) = \sum_{j=1}^N S_j(x) + o(1)$ for $x \to 0$, then

$$\exp(S(x)) \sim \exp\sum_{j=1}^{N} S_j(x).$$

In other words, we need to expand S to enough terms so the error is small in absolute terms.

Consider $x^3y'' = y$ for $x \to 0^+$. Setting $y = \exp(S(x))$, get $S'' + (S')^2 = x^{-3}$.

Consider $x^3y'' = y$ for $x \to 0^+$. Setting $y = \exp(S(x))$, get $S'' + (S')^2 = x^{-3}$. There are 3 cases to consider for dominant balance: I. $S'' + (S')^2 \sim 0$. Integrating leads to $S \sim \ln x$, but then $x^{-3} \gg S''$. II. $S'' \sim x^{-3}$, leads to $S \sim x^{-1}$, but then $(S')^2 \sim x^{-4}$. III. $(S')^2 = x^{-3}$, which can be integrated to $S = \pm 2x^{-1/2}$.

Consider $x^3y'' = y$ for $x \to 0^+$. Setting $y = \exp(S(x))$, get $S'' + (S')^2 = x^{-3}$. There are 3 cases to consider for dominant balance: I. $S'' + (S')^2 \sim 0$. Integrating leads to $S \sim \ln x$, but then $x^{-3} \gg S''$. II. $S'' \sim x^{-3}$, leads to $S \sim x^{-1}$, but then $(S')^2 \sim x^{-4}$. III. $(S')^2 = x^{-3}$, which can be integrated to $S = \pm 2x^{-1/2}$.

To improve the approximation, let $S = 2x^{-1/2} + C(x)$, where

$$\frac{3}{2}x^{-5/2} + C'' - 2x^{-3/2}C' + (C')^2 = 0, \quad C = o(x^{-1/2}).$$

If C is like a power or logarithm, then $C'' \ll x^{-3/2}C'$. Since $C = o(x^{-1/2})$, it also holds that $(C')^2 \ll x^{-3/2}C'$. Thus dominant balance implies $\frac{3}{2}x^{-5/2} - 2x^{-3/2}C' \sim 0$, which integrates to $C(x) \sim \frac{3}{4} \ln x$.

Consider $x^3y'' = y$ for $x \to 0^+$. Setting $y = \exp(S(x))$, get $S'' + (S')^2 = x^{-3}$. There are 3 cases to consider for dominant balance: I. $S'' + (S')^2 \sim 0$. Integrating leads to $S \sim \ln x$, but then $x^{-3} \gg S''$. II. $S'' \sim x^{-3}$, leads to $S \sim x^{-1}$, but then $(S')^2 \sim x^{-4}$. III. $(S')^2 = x^{-3}$, which can be integrated to $S = \pm 2x^{-1/2}$.

To improve the approximation, let $S = 2x^{-1/2} + C(x)$, where

$$\frac{3}{2}x^{-5/2} + C'' - 2x^{-3/2}C' + (C')^2 = 0, \quad C = o(x^{-1/2}).$$

If C is like a power or logarithm, then $C'' \ll x^{-3/2}C'$. Since $C = o(x^{-1/2})$, it also holds that $(C')^2 \ll x^{-3/2}C'$. Thus dominant balance implies $\frac{3}{2}x^{-5/2} - 2x^{-3/2}C' \sim 0$, which integrates to $C(x) \sim \frac{3}{4} \ln x$.

Further expansion of S(x) leads to terms which are O(1), so by the lemma we now have a good approximation. To make even more progress, try $y \sim Cx^{3/4} \exp(2x^{-1/2})[1 + w(x)]$, with w = o(1), where

$$w'' + (\frac{3}{2} - 2x^{-3/2})w' - \frac{3}{16}x^{-2} - \frac{3}{16}wx^{-2} \sim 0.$$

Dominant balance gives $-2x^{-3/2}w' \sim \frac{3}{16}wx^{-2}$, so $w = \frac{3}{16}x^{1/2}$.

