Asymptotic Methods

Matched asymptotic expansions: exponentials, logarithms, multiple layers

Fluid meniscus u(r) satisfies

$$\frac{\epsilon^2}{r} \left(\frac{r u'}{[1+(u')^2]^{1/2}} \right)' = u, \quad 0 < r < 1, \quad u'(0) = 0, \quad u'(1) = \tan \theta_0.$$

Here ϵ is ratio of capillary length $\sqrt{\sigma/\rho g}$ to the dimensional cylinder radius.

Fluid meniscus u(r) satisfies

$$\frac{\epsilon^2}{r} \left(\frac{r u'}{[1+(u')^2]^{1/2}} \right)' = u, \quad 0 < r < 1, \quad u'(0) = 0, \quad u'(1) = \tan \theta_0.$$

Here ϵ is ratio of capillary length $\sqrt{\sigma/\rho g}$ to the dimensional cylinder radius. There are two regions: (I) $u' \ll 1$, and (II) curved part where $r \approx 1$.

Fluid meniscus u(r) satisfies

$$\frac{\epsilon^2}{r} \left(\frac{r u'}{[1+(u')^2]^{1/2}} \right)' = u, \quad 0 < r < 1, \quad u'(0) = 0, \quad u'(1) = \tan \theta_0.$$

Here ϵ is ratio of capillary length $\sqrt{\sigma/\rho g}$ to the dimensional cylinder radius. There are two regions: (I) $u' \ll 1$, and (II) curved part where $r \approx 1$.

For region I, expand $u = \nu_0(\epsilon)u_0(R) + \ldots$, where dominant balance requires $R = r/\epsilon$. Provided $\nu_0 \ll \epsilon$, leading order is

$$\frac{1}{R}(Ru'_0)'=u_0, \quad u'_0(0)=0.$$

Fluid meniscus u(r) satisfies

$$\frac{\epsilon^2}{r} \left(\frac{r u'}{[1+(u')^2]^{1/2}} \right)' = u, \quad 0 < r < 1, \quad u'(0) = 0, \quad u'(1) = \tan \theta_0.$$

Here ϵ is ratio of capillary length $\sqrt{\sigma/\rho g}$ to the dimensional cylinder radius. There are two regions: (I) $u' \ll 1$, and (II) curved part where $r \approx 1$.

For region I, expand $u = \nu_0(\epsilon)u_0(R) + \ldots$, where dominant balance requires $R = r/\epsilon$. Provided $\nu_0 \ll \epsilon$, leading order is

$$\frac{1}{R}(Ru'_0)'=u_0, \quad u'_0(0)=0.$$

The solution is a constant C times modified Bessel function

$$I_0=\frac{1}{\pi}\int_0^{\pi}e^{R\cos t}dt.$$

Matching needs the behavior for large R, easy by Laplace's method:

$$u_0 \sim \frac{C}{\pi} \int_0^{\pi} e^{R(1-t^2/2!)} dt = \frac{Ce^R}{\sqrt{2\pi R}} = C\epsilon^{1/2} e^{r/\epsilon} / \sqrt{2\pi R}$$

For Region II, use variable $X = (1 - r)/\epsilon$. Boundary condition $u'(1) = \tan \theta_0$ means $u = \epsilon U_0(X) + \ldots$, and

$$\left(rac{U_0'}{[1+(U_0')^2]^{1/2}}
ight)'=U_0, \quad U_0'(0)= an heta_0, \quad U_0'(\infty)=0$$

For Region II, use variable $X = (1 - r)/\epsilon$. Boundary condition $u'(1) = \tan \theta_0$ means $u = \epsilon U_0(X) + \ldots$, and

$$\left(rac{U_0'}{[1+(U_0')^2]^{1/2}}
ight)'=U_0, \quad U_0'(0)= an heta_0, \quad U_0'(\infty)=0.$$

Clever change of variables: use independent variable ψ defined as slope of profile, i.e. $\tan\psi=-\mathit{U}_0',$ so that

$$\frac{dX}{d\psi} = -\frac{\cos\psi}{U_0}, \quad \frac{dU_0}{d\psi} = -\frac{\sin\psi}{U_0}.$$

