
Asymptotic Methods

Matched asymptotic expansions: exponentials,
logarithms, multiple layers



Example: wide capillary tube

Fluid meniscus u(r) satisfies

ε2

r

(
ru′

[1 + (u′)2]1/2

)′
= u, 0 < r < 1, u′(0) = 0, u′(1) = tan θ0.

Here ε is ratio of capillary length
√
σ/ρg to the dimensional cylinder radius.

There are two regions: (I) u′ � 1, and (II) curved part where r ≈ 1.

For region I, expand u = ν0(ε)u0(R) + . . ., where dominant balance requires
R = r/ε. Provided ν0 � ε, leading order is

1

R
(Ru′0)′ = u0, u′0(0) = 0.

The solution is a constant C times modified Bessel function

I0 =
1

π

∫ π

0

eR cos tdt.

Matching needs the behavior for large R, easy by Laplace’s method:

u0 ∼
C

π

∫ π

0

eR(1−t2/2!)dt =
CeR√
2πR

= Cε1/2er/ε/
√

2π.
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Capillary tube, cont.

For Region II, use variable X = (1− r)/ε. Boundary condition u′(1) = tan θ0
means u = εU0(X ) + . . ., and(

U ′0
[1 + (U ′0)2]1/2

)′
= U0, U ′0(0) = tan θ0, U ′0(∞) = 0.

Clever change of variables: use independent variable ψ defined as slope of
profile, i.e. tanψ = −U ′0, so that

dX

dψ
= −cosψ

U0
,

dU0

dψ
= − sinψ

U0
.

Solutions to second is U0 =
√

2(1− cos t), and first has solution

X =
1

2

∫ θ0

ψ

cos t

sin(t/2)
dt = ln tan θ0/4 + 2 cos θ0/2− ln tanψ/4− 2 cosψ/2.

Need behavior as X →∞, same as ψ → 0, gives

U0(ψ) ∼ ψ, X (ψ) ∼ ln tan θ0/4 + cos θ0/2− lnψ/4,

Thus as X →∞, have

U0 ∼ 4 tan(θ0/2)e−4 sin2 θ0/4e−X ≡ γe−1/εer/ε.

Finally, matching insists Cν0(ε)ε1/2er/ε/
√

2π ∼ γe−1/εer/ε, therefore
Cν0(ε) = γ

√
2π/εe−1/ε.
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Effect of transcendentally small terms

Very surprising: exponentially small (i.e. O(e−1/ε)) correction terms in the
expansion are sometimes needed to determine even the leading order outer
solution!

Consider
εy ′′ − xy ′ + εxy = 0, y(−1) = a, y(1) = b.

The leading order outer solution solves y ′0 = 0 so y0 = c.

In general, boundary layers on both boundaries, so use X = (x ± 1)/ε, and let
y = Y0(X ) + εY1(X ) + . . .. Leading order solution is

Y0 =

{
c + (a− c)e−X , (left),

c + (b − c)eX , (right)

but nothing determines c, even at further orders Yn!
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Effect of transcendentally small terms,cont.

Resolution: expand outer y = y0 + εy1 + . . .+ z0(x ; ε) + . . . where z0 is
transcendentally small, e.g. z0 ∼ e−x/ε. In this case, we have dominant balance
εz ′′0 − xz ′0 = 0, whose solution is

z0 = B(ε) + A(ε)

∫ x

−1

es
2/2εds.

To match, write in terms of inner variable and re-expand for small ε,

∫ −1+εX

−1

es
2/2εds ∼ ε

(
e(−1+εX )2/2ε

−1 + εX
+ e1/2ε

)
∼ ε(1− e−X )e1/2ε.

with a similar expression for right boundary layer.

The exponentially decaying terms in the leading order boundary layers now
have something to match onto; this gives εA(ε)e1/2ε = c − a for left boundary
layer and εA(ε)e1/2ε = b − c for right, with B(ε) = −εA(ε)e1/2ε for both.
Elimination yields c = (a + b)/2.
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Switchback terms

Occasionally, logarithmic behavior in x can’t be matched without logarithmic
order functions in the expansion. These extra terms are called switchbacks.

