Asymptotic Methods

Matched asymptotic expansions: exponentials, logarithms, multiple layers

Example: wide capillary tube

Fluid meniscus $u(r)$ satisfies

$$
\frac{\epsilon^{2}}{r}\left(\frac{r u^{\prime}}{\left[1+\left(u^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=u, \quad 0<r<1, \quad u^{\prime}(0)=0, \quad u^{\prime}(1)=\tan \theta_{0}
$$

Here ϵ is ratio of capillary length $\sqrt{\sigma / \rho g}$ to the dimensional cylinder radius.

Example: wide capillary tube

Fluid meniscus $u(r)$ satisfies

$$
\frac{\epsilon^{2}}{r}\left(\frac{r u^{\prime}}{\left[1+\left(u^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=u, \quad 0<r<1, \quad u^{\prime}(0)=0, \quad u^{\prime}(1)=\tan \theta_{0}
$$

Here ϵ is ratio of capillary length $\sqrt{\sigma / \rho g}$ to the dimensional cylinder radius.
There are two regions: (I) $u^{\prime} \ll 1$, and (II) curved part where $r \approx 1$.

Example: wide capillary tube

Fluid meniscus $u(r)$ satisfies

$$
\frac{\epsilon^{2}}{r}\left(\frac{r u^{\prime}}{\left[1+\left(u^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=u, \quad 0<r<1, \quad u^{\prime}(0)=0, \quad u^{\prime}(1)=\tan \theta_{0}
$$

Here ϵ is ratio of capillary length $\sqrt{\sigma / \rho g}$ to the dimensional cylinder radius.
There are two regions: (I) $u^{\prime} \ll 1$, and (II) curved part where $r \approx 1$.
For region I, expand $u=\nu_{0}(\epsilon) u_{0}(R)+\ldots$, where dominant balance requires $R=r / \epsilon$. Provided $\nu_{0} \ll \epsilon$, leading order is

$$
\frac{1}{R}\left(R u_{0}^{\prime}\right)^{\prime}=u_{0}, \quad u_{0}^{\prime}(0)=0
$$

Example: wide capillary tube

Fluid meniscus $u(r)$ satisfies

$$
\frac{\epsilon^{2}}{r}\left(\frac{r u^{\prime}}{\left[1+\left(u^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=u, \quad 0<r<1, \quad u^{\prime}(0)=0, \quad u^{\prime}(1)=\tan \theta_{0}
$$

Here ϵ is ratio of capillary length $\sqrt{\sigma / \rho g}$ to the dimensional cylinder radius.
There are two regions: (I) $u^{\prime} \ll 1$, and (II) curved part where $r \approx 1$.
For region I, expand $u=\nu_{0}(\epsilon) u_{0}(R)+\ldots$, where dominant balance requires $R=r / \epsilon$. Provided $\nu_{0} \ll \epsilon$, leading order is

$$
\frac{1}{R}\left(R u_{0}^{\prime}\right)^{\prime}=u_{0}, \quad u_{0}^{\prime}(0)=0
$$

The solution is a constant C times modified Bessel function

$$
I_{0}=\frac{1}{\pi} \int_{0}^{\pi} e^{R \cos t} d t
$$

Matching needs the behavior for large R, easy by Laplace's method:

$$
u_{0} \sim \frac{C}{\pi} \int_{0}^{\pi} e^{R\left(1-t^{2} / 2!\right)} d t=\frac{C e^{R}}{\sqrt{2 \pi R}}=C \epsilon^{1 / 2} e^{r / \epsilon} / \sqrt{2 \pi}
$$

Capillary tube, cont.

For Region II, use variable $X=(1-r) / \epsilon$. Boundary condition $u^{\prime}(1)=\tan \theta_{0}$ means $u=\epsilon U_{0}(X)+\ldots$, and

$$
\left(\frac{U_{0}^{\prime}}{\left[1+\left(U_{0}^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=U_{0}, \quad U_{0}^{\prime}(0)=\tan \theta_{0}, \quad U_{0}^{\prime}(\infty)=0
$$

Capillary tube, cont.

For Region II, use variable $X=(1-r) / \epsilon$. Boundary condition $u^{\prime}(1)=\tan \theta_{0}$ means $u=\epsilon U_{0}(X)+\ldots$, and

$$
\left(\frac{U_{0}^{\prime}}{\left[1+\left(U_{0}^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=U_{0}, \quad U_{0}^{\prime}(0)=\tan \theta_{0}, \quad U_{0}^{\prime}(\infty)=0
$$

Clever change of variables: use independent variable ψ defined as slope of profile, i.e. $\tan \psi=-U_{0}^{\prime}$, so that

$$
\frac{d X}{d \psi}=-\frac{\cos \psi}{U_{0}}, \quad \frac{d U_{0}}{d \psi}=-\frac{\sin \psi}{U_{0}}
$$

Capillary tube, cont.