For Region II, use variable $X = (1 - r)/\epsilon$. Boundary condition $u'(1) = \tan \theta_0$ means $u = \epsilon U_0(X) + \ldots$, and

$$\left(rac{U_0'}{[1+(U_0')^2]^{1/2}}
ight)'=U_0, \quad U_0'(0)= an heta_0, \quad U_0'(\infty)=0.$$

Clever change of variables: use independent variable ψ defined as slope of profile, i.e. $\tan\psi=-U_0',$ so that

$$rac{dX}{d\psi}=-rac{\cos\psi}{U_0},\quad rac{dU_0}{d\psi}=-rac{\sin\psi}{U_0}.$$

Solutions to second is $U_0 = \sqrt{2(1 - \cos t)}$, and first has solution

$$X = \frac{1}{2} \int_{\psi}^{\theta_0} \frac{\cos t}{\sin(t/2)} dt = \ln \tan \theta_0 / 4 + 2\cos \theta_0 / 2 - \ln \tan \psi / 4 - 2\cos \psi / 2.$$

For Region II, use variable $X = (1 - r)/\epsilon$. Boundary condition $u'(1) = \tan \theta_0$ means $u = \epsilon U_0(X) + \ldots$, and

$$\left(rac{U_0'}{[1+(U_0')^2]^{1/2}}
ight)'=U_0, \quad U_0'(0)= an heta_0, \quad U_0'(\infty)=0.$$

Clever change of variables: use independent variable ψ defined as slope of profile, i.e. $\tan\psi=-U_0',$ so that

$$rac{dX}{d\psi}=-rac{\cos\psi}{U_0},\quad rac{dU_0}{d\psi}=-rac{\sin\psi}{U_0}.$$

Solutions to second is $U_0 = \sqrt{2(1 - \cos t)}$, and first has solution

$$X = \frac{1}{2} \int_{\psi}^{\theta_0} \frac{\cos t}{\sin(t/2)} dt = \ln \tan \theta_0 / 4 + 2\cos \theta_0 / 2 - \ln \tan \psi / 4 - 2\cos \psi / 2.$$

Need behavior as $X \to \infty$, same as $\psi \to 0$, gives

$$U_0(\psi)\sim\psi, \quad X(\psi)\sim \ln an heta_0/4+\cos heta_0/2-\ln\psi/4,$$

Thus as $X \to \infty$, have

$$U_0 \sim 4 \tan(heta_0/2) e^{-4 \sin^2 heta_0/4} e^{-X} \equiv \gamma e^{-1/\epsilon} e^{r/\epsilon}.$$

For Region II, use variable $X = (1 - r)/\epsilon$. Boundary condition $u'(1) = \tan \theta_0$ means $u = \epsilon U_0(X) + \ldots$, and

$$\left(rac{U_0'}{[1+(U_0')^2]^{1/2}}
ight)'=U_0, \quad U_0'(0)= an heta_0, \quad U_0'(\infty)=0.$$

Clever change of variables: use independent variable ψ defined as slope of profile, i.e. $\tan\psi=-U_0',$ so that

$$rac{dX}{d\psi}=-rac{\cos\psi}{U_0},\quad rac{dU_0}{d\psi}=-rac{\sin\psi}{U_0}.$$

Solutions to second is $U_0 = \sqrt{2(1 - \cos t)}$, and first has solution

$$X = \frac{1}{2} \int_{\psi}^{\theta_0} \frac{\cos t}{\sin(t/2)} dt = \ln \tan \theta_0 / 4 + 2\cos \theta_0 / 2 - \ln \tan \psi / 4 - 2\cos \psi / 2.$$

Need behavior as $X o \infty$, same as $\psi o 0$, gives

$$U_0(\psi)\sim\psi, \quad X(\psi)\sim \ln an heta_0/4+\cos heta_0/2-\ln\psi/4,$$

Thus as $X \to \infty$, have

$$U_0 \sim 4 \tan(\theta_0/2) e^{-4 \sin^2 \theta_0/4} e^{-X} \equiv \gamma e^{-1/\epsilon} e^{r/\epsilon}.$$

Finally, matching insists $C\nu_0(\epsilon)\epsilon^{1/2}e^{r/\epsilon}/\sqrt{2\pi} \sim \gamma e^{-1/\epsilon}e^{r/\epsilon}$, therefore $C\nu_0(\epsilon) = \gamma \sqrt{2\pi/\epsilon}e^{-1/\epsilon}$.