To illustrate this, consider the Lagerstrom model

y ′′ +
2

x
y ′ + εyy ′ = 0, y(1) = 0, y(∞) = 1.

Expanding y = y0 + εy1 + . . ., y ′′0 + 2y ′0/x = 0, so that y0 = C0(1− 1/x).
Continuing, y ′′1 + 2y1/x + 1/x2 − 1/x3 = 0 with y1(0) = 0, so that

y1 = c1(1− 1/x) + ln x − ln x/x .

Notice that since εy0y
′
0 ∼ x−2, not valid for large x.

For large x , use variable X = xε, y = Y (X ) and expand in powers of ε. Then
Y0 = 1 and Y ′′1 + (2/X + 1)Y ′1 = 0 where Y1(∞) = 0. The solution is

Y1 = A1E2(X ), E2 =

∫ ∞
X

e−tt−2dt.

Matching will need behavior for small X , found by integration by parts as

E2 ∼ 1/X + lnX + (γ − 1)− X/2 +O(X 2)
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Switchback terms,cont.

Matching compares

y ∼ (1− ε/X ) + εc1(1− ε/X )− ε lnX + ε ln ε

to
Y ∼ 1 + A1(ε/X + ε lnX + ε(γ − 1)),

so A1 = −1 and c1 = γ − 1. But what matches ε ln ε term???

Resolution: amend expansion y = y0 + ε ln εy∗ + εy1 + ..., where y∗ solves

(y∗)′′ + (2/x)(y∗)′ = 0, y∗(1) = 0,

thus y∗ = c∗(1− 1/x). Effect is new term when matching c∗ε ln ε(1− ε/x),
which counterbalances existing ε ln ε term by the choice c∗ = −1.

Physical relevance: surface shear stress is

y ′(1) ∼ 1− ε ln ε− (γ + 1)ε.
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Triple deck

Boundary layers can occur within boundary layers!
Consider

ε3y ′′ + x3y ′ + (x3 − ε)y = 0, y(0) = A, y(1) = B.

The outer expansion solves x3y ′0 + x3y0 = 0 with y0(1) = B so that y0 = Be1−x .

For inner expansion(s), let X = x/εα, so y = Y (X ) solves

ε3−2αY ′′ + ε2αX 3Y + (ε3αX 3 − ε)Y = 0.

There are two possibilities for dominant balance: α = 1 and α = 1/2.

With α = 1, get Y ′′0 − Y0 = 0. If this is only boundary layer, Y0(0) = A and
Y0 = Ae−X . But this does not match outer solution!

With α = 1/2, let y = W (Z) with x = Z/ε1/2. Then X 3W ′0 −W0 = 0, so that

W0 = c0e
−1/2X 2

. Note that W0(0) = 0 so this automatically matches the
behavior of the first boundary layer for X →∞. Also,
Y0(∞) = c0 = y0(0) = Be.
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behavior of the first boundary layer for X →∞. Also,
Y0(∞) = c0 = y0(0) = Be.



Triple deck

Boundary layers can occur within boundary layers!
Consider

ε3y ′′ + x3y ′ + (x3 − ε)y = 0, y(0) = A, y(1) = B.

The outer expansion solves x3y ′0 + x3y0 = 0 with y0(1) = B so that y0 = Be1−x .

For inner expansion(s), let X = x/εα, so y = Y (X ) solves

ε3−2αY ′′ + ε2αX 3Y + (ε3αX 3 − ε)Y = 0.

There are two possibilities for dominant balance: α = 1 and α = 1/2.

With α = 1, get Y ′′0 − Y0 = 0. If this is only boundary layer, Y0(0) = A and
Y0 = Ae−X . But this does not match outer solution!

With α = 1/2, let y = W (Z) with x = Z/ε1/2. Then X 3W ′0 −W0 = 0, so that

W0 = c0e
−1/2X 2

. Note that W0(0) = 0 so this automatically matches the
behavior of the first boundary layer for X →∞. Also,
Y0(∞) = c0 = y0(0) = Be.


