Asymptotic Methods

Matched asymptotic expansions: exponentials,
logarithms, multiple layers
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Here € is ratio of capillary length \/o/pg to the dimensional cylinder radius.
There are two regions: (1) v’ < 1, and (Il) curved part where r ~ 1.

For region |, expand u = vo(€e)uo(R) + . .., where dominant balance requires
R = r/e. Provided 1y < ¢, leading order is
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Example: wide capillary tube

Fluid meniscus u(r) satisfies
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7<m) = u, 0<r<1, LI(O):O7 u(l)ztan(%.
Here € is ratio of capillary length \/o/pg to the dimensional cylinder radius.
There are two regions: (1) v’ < 1, and (Il) curved part where r ~ 1.

For region |, expand u = vo(€e)uo(R) + . .., where dominant balance requires
R = r/e. Provided 1y < ¢, leading order is

F(RUY = o, uh(0) = 0.

The solution is a constant C times modified Bessel function

IO _ 1/ eRCOStdt.
T Jo

Matching needs the behavior for large R, easy by Laplace’s method:

C [T Rra—2) ce® 12 1/
up ~ — e Ydt = —— = Ce /e /2.
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Capillary tube, cont.

For Region Il, use variable X = (1 — r)/e. Boundary condition u'(1) = tan g
means u = eUp(X) + ..., and
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(W) = Uo7 Ué(O) = tan 00, Ué(OO) =0.
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Capillary tube, cont.

For Region Il, use variable X = (1 — r)/e. Boundary condition u'(1) = tan g
means u = eUp(X) + ..., and

U '
<70> =Uo, Up(0)=tanfly, Up(oc)=0.
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Clever change of variables: use independent variable v defined as slope of
profile, i.e. tany = — U, so that
dX _ cosyp  dUp _ sing
dy U > dy U’

Solutions to second is Uy = 1/2(1 — cos t), and first has solution

X—E/GO cost dt =Intanfy/4 + 2cosfy/2 — Intanp/4 — 2cos /2
“2), sin(t/2)" 0 o '

Need behavior as X — co, same as ¢ — 0, gives

Uo(¢) ~ v, X(¢p) ~Intanby/4 + cosby/2 — Inp/4,
Thus as X — oo, have

Uy ~ 4tan(€o/2)e745i"2 o/4eg=X = yel/eer/e,



Capillary tube, cont.

For Region Il, use variable X = (1 — r)/e. Boundary condition u'(1) = tan g
means u = eUp(X) + ..., and

Ug '
(W) = Uo7 Ué(O) = tan 00, Ué(OO) =0.
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Clever change of variables: use independent variable v defined as slope of

profile, i.e. tany = — U, so that
dX _ cosyp  dUp _ sing
- U’ dv . U

Solutions to second is Uy = 1/2(1 — cos t), and first has solution

X—E/GO cost dt =Intanfy/4 + 2cosfy/2 — Intanp/4 — 2cos /2
“2), sin(t/2)" 0 o '

Need behavior as X — co, same as ¢ — 0, gives
Uo(¢) ~ v, X(¢p) ~Intanby/4 + cosby/2 — Inp/4,
Thus as X — oo, have
Uy ~ 4tan(€o/2)e745i"2 o/4eg=X = yel/eer/e,

Finally, matching insists Cug(e)e'/?e”/€/v/21 ~ ye ™/ e"/<, therefore
Cuo(e) = v+/2m fee /<.
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Effect of transcendentally small terms

Very surprising: exponentially small (i.e. O(e™/€)) correction terms in the
expansion are sometimes needed to determine even the leading order outer
solution!

Consider
ey —xy' +exy =0, y(-1)=a, y(1)=b.
The leading order outer solution solves y5 = 0 so yo = c.

In general, boundary layers on both boundaries, so use X = (x £ 1) /¢, and let
y = Yo(X) + €Y1 (X) + . ... Leading order solution is

c+(a—c)e X, (left),
YO = X .
c+(b—c)e”, (right)

but nothing determines c, even at further orders Y,!



Effect of transcendentally small terms,cont.

Resolution: expand outer y = yo + €y1 + ... + zo(x; €) + ... where z is
transcendentally small, e.g. zo ~ e */¢. In this case, we have dominant balance
€zf — xz§ = 0, whose solution is

20 = B(e) +A(e)/ e/ ds.
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Effect of transcendentally small terms,cont.

Resolution: expand outer y = yo + €y1 + ... + zo(x; €) + ... where z is
transcendentally small, e.g. zo ~ e */¢. In this case, we have dominant balance
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To match, write in terms of inner variable and re-expand for small ¢,

—14eX (—1+€X)?/2¢
/ /2 ds o ¢ <e1—|—X n el/2e> o (1= e X)el/.
_1 — €

with a similar expression for right boundary layer.



Effect of transcendentally small terms,cont.

Resolution: expand outer y = yo + €y1 + ... + zo(x; €) + ... where z is
transcendentally small, e.g. zo ~ e */¢. In this case, we have dominant balance
€zf — xz§ = 0, whose solution is

20 = B(e) +A(e)/ e/ ds.
-1

To match, write in terms of inner variable and re-expand for small ¢,

—14eX (—1+€X)?/2¢
/ /2 ds o ¢ <e1—|—X n el/2e> o (1= e X)el/.
_1 — €

with a similar expression for right boundary layer.

