
Asymptotic Methods

Matched asymptotic expansions



Non-uniformity and matched expansions

Differential equations often give rise to expansions which are not uniformly
valid throughout the domain. To remedy this, different expansions are sought
in different subdomains, and they are connected by a systematic process known
as ”matching”.

Consider the boundary value problem εy ′′ + (1 + ε)y ′ + y = 0, with y(0) = 0
and y(1) = 1, whose exact solution happens to be
y(x) = (e−x − e−x/ε)/(e−1 − e−1/ε).

Naively setting ε = 0 in the equation, we have y ′ + y = 0. But how can both
boundary conditions be satisfied?

Comparing to the exact solution, the root of the problem is clear:
y ′′ = O(1/ε2) if x ≈ 0, therefore dominant balance is different there.

For x = O(1), the outer solution y ∼ e1−x can be obtained by using the right
hand boundary condition.
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Non-uniformity and matched expansions,cont.

To resolve the behavior for small x , use different independent variable X = x/ε,
giving

yXX + (1 + ε)yX + εy = 0.

The leading order problem is therefore yXX + yX = 0, and with the boundary
condition y(0) = 0 one has the inner solution y = c(e−X − 1).

If we assume both approximations are valid in some overlapping region where
x � 1 and X � 1, the behaviors

y ∼

{
c(e−X − 1) ∼ −c, X →∞
e1−x ∼ e, x → 0

must coincide. This means c = −e.

We can form a uniformly valid approximation by adding the two expansions and
subtracting off the common behavior, giving the composite expansion

y ∼ e1−x − e1−x/ε.
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The method of matched asymptotic expansions

Issues still to be addressed:

1 What is the scaling of the boundary layer? (dominant balance)

2 Where is the boundary layer?

3 Is there a systematic way to match expansions?



Kaplan and van Dyke matching processes

Suppose that the boundary layer at x = 0 uses a inner variable X = εx , and let
xη = x/η(ε) with ε << η(ε) << 1 be some intermediate scale.

Assume

The expansion youter (xη) ∼ y0 + . . . is valid for x � η1(ε) where
η1(ε)� η(ε),

The expansion yinner (xη) ∼ Y0 + . . . is valid for x � η2(ε) where
η2(ε)� η(ε).

Then both expansions in xη are identical (“Kaplan’s” method).

An often easier way to approach this is the rule of van Dyke: write the outer
expansion in terms of the inner variables and vice-versa, and expand in ε.
These must agree when written in terms of a common independent variable.
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Illustration of van Dyke matching process for simple power series

Suppose that the outer expansion is given by
∑∞

n=0 ε
nfn(x) and the inner (using

scaled variable X = x/ε) by
∑∞

m=0 ε
mFm(X ).

Writing the outer expansion in terms of the inner variable and (re)expanding
using Taylor series gives

∞∑
n=0

εnfn(εX ) ∼
∞∑
n=0

∞∑
k=0

εn+k f (k)n (0)X k/k!

Similarly, writing the inner expansion in terms of the outer variable

∞∑
m=0

εmFm(x/ε) ∼
∞∑
m=0

m∑
k=0

amkε
m−kxk =

∞∑
m=0

m∑
k=0

amkε
mX k ,

where polynomial behavior Fm ∼
∑m

k=0 amkX
k is assumed.

Comparing series, it follows that amk =
∑

n+k=m f
(k)
n (0)/k!, so that

F0(X ) ∼ f0(0), X →∞,
F1(X ) ∼ f1(0) + f ′0 (0)X , X →∞,

F2(X ) ∼ f2(0) + f ′1 (0)X +
1

2
f ′′0 (0)X 2, X →∞.
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Example with two term expansion

Consider
εy ′′ + (1 + x)y ′ + y = 0, y(0) = 1, y(1) = 1.

Expanding y = y0 + εy1 + . . . leads to

(1 + x)y ′0 + y0 = 0, y0(1) = 1, (1 + x)y ′1 + y1 = −y ′′0 , y1(1) = 0.

This produces y0 = 2/(1 + x) and y1 = 2/(1 + x)3 − 1/(2(1 + x)).