Very surprising: exponentially small (i.e. $\mathcal{O}(e^{-1/\epsilon})$) correction terms in the expansion are sometimes needed to determine even the leading order outer solution!

Very surprising: exponentially small (i.e. $\mathcal{O}(e^{-1/\epsilon})$) correction terms in the expansion are sometimes needed to determine even the leading order outer solution!

Consider

$$\epsilon y^{\prime\prime} - x y^{\prime} + \epsilon x y = 0, \quad y(-1) = a, \quad y(1) = b.$$

The leading order outer solution solves $y'_0 = 0$ so $y_0 = c$.

Very surprising: exponentially small (i.e. $\mathcal{O}(e^{-1/\epsilon})$) correction terms in the expansion are sometimes needed to determine even the leading order outer solution!

Consider

$$\epsilon y'' - xy' + \epsilon xy = 0, \quad y(-1) = a, \quad y(1) = b.$$

The leading order outer solution solves $y'_0 = 0$ so $y_0 = c$.

In general, boundary layers on both boundaries, so use $X = (x \pm 1)/\epsilon$, and let $y = Y_0(X) + \epsilon Y_1(X) + \ldots$ Leading order solution is

$$Y_0 = \begin{cases} c + (a - c)e^{-X}, & (\text{left}), \\ c + (b - c)e^X, & (\text{right}) \end{cases}$$

but nothing determines c, even at further orders $Y_n!$

Resolution: expand outer $y = y_0 + \epsilon y_1 + \ldots + z_0(x; \epsilon) + \ldots$ where z_0 is transcendentally small, e.g. $z_0 \sim e^{-x/\epsilon}$. In this case, we have dominant balance $\epsilon z_0'' - x z_0' = 0$, whose solution is

$$z_0 = B(\epsilon) + A(\epsilon) \int_{-1}^{x} e^{s^2/2\epsilon} ds.$$

Resolution: expand outer $y = y_0 + \epsilon y_1 + \ldots + z_0(x; \epsilon) + \ldots$ where z_0 is transcendentally small, e.g. $z_0 \sim e^{-x/\epsilon}$. In this case, we have dominant balance $\epsilon z_0'' - xz_0' = 0$, whose solution is

$$z_0 = B(\epsilon) + A(\epsilon) \int_{-1}^{x} e^{s^2/2\epsilon} ds.$$

To match, write in terms of inner variable and re-expand for small ϵ ,

$$\int_{-1}^{-1+\epsilon X} e^{s^2/2\epsilon} ds \sim \epsilon \left(\frac{e^{(-1+\epsilon X)^2/2\epsilon}}{-1+\epsilon X} + e^{1/2\epsilon} \right) \sim \epsilon (1-e^{-X}) e^{1/2\epsilon}.$$

with a similar expression for right boundary layer.

Resolution: expand outer $y = y_0 + \epsilon y_1 + \ldots + z_0(x; \epsilon) + \ldots$ where z_0 is transcendentally small, e.g. $z_0 \sim e^{-x/\epsilon}$. In this case, we have dominant balance $\epsilon z_0'' - xz_0' = 0$, whose solution is

$$z_0 = B(\epsilon) + A(\epsilon) \int_{-1}^{x} e^{s^2/2\epsilon} ds.$$

To match, write in terms of inner variable and re-expand for small ϵ ,

$$\int_{-1}^{-1+\epsilon X} e^{s^2/2\epsilon} ds \sim \epsilon \left(\frac{e^{(-1+\epsilon X)^2/2\epsilon}}{-1+\epsilon X} + e^{1/2\epsilon} \right) \sim \epsilon (1-e^{-X}) e^{1/2\epsilon}.$$

with a similar expression for right boundary layer.

The exponentially decaying terms in the leading order boundary layers now have something to match onto; this gives $\epsilon A(\epsilon)e^{1/2\epsilon} = c - a$ for left boundary layer and $\epsilon A(\epsilon)e^{1/2\epsilon} = b - c$ for right, with $B(\epsilon) = -\epsilon A(\epsilon)e^{1/2\epsilon}$ for both. Elimination yields c = (a + b)/2.

