Asymptotic Methods

Matched asymptotic expansions

Consider the boundary value problem $\epsilon y'' + (1 + \epsilon)y' + y = 0$, with y(0) = 0and y(1) = 1, whose exact solution happens to be $y(x) = (e^{-x} - e^{-x/\epsilon})/(e^{-1} - e^{-1/\epsilon}).$

Consider the boundary value problem $\epsilon y'' + (1 + \epsilon)y' + y = 0$, with y(0) = 0and y(1) = 1, whose exact solution happens to be $y(x) = (e^{-x} - e^{-x/\epsilon})/(e^{-1} - e^{-1/\epsilon}).$

Naively setting $\epsilon = 0$ in the equation, we have y' + y = 0. But how can both boundary conditions be satisfied?

Consider the boundary value problem $\epsilon y'' + (1 + \epsilon)y' + y = 0$, with y(0) = 0and y(1) = 1, whose exact solution happens to be $y(x) = (e^{-x} - e^{-x/\epsilon})/(e^{-1} - e^{-1/\epsilon}).$

Naively setting $\epsilon = 0$ in the equation, we have y' + y = 0. But how can both boundary conditions be satisfied?

Comparing to the exact solution, the root of the problem is clear: $y'' = O(1/\epsilon^2)$ if $x \approx 0$, therefore dominant balance is different there.

Consider the boundary value problem $\epsilon y'' + (1 + \epsilon)y' + y = 0$, with y(0) = 0and y(1) = 1, whose exact solution happens to be $y(x) = (e^{-x} - e^{-x/\epsilon})/(e^{-1} - e^{-1/\epsilon}).$

Naively setting $\epsilon = 0$ in the equation, we have y' + y = 0. But how can both boundary conditions be satisfied?

Comparing to the exact solution, the root of the problem is clear: $y'' = O(1/\epsilon^2)$ if $x \approx 0$, therefore dominant balance is different there.

For x = O(1), the outer solution $y \sim e^{1-x}$ can be obtained by using the right hand boundary condition.

To resolve the behavior for small x, use different independent variable $X = x/\epsilon$, giving

$$y_{XX} + (1 + \epsilon)y_X + \epsilon y = 0.$$

The leading order problem is therefore $y_{XX} + y_X = 0$, and with the boundary condition y(0) = 0 one has the inner solution $y = c(e^{-X} - 1)$.

To resolve the behavior for small x, use different independent variable $X = x/\epsilon$, giving

$$y_{XX} + (1 + \epsilon)y_X + \epsilon y = 0.$$

The leading order problem is therefore $y_{XX} + y_X = 0$, and with the boundary condition y(0) = 0 one has the inner solution $y = c(e^{-X} - 1)$.

If we assume both approximations are valid in some overlapping region where $x \ll 1$ and $X \gg 1$, the behaviors

$$y \sim egin{cases} c(e^{-X}-1) \sim -c, & X
ightarrow \infty \ e^{1-x} \sim e, & x
ightarrow 0 \end{cases}$$

must coincide. This means c = -e.

To resolve the behavior for small x, use different independent variable $X = x/\epsilon$, giving

$$y_{XX} + (1 + \epsilon)y_X + \epsilon y = 0.$$

The leading order problem is therefore $y_{XX} + y_X = 0$, and with the boundary condition y(0) = 0 one has the inner solution $y = c(e^{-X} - 1)$.

If we assume both approximations are valid in some overlapping region where $x \ll 1$ and $X \gg 1$, the behaviors

$$y \sim egin{cases} c(e^{-X}-1) \sim -c, & X
ightarrow \infty \ e^{1-x} \sim e, & x
ightarrow 0 \end{cases}$$

must coincide. This means c = -e.

We can form a uniformly valid approximation by adding the two expansions and subtracting off the common behavior, giving the composite expansion

$$y \sim e^{1-x} - e^{1-x/\epsilon}.$$

Issues still to be addressed:

- 1 What is the scaling of the boundary layer? (dominant balance)
- 2 Where is the boundary layer?
- 3 Is there a systematic way to match expansions?