Consider $x^3y'' = y$ for $x \to 0^+$. Setting $y = \exp(S(x))$, get $S'' + (S')^2 = x^{-3}$. There are 3 cases to consider for dominant balance: I. $S'' + (S')^2 \sim 0$. Integrating leads to $S \sim \ln x$, but then $x^{-3} \gg S''$. II. $S'' \sim x^{-3}$, leads to $S \sim x^{-1}$, but then $(S')^2 \sim x^{-4}$. III. $(S')^2 = x^{-3}$, which can be integrated to $S = \pm 2x^{-1/2}$.

To improve the approximation, let $S = 2x^{-1/2} + C(x)$, where

$$\frac{3}{2}x^{-5/2} + C'' - 2x^{-3/2}C' + (C')^2 = 0, \quad C = o(x^{-1/2}).$$

If C is like a power or logarithm, then $C'' \ll x^{-3/2}C'$. Since $C = o(x^{-1/2})$, it also holds that $(C')^2 \ll x^{-3/2}C'$. Thus dominant balance implies $\frac{3}{2}x^{-5/2} - 2x^{-3/2}C' \sim 0$, which integrates to $C(x) \sim \frac{3}{4} \ln x$.

Further expansion of S(x) leads to terms which are $\mathcal{O}(1)$, so by the lemma we now have a good approximation. To make even more progress, try $y \sim Cx^{3/4} \exp(2x^{-1/2})[1 + w(x)]$, with w = o(1), where

$$w'' + (\frac{3}{2} - 2x^{-3/2})w' - \frac{3}{16}x^{-2} - \frac{3}{16}wx^{-2} \sim 0$$

Dominant balance gives $-2x^{-3/2}w' \sim \frac{3}{16}wx^{-2}$, so $w = \frac{3}{16}x^{1/2}$. In fact, after a lot of labor, one can find a whole series for w(x)

$$y \sim Cx^{3/4} \exp(2x^{-1/2}) \sum_{n=0}^{\infty} \frac{\Gamma(n-1)\Gamma(n+3/2)}{\pi 4^n n!} \left(\frac{x}{2}\right)^{n/2}$$

$$y' = \left(\frac{1}{x} - \frac{1}{y^2}\right)y, \quad x \to \infty.$$

Dominant balance is still a useful tool, but there may be many viable cases.

$$y' = \left(\frac{1}{x} - \frac{1}{y^2}\right)y, \quad x \to \infty.$$

Dominant balance is still a useful tool, but there may be many viable cases. First suppose $y' \sim y/x$, which gives $y \sim Cx$. This is allowed, since $1/y^2 << 1/x$.

$$y' = \left(\frac{1}{x} - \frac{1}{y^2}\right)y, \quad x \to \infty.$$

Dominant balance is still a useful tool, but there may be many viable cases. First suppose $y' \sim y/x$, which gives $y \sim Cx$. This is allowed, since $1/y^2 << 1/x$. Now try $y' \sim -1/y$. This integrates to $y = \sqrt{2(C-x)}$, bad for large x.

$$y' = \left(\frac{1}{x} - \frac{1}{y^2}\right)y, \quad x \to \infty.$$

Dominant balance is still a useful tool, but there may be many viable cases. First suppose $y' \sim y/x$, which gives $y \sim Cx$. This is allowed, since $1/y^2 << 1/x$. Now try $y' \sim -1/y$. This integrates to $y = \sqrt{2(C-x)}$, bad for large x. Try $1/x \sim 1/y^2$. This means $y \sim x^{1/2}$, so y' is same size as other terms.

$$y' = \left(\frac{1}{x} - \frac{1}{y^2}\right)y, \quad x \to \infty.$$

Dominant balance is still a useful tool, but there may be many viable cases. First suppose $y' \sim y/x$, which gives $y \sim Cx$. This is allowed, since $1/y^2 << 1/x$. Now try $y' \sim -1/y$. This integrates to $y = \sqrt{2(C-x)}$, bad for large x. Try $1/x \sim 1/y^2$. This means $y \sim x^{1/2}$, so y' is same size as other terms. We should be looking instead for 3-term balance. Substituting $y = Cx^{\alpha}$ leads to $\alpha = 1/2$ and $C = \sqrt{2}$. This is an exact solution!