Occasionally, logarithmic behavior in x can't be matched without logarithmic order functions in the expansion. These extra terms are called switchbacks.

Occasionally, logarithmic behavior in x can't be matched without logarithmic order functions in the expansion. These extra terms are called switchbacks.

To illustrate this, consider the Lagerstrom model

$$y'' + \frac{2}{x}y' + \epsilon yy' = 0, \quad y(1) = 0, \quad y(\infty) = 1.$$

Expanding $y = y_0 + \epsilon y_1 + \dots$, $y_0'' + 2y_0'/x = 0$, so that $y_0 = C_0(1 - 1/x)$. Continuing, $y_1'' + 2y_1/x + 1/x^2 - 1/x^3 = 0$ with $y_1(0) = 0$, so that

$$y_1 = c_1(1-1/x) + \ln x - \ln x/x.$$

Notice that since $\epsilon y_0 y_0' \sim x^{-2}$, not valid for large x.

Occasionally, logarithmic behavior in x can't be matched without logarithmic order functions in the expansion. These extra terms are called switchbacks.

To illustrate this, consider the Lagerstrom model

$$y'' + \frac{2}{x}y' + \epsilon yy' = 0, \quad y(1) = 0, \quad y(\infty) = 1.$$

Expanding $y = y_0 + \epsilon y_1 + \dots$, $y_0'' + 2y_0'/x = 0$, so that $y_0 = C_0(1 - 1/x)$. Continuing, $y_1'' + 2y_1/x + 1/x^2 - 1/x^3 = 0$ with $y_1(0) = 0$, so that

$$y_1 = c_1(1 - 1/x) + \ln x - \ln x/x.$$

Notice that since $\epsilon y_0 y_0' \sim x^{-2},$ not valid for large x.

For large x, use variable $X = x\epsilon$, y = Y(X) and expand in powers of ϵ . Then $Y_0 = 1$ and $Y_1'' + (2/X + 1)Y_1' = 0$ where $Y_1(\infty) = 0$. The solution is

$$Y_1 = A_1 E_2(X), \quad E_2 = \int_X^\infty e^{-t} t^{-2} dt.$$

Matching will need behavior for small X, found by integration by parts as

$$E_2 \sim 1/X + \ln X + (\gamma - 1) - X/2 + \mathcal{O}(X^2)$$

Matching compares

$$y \sim (1 - \epsilon/X) + \epsilon c_1 (1 - \epsilon/X) - \epsilon \ln X + \epsilon \ln \epsilon$$

to

$$Y \sim 1 + A_1(\epsilon/X + \epsilon \ln X + \epsilon(\gamma - 1)),$$

so $A_1 = -1$ and $c_1 = \gamma - 1$. But what matches $\epsilon \ln \epsilon$ term???

Matching compares

$$y \sim (1 - \epsilon/X) + \epsilon c_1 (1 - \epsilon/X) - \epsilon \ln X + \epsilon \ln \epsilon$$

to

$$Y \sim 1 + A_1(\epsilon/X + \epsilon \ln X + \epsilon(\gamma - 1)),$$

so $A_1 = -1$ and $c_1 = \gamma - 1$. But what matches $\epsilon \ln \epsilon$ term???

Resolution: amend expansion $y = y_0 + \epsilon \ln \epsilon y^* + \epsilon y_1 + ...$, where y^* solves

$$(y^*)'' + (2/x)(y^*)' = 0, \quad y^*(1) = 0,$$

thus $y^* = c^*(1 - 1/x)$. Effect is new term when matching $c^* \epsilon \ln \epsilon (1 - \epsilon/x)$, which counterbalances existing $\epsilon \ln \epsilon$ term by the choice $c^* = -1$.

Matching compares

$$y \sim (1 - \epsilon/X) + \epsilon c_1 (1 - \epsilon/X) - \epsilon \ln X + \epsilon \ln \epsilon$$

to

$$Y \sim 1 + A_1(\epsilon/X + \epsilon \ln X + \epsilon(\gamma - 1)),$$

so $A_1 = -1$ and $c_1 = \gamma - 1$. But what matches $\epsilon \ln \epsilon$ term???