Suppose that the boundary layer at x = 0 uses a inner variable $X = \epsilon x$, and let $x_{\eta} = x/\eta(\epsilon)$ with $\epsilon << \eta(\epsilon) << 1$ be some intermediate scale.

Suppose that the boundary layer at x = 0 uses a inner variable $X = \epsilon x$, and let $x_{\eta} = x/\eta(\epsilon)$ with $\epsilon << \eta(\epsilon) << 1$ be some intermediate scale.Assume

- The expansion $y_{outer}(x_{\eta}) \sim y_0 + \dots$ is valid for $x \gg \eta_1(\epsilon)$ where $\eta_1(\epsilon) \gg \eta(\epsilon)$,
- The expansion $y_{inner}(x_{\eta}) \sim Y_0 + \dots$ is valid for $x \ll \eta_2(\epsilon)$ where $\eta_2(\epsilon) \ll \eta(\epsilon)$.

Then both expansions in x_{η} are identical ("Kaplan's" method).

An often easier way to approach this is the rule of van Dyke: write the outer expansion in terms of the inner variables and vice-versa, and expand in ϵ . These must agree when written in terms of a common independent variable.

Illustration of van Dyke matching process for simple power series

Suppose that the outer expansion is given by $\sum_{n=0}^{\infty} \epsilon^n f_n(x)$ and the inner (using scaled variable $X = x/\epsilon$) by $\sum_{m=0}^{\infty} \epsilon^m F_m(X)$.

Illustration of van Dyke matching process for simple power series

Suppose that the outer expansion is given by $\sum_{n=0}^{\infty} \epsilon^n f_n(x)$ and the inner (using scaled variable $X = x/\epsilon$) by $\sum_{m=0}^{\infty} \epsilon^m F_m(X)$.

Writing the outer expansion in terms of the inner variable and (re)expanding using Taylor series gives

$$\sum_{n=0}^{\infty} \epsilon^n f_n(\epsilon X) \sim \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \epsilon^{n+k} f_n^{(k)}(0) X^k / k!$$

Similarly, writing the inner expansion in terms of the outer variable

$$\sum_{m=0}^{\infty} \epsilon^m F_m(x/\epsilon) \sim \sum_{m=0}^{\infty} \sum_{k=0}^m a_{mk} \epsilon^{m-k} x^k = \sum_{m=0}^{\infty} \sum_{k=0}^m a_{mk} \epsilon^m X^k,$$

where polynomial behavior $F_m \sim \sum_{k=0}^m a_{mk} X^k$ is assumed.

Illustration of van Dyke matching process for simple power series

Suppose that the outer expansion is given by $\sum_{n=0}^{\infty} \epsilon^n f_n(x)$ and the inner (using scaled variable $X = x/\epsilon$) by $\sum_{m=0}^{\infty} \epsilon^m F_m(X)$.

Writing the outer expansion in terms of the inner variable and (re)expanding using Taylor series gives

$$\sum_{n=0}^{\infty} \epsilon^n f_n(\epsilon X) \sim \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \epsilon^{n+k} f_n^{(k)}(0) X^k / k!$$

Similarly, writing the inner expansion in terms of the outer variable

$$\sum_{m=0}^{\infty} \epsilon^m F_m(x/\epsilon) \sim \sum_{m=0}^{\infty} \sum_{k=0}^m a_{mk} \epsilon^{m-k} x^k = \sum_{m=0}^{\infty} \sum_{k=0}^m a_{mk} \epsilon^m X^k,$$

where polynomial behavior $F_m \sim \sum_{k=0}^m a_{mk} X^k$ is assumed.