Consider
$$y^2 y''' = -1/3$$
 for $x \to \infty$. Try $y \sim ax^2 + bx + c + w(x)$.

Consider $y^2y''' = -1/3$ for $x \to \infty$. Try $y \sim ax^2 + bx + c + w(x)$. If $a \neq 0$, dominant terms are $a^2x^4w''' \sim -1/3$, so $w \sim 1/(18a^2x)$. But are there other solutions which don't grow quadratically? Consider $y^2 y''' = -1/3$ for $x \to \infty$. Try $y \sim ax^2 + bx + c + w(x)$. If $a \neq 0$, dominant terms are $a^2 x^4 w''' \sim -1/3$, so $w \sim 1/(18a^2x)$. But are there other solutions which don't grow quadratically?

Try $y \sim Ax^r$, giving $A^2 x^{3r-3} = -1/3$ so one would need r = 1. But this fails!

Consider $y^2y''' = -1/3$ for $x \to \infty$. Try $y \sim ax^2 + bx + c + w(x)$. If $a \neq 0$, dominant terms are $a^2x^4w''' \sim -1/3$, so $w \sim 1/(18a^2x)$. But are there other solutions which don't grow quadratically? Try $y \sim Ax^r$, giving $A^2x^{3r-3} = -1/3$ so one would need r = 1. But this fails! Often when an ansatz predicts a solution which does not work, the remedy is to include logarithms. Here, try $y \sim Ax(\ln x)^{\alpha}$; with

$$y''' \sim A \alpha x^{-2} (\ln x)^{\alpha - 1} + \mathcal{O}(x^{-2} (\ln x)^{\alpha - 2}).$$

Substitution into the equation gives $-A^3 \alpha (\ln x)^{3\alpha-1} \sim -1/3$, so that $\alpha = 1/3$ and A = 1.

Some nonlinear examples, cont.

Want behavior as $x \to 0$ in $y'''y' = 2(y'')^2 + y$.

Each combination of dominant balance can be tried, but they lead to something non-integrable. A different heuristic is to take $y \sim x^{\alpha}$; in this case the y term looks subdominant.

Each combination of dominant balance can be tried, but they lead to something non-integrable. A different heuristic is to take $y \sim x^{\alpha}$; in this case the y term looks subdominant.

Inserting $y \sim x^{\alpha}$ into $y'''y' \sim 2(y'')^2$ leads to $\alpha = 0$ or 1, but these do not work as leading order solutions! Try instead $y \sim (\ln x)^{\beta}$:

$$y' \sim \beta x^{-1} (\ln x)^{\beta - 1}, \quad y'' \sim -\beta x^{-2} (\ln x)^{\beta - 1} + \beta (\beta - 1) x^{-2} (\ln x)^{\beta - 2},$$

$$y''' \sim 2\beta x^{-3} (\ln x)^{\beta - 1} - 2\beta (\beta - 1) x^{-3} (\ln x)^{\beta - 2} + \beta (\beta - 1) (\beta - 2) x^{-3} (\ln x)^{\beta - 3}.$$

Each combination of dominant balance can be tried, but they lead to something non-integrable. A different heuristic is to take $y \sim x^{\alpha}$; in this case the y term looks subdominant.

Inserting $y \sim x^{\alpha}$ into $y'''y' \sim 2(y'')^2$ leads to $\alpha = 0$ or 1, but these do not work as leading order solutions! Try instead $y \sim (\ln x)^{\beta}$:

$$\begin{split} y' &\sim \beta x^{-1} (\ln x)^{\beta - 1}, \quad y'' \sim -\beta x^{-2} (\ln x)^{\beta - 1} + \beta (\beta - 1) x^{-2} (\ln x)^{\beta - 2}, \\ y''' &\sim 2\beta x^{-3} (\ln x)^{\beta - 1} - 2\beta (\beta - 1) x^{-3} (\ln x)^{\beta - 2} + \beta (\beta - 1) (\beta - 2) x^{-3} (\ln x)^{\beta - 3}. \end{split}$$

Keeping only leading order terms in $y'''y' \sim 2(y'')^2$ gives $2\beta^2 x^{-4} (\ln x)^{2\beta-2} = 2\beta^2 x^{-4} (\ln x)^{2\beta-2}$, which does not select β .

