
Asymptotic Methods

Local analysis of ordinary differential equations



Regular and irregular singular points

Consider linear differential equation

y (n)(x) + pn−1y
(n−1)(x) + . . .+ p0(x)y = 0.

We would like to know how this behaves in the neighborhood of a point x0.
Thus we seek an expansion in the small quantity |x − x0| � 1.

Three cases to consider:

1 If pj(x0) are analytic near x0, x0 is called an ordinary point. A theorem
due to Fuchs says that y(x) is also analytic, and therefore has a solution
as a power series in x − x0.

2 If pn−k(x)(x − x0)k are analytic near x0, x0 is called a regular singular
point. Reason for this definition: consider special case x0 = 0 and
pn−k(x)xk = 1; this gives an Euler type equation

y (n)(x) +
1

x
y (n−1)(x) + . . . = 0.

The solutions here are generally powers of x , although degeneracy leads
to necessary logarithmic corrections. This leads to a general recipe for
expansions, known as the method of Frobenius.

3 Everything else gives irregular singular points. Unlike RSP, there is no
official algorithm to find an expansion.

We can also classify x0 =∞ by the substitution t = 1/x and consider t = 0
instead.
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Expansions around irregular singular points

Whereas the theory for expansions around regular and regular singular points is
known, irregular singular points must be investigated on a case-by-case basis.

For the simple example of a ISP at x = 0, consider y ′ = yx−p. It has the
solution

y = C exp

(
x1−p

1− p

)
.

The behavior for small x is not a power, but a function of an exponential.

A general ansatz that works for ISP is y ∼ exp(S(x)). After substitution, a
series for S(x) which (hopefully) provides a good approximation for the original
problem.

Simple lemma: If S(x) =
∑N

j=1 Sj(x) + o(1) for x → 0, then

exp(S(x)) ∼ exp
N∑
j=1

Sj(x).

In other words, we need to expand S to enough terms so the error is small in
absolute terms.
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ISP example

Consider x3y ′′ = y for x → 0+. Setting y = exp(S(x)), get S ′′ + (S ′)2 = x−3.

There are 3 cases to consider for dominant balance:
I. S ′′ + (S ′)2 ∼ 0. Integrating leads to S ∼ ln x , but then x−3 � S ′′.
II. S ′′ ∼ x−3, leads to S ∼ x−1, but then (S ′)2 ∼ x−4.
III. (S ′)2 = x−3, which can be integrated to S = ±2x−1/2.

To improve the approximation, let S = 2x−1/2 + C(x), where

3

2
x−5/2 + C ′′ − 2x−3/2C ′ + (C ′)2 = 0, C = o(x−1/2).

If C is like a power or logarithm, then C ′′ � x−3/2C ′. Since C = o(x−1/2), it
also holds that (C ′)2 � x−3/2C ′. Thus dominant balance implies
3
2
x−5/2 − 2x−3/2C ′ ∼ 0, which integrates to C(x) ∼ 3

4
ln x .

Further expansion of S(x) leads to terms which are O(1), so by the lemma we
now have a good approximation. To make even more progress, try
y ∼ Cx3/4 exp(2x−1/2)[1 + w(x)], with w = o(1), where

w ′′ + (
3

2
− 2x−3/2)w ′ − 3

16
x−2 − 3

16
wx−2 ∼ 0.

Dominant balance gives −2x−3/2w ′ ∼ 3
16
wx−2, so w = 3

16
x1/2.

In fact, after a lot of labor, one can find a whole series for w(x)

y ∼ Cx3/4 exp(2x−1/2)
∞∑
n=0

Γ(n − 1)Γ(n + 3/2)

π4nn!

(x
2

)n/2
.
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Some nonlinear examples

Consider the nonlinear equation

y ′ =

(
1

x
− 1

y 2

)
y , x →∞.

Dominant balance is still a useful tool, but there may be many viable cases.