Comparing series, it follows that $a_{mk} = \sum_{n+k=m} f_n^{(k)}(0)/k!$, so that

$$egin{aligned} &F_0(X)\sim f_0(0),\quad X o\infty,\ &F_1(X)\sim f_1(0)+f_0'(0)X,\quad X o\infty,\ &F_2(X)\sim f_2(0)+f_1'(0)X+rac{1}{2}f_0''(0)X^2,\quad X o\infty. \end{aligned}$$

Example with two term expansion

Consider

$$\epsilon y'' + (1+x)y' + y = 0, \quad y(0) = 1, \quad y(1) = 1.$$

Example with two term expansion

Consider

$$\epsilon y'' + (1+x)y' + y = 0, \quad y(0) = 1, \quad y(1) = 1.$$

Expanding $y = y_0 + \epsilon y_1 + \ldots$ leads to

$$(1+x)y_0'+y_0=0, \quad y_0(1)=1, \qquad (1+x)y_1'+y_1=-y_0'', \quad y_1(1)=0.$$

This produces $y_0 = 2/(1+x)$ and $y_1 = 2/(1+x)^3 - 1/(2(1+x))$.

Example with two term expansion

Consider

$$\epsilon y'' + (1+x)y' + y = 0, \quad y(0) = 1, \quad y(1) = 1.$$

Expanding $y = y_0 + \epsilon y_1 + \ldots$ leads to

$$(1+x)y_0'+y_0=0, \quad y_0(1)=1, \qquad (1+x)y_1'+y_1=-y_0'', \quad y_1(1)=0.$$

This produces $y_0 = 2/(1+x)$ and $y_1 = 2/(1+x)^3 - 1/(2(1+x))$. Letting $X = x/\epsilon$, y = Y(X), and expanding $Y = Y_0 + \epsilon Y_1 + ...,$

$$\begin{aligned} Y_0''+Y_0' &= 0, \quad Y_0(0) = 1, \qquad Y_1''+Y_1' = -Y_0 - XY_0', \quad Y_1(0) = 0, \end{aligned}$$
 so $Y_0 &= 1 + A_0(e^{-X}-1)$ and $Y_1 &= A_1(e^{-X}-1) + A_0(X - \frac{1}{2}X^2e^{-X}) - X. \end{aligned}$

Consider

$$\epsilon y'' + (1+x)y' + y = 0, \quad y(0) = 1, \quad y(1) = 1.$$

Expanding $y = y_0 + \epsilon y_1 + \ldots$ leads to

$$(1+x)y_0'+y_0=0, \quad y_0(1)=1, \qquad (1+x)y_1'+y_1=-y_0'', \quad y_1(1)=0.$$

This produces $y_0 = 2/(1+x)$ and $y_1 = 2/(1+x)^3 - 1/(2(1+x))$. Letting $X = x/\epsilon$, y = Y(X), and expanding $Y = Y_0 + \epsilon Y_1 + ...$,

$$\begin{split} Y_0''+Y_0' &= 0, \quad Y_0(0) = 1, \qquad Y_1''+Y_1' = -Y_0 - XY_0', \quad Y_1(0) = 0, \\ \text{so } Y_0 &= 1 + A_0(e^{-X}-1) \text{ and } Y_1 = A_1(e^{-X}-1) + A_0(X - \frac{1}{2}X^2e^{-X}) - X. \end{split}$$

Writing the outer expansion in terms of X gives

$$y \sim 2 + \epsilon(-2X + 3/2) + \mathcal{O}(\epsilon^2).$$

The inner expansion in terms of x gives

$$Y \sim 1 - A_0 + \epsilon (-A_1 + A_0 x/\epsilon - x/\epsilon) + \mathcal{O}(\epsilon^2) = 1 - A_0 + \epsilon (A_0 - 1)X - \epsilon A_1.$$

Consider

$$\epsilon y'' + (1+x)y' + y = 0, \quad y(0) = 1, \quad y(1) = 1.$$

Expanding $y = y_0 + \epsilon y_1 + \ldots$ leads to

$$(1+x)y_0'+y_0=0, \quad y_0(1)=1, \qquad (1+x)y_1'+y_1=-y_0'', \quad y_1(1)=0.$$

This produces $y_0 = 2/(1+x)$ and $y_1 = 2/(1+x)^3 - 1/(2(1+x))$. Letting $X = x/\epsilon$, y = Y(X), and expanding $Y = Y_0 + \epsilon Y_1 + ...$,

$$\begin{aligned} Y_0'' + Y_0' &= 0, \quad Y_0(0) = 1, \qquad Y_1'' + Y_1' = -Y_0 - XY_0', \quad Y_1(0) = 0, \\ \text{so } Y_0 &= 1 + A_0(e^{-X} - 1) \text{ and } Y_1 = A_1(e^{-X} - 1) + A_0(X - \frac{1}{2}X^2e^{-X}) - X. \end{aligned}$$