Each combination of dominant balance can be tried, but they lead to something non-integrable. A different heuristic is to take $y \sim x^{\alpha}$; in this case the y term looks subdominant.

Inserting $y \sim x^{\alpha}$ into $y'''y' \sim 2(y'')^2$ leads to $\alpha = 0$ or 1, but these do not work as leading order solutions! Try instead $y \sim (\ln x)^{\beta}$:

$$y' \sim \beta x^{-1} (\ln x)^{\beta - 1}, \quad y'' \sim -\beta x^{-2} (\ln x)^{\beta - 1} + \beta (\beta - 1) x^{-2} (\ln x)^{\beta - 2},$$

$$y''' \sim 2\beta x^{-3} (\ln x)^{\beta - 1} - 2\beta (\beta - 1) x^{-3} (\ln x)^{\beta - 2} + \beta (\beta - 1) (\beta - 2) x^{-3} (\ln x)^{\beta - 3}.$$

Keeping only leading order terms in $y'''y' \sim 2(y'')^2$ gives $2\beta^2 x^{-4}(\ln x)^{2\beta-2} = 2\beta^2 x^{-4}(\ln x)^{2\beta-2}$, which does not select β . Going to the next order gives $-2\beta^2(\beta-1)x^{-4}(\ln x)^{2\beta-2} = -4\beta^2(\beta-1)x^{-4}(\ln x)^{2\beta-3}$. Therefore β must be = 1.

Trying $y \sim Bx^{\alpha}$ leads to $\alpha = -2$ and *B* solves $B^2 - 6B + A = 0$. Provided A < 9, there are two values of $B = B_{\pm}$. But which one is relevant? And if A > 9, what happens?

Trying $y \sim Bx^{\alpha}$ leads to $\alpha = -2$ and *B* solves $B^2 - 6B + A = 0$. Provided A < 9, there are two values of $B = B_{\pm}$. But which one is relevant? And if A > 9, what happens?

Transform variables $y = w/x^2$, $t = -\ln x$ giving

$$w_{tt}+5w_t+6w=w^2+A.$$

Notice $x \to 0$ is the same at $t \to \infty$.

Trying $y \sim Bx^{\alpha}$ leads to $\alpha = -2$ and *B* solves $B^2 - 6B + A = 0$. Provided A < 9, there are two values of $B = B_{\pm}$. But which one is relevant? And if A > 9, what happens?

Transform variables $y = w/x^2$, $t = -\ln x$ giving

$$w_{tt}+5w_t+6w=w^2+A.$$

Notice $x \to 0$ is the same at $t \to \infty$.

Phase plane reveals smaller $w = B_{-}$ is stable. Thus some solutions of the original equation have the behavior $y = B_{-}x^{-2}$.

Trying $y \sim Bx^{\alpha}$ leads to $\alpha = -2$ and *B* solves $B^2 - 6B + A = 0$. Provided A < 9, there are two values of $B = B_{\pm}$. But which one is relevant? And if A > 9, what happens?

Transform variables $y = w/x^2$, $t = -\ln x$ giving

$$w_{tt}+5w_t+6w=w^2+A.$$

Notice $x \to 0$ is the same at $t \to \infty$.

Phase plane reveals smaller $w = B_{-}$ is stable. Thus some solutions of the original equation have the behavior $y = B_{-}x^{-2}$.

On the other hand, some solutions (and all if A > 9) have blow up where $w_{tt} \sim w^2$, which integrates to $w \sim (C - \sqrt{2/3}t)^{-2}$. These solutions never reach $t = \infty$ or x = 0!