The exponentially decaying terms in the leading order boundary layers now
have something to match onto; this gives eA(e)e/?* = ¢ — a for left boundary
layer and eA(e)e/* = b — ¢ for right, with B(e) = —eA(e)e'/? for both.
Elimination yields ¢ = (a + b)/2.
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2
Y'+ 2y ey’ =0, y(1)=0, y(o0) =1

Expanding y = yo +ey1 + ..., y§' +2y5/x =0, so that yo = Go(1 — 1/x).
Continuing, y{' +2y1/x +1/x* —1/x*> = 0 with y1(0) = 0, so that

yi=a(l—-1/x)+Inx —Inx/x.

Notice that since eyoy§ ~ x 2, not valid for large x.
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To illustrate this, consider the Lagerstrom model
2
Y'+ 2y ey’ =0, y(1)=0, y(o0) =1

Expanding y = yo +ey1 + ..., y§' +2y5/x =0, so that yo = Go(1 — 1/x).
Continuing, y{' +2y1/x +1/x* —1/x*> = 0 with y1(0) = 0, so that

yi=a(l—-1/x)+Inx —Inx/x.

Notice that since eyoy§ ~ x 2, not valid for large x.

For large x, use variable X = xe, y = Y(X) and expand in powers of €. Then
Yo=1and Y{"+(2/X +1)Y{ = 0 where Yi(co) = 0. The solution is

Yi=AE(X), B :/ e 't 2dt.
X

Matching will need behavior for small X, found by integration by parts as

Ex~1/X+InX+ (v —1)— X/2+0O(X?)



Switchback terms,cont.

Matching compares
y~1l—-¢/X)+ea(l—€¢/X)—€eInX +elne

to
Y ~14+Ai(e/X+enX+e(y—1)),

so Ay = —1 and ¢; = v — 1. But what matches elne term?7?
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Resolution: amend expansion y = yp + elney™ + €y1 + ..., where y™ solves
)+ @/ =0, y(1)=0,

thus y* = ¢"(1 — 1/x). Effect is new term when matching c*elne(l — ¢/x),
which counterbalances existing €ln e term by the choice ¢* = —1.



Switchback terms,cont.

Matching compares
y~1l—-¢/X)+ea(l—€¢/X)—€eInX +elne

to
Y ~14+Ai(e/X+enX+e(y—1)),
so Ay = —1 and ¢; = v — 1. But what matches elne term?7?

Resolution: amend expansion y = yp + elney™ + €y1 + ..., where y™ solves
)+ @/ =0, y(1)=0,

thus y* = ¢"(1 — 1/x). Effect is new term when matching c*elne(l — ¢/x),
which counterbalances existing €ln e term by the choice ¢* = —1.

Physical relevance: surface shear stress is

Y1) ~1—¢elne—(y+1e



Triple deck

Boundary layers can occur within boundary layers!
Consider

Ey'+x3y + (X —ey=0, y(0)=A y(1)=8.



Triple deck

Boundary layers can occur within boundary layers!
Consider

Ey'+x3y + (X —ey=0, y(0)=A y(1)=8.

The outer expansion solves x3y¢ + x3yo = 0 with yo(1) = B so that yo = Be' ™.



Triple deck

Boundary layers can occur within boundary layers!
Consider

Ey'+x3y + (3 -y =0, y(0)=A, y(1)=B8.
The outer expansion solves x3y¢ + x3yo = 0 with yo(1) = B so that yo = Be' ™.
For inner expansion(s), let X = x/e, so y = Y/(X) solves
6372(1 Y// 4 6204)<3\/ + (63O‘X3 _ E)Y — O

There are two possibilities for dominant balance: a =1 and o = 1/2.



Triple deck

Boundary layers can occur within boundary layers!
Consider

Ey'+x3y + (3 -y =0, y(0)=A, y(1)=B8.
The outer expansion solves x3y¢ + x3yo = 0 with yo(1) = B so that yo = Be' ™.
For inner expansion(s), let X = x/e, so y = Y/(X) solves
6372(1 Y// 4 6204)<3\/ + (63O‘X3 _ E)Y — O

There are two possibilities for dominant balance: a =1 and o = 1/2.

With a = 1, get Yy’ — Yo = 0. If this is only boundary layer, Y5(0) = A and
Y, = AeX. But this does not match outer solution!



Triple deck

Boundary layers can occur within boundary layers!
Consider

Ey'+x3y + (X —ey=0, y(0)=A y(1)=8.

The outer expansion solves x3y¢ + x3yo = 0 with yo(1) = B so that yo = Be' ™.

For inner expansion(s), let X = x/e, so y = Y/(X) solves
6372(1 Y// 4 6204)<3\/ + (63O‘X3 _ E)Y — O

There are two possibilities for dominant balance: a =1 and o = 1/2.

With a = 1, get Yy’ — Yo = 0. If this is only boundary layer, Y5(0) = A and
Y, = AeX. But this does not match outer solution!

With a = 1/2, let y = W(Z) with x = Z/€'/2. Then X3W; — Wy = 0, so that
Wo = coefl/zxz. Note that W(0) = 0 so this automatically matches the

behavior of the first boundary layer for X — oco. Also,
Yo(OO) = C = yo(O) = Be.