Resolution: amend expansion $y = y_0 + \epsilon \ln \epsilon y^* + \epsilon y_1 + ...$, where y^* solves

$$(y^*)'' + (2/x)(y^*)' = 0, \quad y^*(1) = 0,$$

thus $y^* = c^*(1 - 1/x)$. Effect is new term when matching $c^* \epsilon \ln \epsilon (1 - \epsilon/x)$, which counterbalances existing $\epsilon \ln \epsilon$ term by the choice $c^* = -1$.

Physical relevance: surface shear stress is

$$y'(1) \sim 1 - \epsilon \ln \epsilon - (\gamma + 1)\epsilon.$$

$$\epsilon^{3}y'' + x^{3}y' + (x^{3} - \epsilon)y = 0, \quad y(0) = A, \quad y(1) = B.$$

$$\epsilon^{3}y'' + x^{3}y' + (x^{3} - \epsilon)y = 0, \quad y(0) = A, \quad y(1) = B$$

The outer expansion solves $x^3y'_0 + x^3y_0 = 0$ with $y_0(1) = B$ so that $y_0 = Be^{1-x}$.

$$\epsilon^{3}y'' + x^{3}y' + (x^{3} - \epsilon)y = 0, \quad y(0) = A, \quad y(1) = B$$

The outer expansion solves $x^3y'_0 + x^3y_0 = 0$ with $y_0(1) = B$ so that $y_0 = Be^{1-x}$. For inner expansion(s), let $X = x/\epsilon^{\alpha}$, so y = Y(X) solves

$$\epsilon^{3-2\alpha}Y'' + \epsilon^{2\alpha}X^3Y + (\epsilon^{3\alpha}X^3 - \epsilon)Y = 0.$$

There are two possibilities for dominant balance: $\alpha = 1$ and $\alpha = 1/2$.

$$\epsilon^{3}y'' + x^{3}y' + (x^{3} - \epsilon)y = 0, \quad y(0) = A, \quad y(1) = B$$

The outer expansion solves $x^3y'_0 + x^3y_0 = 0$ with $y_0(1) = B$ so that $y_0 = Be^{1-x}$. For inner expansion(s), let $X = x/\epsilon^{\alpha}$, so y = Y(X) solves

$$\epsilon^{3-2\alpha}Y'' + \epsilon^{2\alpha}X^3Y + (\epsilon^{3\alpha}X^3 - \epsilon)Y = 0.$$

There are two possibilities for dominant balance: $\alpha = 1$ and $\alpha = 1/2$. With $\alpha = 1$, get $Y_0'' - Y_0 = 0$. If this is only boundary layer, $Y_0(0) = A$ and $Y_0 = Ae^{-X}$. But this does not match outer solution!

$$\epsilon^{3}y'' + x^{3}y' + (x^{3} - \epsilon)y = 0, \quad y(0) = A, \quad y(1) = B$$

The outer expansion solves $x^3y'_0 + x^3y_0 = 0$ with $y_0(1) = B$ so that $y_0 = Be^{1-x}$. For inner expansion(s), let $X = x/\epsilon^{\alpha}$, so y = Y(X) solves

$$\epsilon^{3-2\alpha}Y'' + \epsilon^{2\alpha}X^3Y + (\epsilon^{3\alpha}X^3 - \epsilon)Y = 0.$$

There are two possibilities for dominant balance: $\alpha = 1$ and $\alpha = 1/2$. With $\alpha = 1$, get $Y_0'' - Y_0 = 0$. If this is only boundary layer, $Y_0(0) = A$ and $Y_0 = Ae^{-X}$. But this does not match outer solution! With $\alpha = 1/2$, let y = W(Z) with $x = Z/\epsilon^{1/2}$. Then $X^3W_0' - W_0 = 0$, so that

 $W_0 = c_0 e^{-1/2X^2}$. Note that $W_0(0) = 0$ so this automatically matches the behavior of the first boundary layer for $X \to \infty$. Also,

$$Y_0(\infty) = c_0 = y_0(0) = Be.$$