Writing the outer expansion in terms of X gives

$$y \sim 2 + \epsilon(-2X + 3/2) + O(\epsilon^2).$$

The inner expansion in terms of x gives

$$Y \sim 1 - A_0 + \epsilon (-A_1 + A_0 x/\epsilon - x/\epsilon) + \mathcal{O}(\epsilon^2) = 1 - A_0 + \epsilon (A_0 - 1)X - \epsilon A_1.$$

Comparing series, one has $A_0 = 1$ and $A_1 = -3/2$.

More generally, the inner variable has the form $X = x/\epsilon^{\alpha}$. The requirement of dominant balance of two terms determines α .

More generally, the inner variable has the form $X = x/e^{\alpha}$. The requirement of dominant balance of two terms determines α .

Example: $4\epsilon y'' + 6\sqrt{x}y' - 3y = -3$, y(0) = 0, y(1) = 3.

The outer solution is immediately $y \sim 1 + 2e^{\sqrt{x}-1}$.

More generally, the inner variable has the form $X = x/e^{\alpha}$. The requirement of dominant balance of two terms determines α .

Example: $4\epsilon y'' + 6\sqrt{x}y' - 3y = -3$, y(0) = 0, y(1) = 3. The outer solution is immediately $y \sim 1 + 2e^{\sqrt{x}-1}$. Set $X = x/\epsilon^{\alpha}$ and y = Y(X) so that

$$4\epsilon^{1-2\alpha}Y''+6\epsilon^{-\alpha/2}\sqrt{X}Y'-3Y=-3.$$

Balance between first two terms gives $\alpha = 2/3$.

More generally, the inner variable has the form $X = x/\epsilon^{\alpha}$. The requirement of dominant balance of two terms determines α .

Example: $4\epsilon y'' + 6\sqrt{x}y' - 3y = -3$, y(0) = 0, y(1) = 3. The outer solution is immediately $y \sim 1 + 2e^{\sqrt{x}-1}$. Set $X = x/\epsilon^{\alpha}$ and y = Y(X) so that

$$4\epsilon^{1-2\alpha}Y''+6\epsilon^{-\alpha/2}\sqrt{X}Y'-3Y=-3.$$

Balance between first two terms gives $\alpha = 2/3$.

The leading order inner problem is Y''/Y = -3/2X, Y(0) = 0, whose solution is $Y = C \int_0^X e^{-z^{3/2}} dz$.

More generally, the inner variable has the form $X = x/\epsilon^{\alpha}$. The requirement of dominant balance of two terms determines α .

Example: $4\epsilon y'' + 6\sqrt{x}y' - 3y = -3$, y(0) = 0, y(1) = 3. The outer solution is immediately $y \sim 1 + 2e^{\sqrt{x}-1}$. Set $X = x/\epsilon^{\alpha}$ and y = Y(X) so that

$$4\epsilon^{1-2\alpha}Y''+6\epsilon^{-\alpha/2}\sqrt{X}Y'-3Y=-3.$$

Balance between first two terms gives $\alpha = 2/3$.

The leading order inner problem is Y''/Y = -3/2X, Y(0) = 0, whose solution is $Y = C \int_0^X e^{-z^{3/2}} dz$.

For matching, note $y \sim 2/e + 1$ as $x \rightarrow 0$, and

$$Y \sim C \int_0^\infty e^{-z^{3/2}} dz, \quad X \to \infty.$$

Thus $C = (2/e + 1) / \int_0^\infty e^{-z^{3/2}} dz$.

Example: $\epsilon y'' = a + y'$, y(0) = 0, y(1) = 1. The outer solution is immediately $y(x) \sim -ax + c$, where c is to be determined.

Example: $\epsilon y'' = a + y'$, y(0) = 0, y(1) = 1. The outer solution is immediately $y(x) \sim -ax + c$, where c is to be determined.