Letting X = x/ε, y = Y (X ), and expanding Y = Y0 + εY1 + . . .,

Y ′′0 + Y ′0 = 0, Y0(0) = 1, Y ′′1 + Y ′1 = −Y0 − XY ′0 , Y1(0) = 0,

so Y0 = 1 + A0(e−X − 1) and Y1 = A1(e−X − 1) + A0(X − 1
2
X 2e−X )− X .

Writing the outer expansion in terms of X gives

y ∼ 2 + ε(−2X + 3/2) +O(ε2).

The inner expansion in terms of x gives

Y ∼ 1− A0 + ε(−A1 + A0x/ε− x/ε) +O(ε2) = 1− A0 + ε(A0 − 1)X − εA1.

Comparing series, one has A0 = 1 and A1 = −3/2.
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Boundary layer scaling

More generally, the inner variable has the form X = x/εα. The requirement of
dominant balance of two terms determines α.

Example: 4εy ′′ + 6
√
xy ′ − 3y = −3, y(0) = 0, y(1) = 3.

The outer solution is immediately y ∼ 1 + 2e
√
x−1.

Set X = x/εα and y = Y (X ) so that

4ε1−2αY ′′ + 6ε−α/2
√
XY ′ − 3Y = −3.

Balance between first two terms gives α = 2/3.

The leading order inner problem is Y ′′/Y = −3/2X , Y (0) = 0, whose solution

is Y = C
∫ X

0
e−z3/2dz .

For matching, note y ∼ 2/e + 1 as x → 0, and

Y ∼ C

∫ ∞
0

e−z3/2dz , X →∞.

Thus C = (2/e + 1)/
∫∞
0

e−z3/2dz .
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Boundary layer location

Scaled layers may exist many places: left,right, both, or interior. Consistency
with matching usually determines its location.

Example: εy ′′ = a + y ′, y(0) = 0, y(1) = 1. The outer solution is
immediately y(x) ∼ −ax + c, where c is to be determined.

Try boundary layer on left, using X = x/ε. This leads to Y ′′ = Y ′ whose
general solution is Y = c1 + c2e

X . The exponential behavior will not match!

For boundary layer on right, use X = (x + 1)/ε, which also gives Y ′′ = Y ′ and
Y = c1 + c2e

X at leading order. But in this case, matching requires behavior as
X → −∞, which is ok. Using Y (1) = 1, one has c1 + c2 = 0.

The outer solution must use the left boundary condition, so y(x) ∼ −ax .
Matching requires

X ∼ c1, X → −∞, y ∼ −a, x → 1,

so that c1 = a.
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Scaled layers may exist many places: left,right, both, or interior. Consistency
with matching usually determines its location.

Example: εy ′′ = a + y ′, y(0) = 0, y(1) = 1. The outer solution is
immediately y(x) ∼ −ax + c, where c is to be determined.

Try boundary layer on left, using X = x/ε. This leads to Y ′′ = Y ′ whose
general solution is Y = c1 + c2e

X . The exponential behavior will not match!
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Y = c1 + c2e
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X ∼ c1, X → −∞, y ∼ −a, x → 1,

so that c1 = a.



Interior layers

Consider
εy ′′ = yy ′ − y , y(0) = 1, y(1) = −1.

Having a boundary layer on the left means that the outer solution is y ∼ x − 2,
which is negative if x ≈ 0.
The inner solution solves Y ′′ ∼ YY ′. But matching implies there must be
place in the inner region where Y ′ > 0, Y ′′ ≥ 0, which can’t happen if Y < 0.

A similar argument applies to a right hand boundary layer. The only other
possibility is a layer in the interior, say at x = x0. This means the outer
solution looks like

y ∼

{
x + 1, x < x0,

x − 2, x > x0

Using X = (x − x0)/ε, get Y ′′ = YY ′ to leading order. Integrating once gives
Y ′ = 1

2
Y 2 − B2/2, which can be integrated again to produce

Y = B
1− DeBX

1 + DeBX
.

Matching requires limX→±∞ Y = ∓B = lim
x→x±0

y(x), which means that

B = x0 + 1 and −B = x0 − 2. It follows that B = 3/2 and x0 = 1/2.
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