First suppose y ′ ∼ y/x , which gives y ∼ Cx . This is allowed, since
1/y 2 << 1/x .

Now try y ′ ∼ −1/y . This integrates to y =
√

2(C − x), bad for large x .

Try 1/x ∼ 1/y 2. This means y ∼ x1/2, so y ′ is same size as other terms. We
should be looking instead for 3-term balance. Substituting y = Cxα leads to
α = 1/2 and C =

√
2. This is an exact solution!
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Some nonlinear examples, cont.

Consider y 2y ′′′ = −1/3 for x →∞. Try y ∼ ax2 + bx + c + w(x).

If a 6= 0, dominant terms are a2x4w ′′′ ∼ −1/3, so w ∼ 1/(18a2x). But are
there other solutions which don’t grow quadratically?

Try y ∼ Ax r , giving A2x3r−3 = −1/3 so one would need r = 1. But this fails!

Often when an ansatz predicts a solution which does not work, the remedy is
to include logarithms. Here, try y ∼ Ax(ln x)α; with

y ′′′ ∼ Aαx−2(ln x)α−1 +O(x−2(ln x)α−2).

Substitution into the equation gives −A3α(ln x)3α−1 ∼ −1/3, so that α = 1/3
and A = 1.
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Some nonlinear examples, cont.

Want behavior as x → 0 in y ′′′y ′ = 2(y ′′)2 + y .

Each combination of dominant balance can be tried, but they lead to
something non-integrable. A different heuristic is to take y ∼ xα; in this case
the y term looks subdominant.

Inserting y ∼ xα into y ′′′y ′ ∼ 2(y ′′)2 leads to α = 0 or 1, but these do not
work as leading order solutions! Try instead y ∼ (ln x)β :

y ′ ∼ βx−1(ln x)β−1, y ′′ ∼ −βx−2(ln x)β−1 + β(β − 1)x−2(ln x)β−2,

y ′′′ ∼ 2βx−3(ln x)β−1 − 2β(β − 1)x−3(ln x)β−2 + β(β − 1)(β − 2)x−3(ln x)β−3.

Keeping only leading order terms in y ′′′y ′ ∼ 2(y ′′)2 gives
2β2x−4(ln x)2β−2 = 2β2x−4(ln x)2β−2, which does not select β.

Going to the next order gives
−2β2(β − 1)x−4(ln x)2β−2 = −4β2(β − 1)x−4(ln x)2β−3.
Therefore β must be = 1.
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y ′ ∼ βx−1(ln x)β−1, y ′′ ∼ −βx−2(ln x)β−1 + β(β − 1)x−2(ln x)β−2,

y ′′′ ∼ 2βx−3(ln x)β−1 − 2β(β − 1)x−3(ln x)β−2 + β(β − 1)(β − 2)x−3(ln x)β−3.

Keeping only leading order terms in y ′′′y ′ ∼ 2(y ′′)2 gives
2β2x−4(ln x)2β−2 = 2β2x−4(ln x)2β−2, which does not select β.

Going to the next order gives
−2β2(β − 1)x−4(ln x)2β−2 = −4β2(β − 1)x−4(ln x)2β−3.
Therefore β must be = 1.
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Some nonlinear examples, cont.

Want small x behavior in forced Painleve equation y ′′ = y 2 + A/x4.

Trying y ∼ Bxα leads to α = −2 and B solves B2 − 6B + A = 0. Provided
A < 9, there are two values of B = B±. But which one is relevant? And if
A > 9, what happens?

Transform variables y = w/x2, t = − ln x giving

wtt + 5wt + 6w = w 2 + A.

Notice x → 0 is the same at t →∞.

Phase plane reveals smaller w = B− is stable. Thus some solutions of the
original equation have the behavior y = B−x

−2.

On the other hand, some solutions (and all if A > 9) have blow up where
wtt ∼ w 2, which integrates to w ∼ (C −

√
2/3t)−2. These solutions never

reach t =∞ or x = 0!
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