Try boundary layer on left, using $X = x/\epsilon$. This leads to Y'' = Y' whose general solution is $Y = c_1 + c_2 e^X$. The exponential behavior will not match!

Example: $\epsilon y'' = a + y'$, y(0) = 0, y(1) = 1. The outer solution is immediately $y(x) \sim -ax + c$, where c is to be determined.

Try boundary layer on left, using $X = x/\epsilon$. This leads to Y'' = Y' whose general solution is $Y = c_1 + c_2 e^X$. The exponential behavior will not match!

For boundary layer on right, use $X = (x + 1)/\epsilon$, which also gives Y'' = Y' and $Y = c_1 + c_2 e^X$ at leading order. But in this case, matching requires behavior as $X \to -\infty$, which is ok. Using Y(1) = 1, one has $c_1 + c_2 = 0$.

Example: $\epsilon y'' = a + y'$, y(0) = 0, y(1) = 1. The outer solution is immediately $y(x) \sim -ax + c$, where c is to be determined.

Try boundary layer on left, using $X = x/\epsilon$. This leads to Y'' = Y' whose general solution is $Y = c_1 + c_2 e^X$. The exponential behavior will not match!

For boundary layer on right, use $X = (x + 1)/\epsilon$, which also gives Y'' = Y' and $Y = c_1 + c_2 e^X$ at leading order. But in this case, matching requires behavior as $X \to -\infty$, which is ok. Using Y(1) = 1, one has $c_1 + c_2 = 0$.

The outer solution must use the left boundary condition, so $y(x) \sim -ax$. Matching requires

$$X \sim c_1, \quad X \to -\infty, \qquad y \sim -a, \quad x \to 1,$$

so that $c_1 = a$.

Consider

$$\epsilon y'' = yy' - y, \quad y(0) = 1, \quad y(1) = -1.$$

Consider

$$\epsilon y'' = yy' - y, \quad y(0) = 1, \quad y(1) = -1.$$

Having a boundary layer on the left means that the outer solution is $y \sim x - 2$, which is negative if $x \approx 0$.

The inner solution solves $Y'' \sim YY'$. But matching implies there must be place in the inner region where Y' > 0, $Y'' \ge 0$, which can't happen if Y < 0.

Consider

$$\epsilon y'' = yy' - y, \quad y(0) = 1, \quad y(1) = -1.$$

Having a boundary layer on the left means that the outer solution is $y \sim x - 2$, which is negative if $x \approx 0$.

The inner solution solves $Y'' \sim YY'$. But matching implies there must be place in the inner region where Y' > 0, $Y'' \ge 0$, which can't happen if Y < 0.

A similar argument applies to a right hand boundary layer. The only other possibility is a layer in the interior, say at $x = x_0$. This means the outer solution looks like

$$y \sim egin{cases} x+1, & x < x_0, \ x-2, & x > x_0 \end{cases}$$

Consider

$$\epsilon y'' = yy' - y, \quad y(0) = 1, \quad y(1) = -1.$$

Having a boundary layer on the left means that the outer solution is $y \sim x - 2$, which is negative if $x \approx 0$.

The inner solution solves $Y'' \sim YY'$. But matching implies there must be place in the inner region where Y' > 0, $Y'' \ge 0$, which can't happen if Y < 0.

A similar argument applies to a right hand boundary layer. The only other possibility is a layer in the interior, say at $x = x_0$. This means the outer solution looks like

J

$$\prime \sim egin{cases} x+1, & x < x_0, \ x-2, & x > x_0 \end{cases}$$

Using $X = (x - x_0)/\epsilon$, get Y'' = YY' to leading order. Integrating once gives $Y' = \frac{1}{2}Y^2 - B^2/2$, which can be integrated again to produce

$$Y = B \frac{1 - De^{BX}}{1 + De^{BX}}.$$

Matching requires $\lim_{x\to\pm\infty} Y = \mp B = \lim_{x\to x_0^{\pm}} y(x)$, which means that $B = x_0 + 1$ and $-B = x_0 - 2$. It follows that B = 3/2 and $x_0 = 1/2$.