For Region II, use variable $X=(1-r) / \epsilon$. Boundary condition $u^{\prime}(1)=\tan \theta_{0}$ means $u=\epsilon U_{0}(X)+\ldots$, and

$$
\left(\frac{U_{0}^{\prime}}{\left[1+\left(U_{0}^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=U_{0}, \quad U_{0}^{\prime}(0)=\tan \theta_{0}, \quad U_{0}^{\prime}(\infty)=0
$$

Clever change of variables: use independent variable ψ defined as slope of profile, i.e. $\tan \psi=-U_{0}^{\prime}$, so that

$$
\frac{d X}{d \psi}=-\frac{\cos \psi}{U_{0}}, \quad \frac{d U_{0}}{d \psi}=-\frac{\sin \psi}{U_{0}}
$$

Solutions to second is $U_{0}=\sqrt{2(1-\cos t)}$, and first has solution

$$
X=\frac{1}{2} \int_{\psi}^{\theta_{0}} \frac{\cos t}{\sin (t / 2)} d t=\ln \tan \theta_{0} / 4+2 \cos \theta_{0} / 2-\ln \tan \psi / 4-2 \cos \psi / 2
$$

Capillary tube, cont.

For Region II, use variable $X=(1-r) / \epsilon$. Boundary condition $u^{\prime}(1)=\tan \theta_{0}$ means $u=\epsilon U_{0}(X)+\ldots$, and

$$
\left(\frac{U_{0}^{\prime}}{\left[1+\left(U_{0}^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=U_{0}, \quad U_{0}^{\prime}(0)=\tan \theta_{0}, \quad U_{0}^{\prime}(\infty)=0
$$

Clever change of variables: use independent variable ψ defined as slope of profile, i.e. $\tan \psi=-U_{0}^{\prime}$, so that

$$
\frac{d X}{d \psi}=-\frac{\cos \psi}{U_{0}}, \quad \frac{d U_{0}}{d \psi}=-\frac{\sin \psi}{U_{0}} .
$$

Solutions to second is $U_{0}=\sqrt{2(1-\cos t)}$, and first has solution

$$
X=\frac{1}{2} \int_{\psi}^{\theta_{0}} \frac{\cos t}{\sin (t / 2)} d t=\operatorname{In} \tan \theta_{0} / 4+2 \cos \theta_{0} / 2-\operatorname{In} \tan \psi / 4-2 \cos \psi / 2
$$

Need behavior as $X \rightarrow \infty$, same as $\psi \rightarrow 0$, gives

$$
U_{0}(\psi) \sim \psi, \quad X(\psi) \sim \ln \tan \theta_{0} / 4+\cos \theta_{0} / 2-\ln \psi / 4
$$

Thus as $X \rightarrow \infty$, have

$$
U_{0} \sim 4 \tan \left(\theta_{0} / 2\right) e^{-4 \sin ^{2} \theta_{0} / 4} e^{-X} \equiv \gamma e^{-1 / \epsilon} e^{r / \epsilon}
$$

Capillary tube, cont.

For Region II, use variable $X=(1-r) / \epsilon$. Boundary condition $u^{\prime}(1)=\tan \theta_{0}$ means $u=\epsilon U_{0}(X)+\ldots$, and

$$
\left(\frac{U_{0}^{\prime}}{\left[1+\left(U_{0}^{\prime}\right)^{2}\right]^{1 / 2}}\right)^{\prime}=U_{0}, \quad U_{0}^{\prime}(0)=\tan \theta_{0}, \quad U_{0}^{\prime}(\infty)=0
$$

Clever change of variables: use independent variable ψ defined as slope of profile, i.e. $\tan \psi=-U_{0}^{\prime}$, so that

$$
\frac{d X}{d \psi}=-\frac{\cos \psi}{U_{0}}, \quad \frac{d U_{0}}{d \psi}=-\frac{\sin \psi}{U_{0}} .
$$

Solutions to second is $U_{0}=\sqrt{2(1-\cos t)}$, and first has solution

$$
X=\frac{1}{2} \int_{\psi}^{\theta_{0}} \frac{\cos t}{\sin (t / 2)} d t=\operatorname{In} \tan \theta_{0} / 4+2 \cos \theta_{0} / 2-\operatorname{In} \tan \psi / 4-2 \cos \psi / 2
$$

Need behavior as $X \rightarrow \infty$, same as $\psi \rightarrow 0$, gives

$$
U_{0}(\psi) \sim \psi, \quad X(\psi) \sim \ln \tan \theta_{0} / 4+\cos \theta_{0} / 2-\ln \psi / 4
$$

Thus as $X \rightarrow \infty$, have

$$
U_{0} \sim 4 \tan \left(\theta_{0} / 2\right) e^{-4 \sin ^{2} \theta_{0} / 4} e^{-X} \equiv \gamma e^{-1 / \epsilon} e^{r / \epsilon}
$$

Finally, matching insists $C \nu_{0}(\epsilon) \epsilon^{1 / 2} e^{r / \epsilon} / \sqrt{2 \pi} \sim \gamma e^{-1 / \epsilon} e^{r / \epsilon}$, therefore $C \nu_{0}(\epsilon)=\gamma \sqrt{2 \pi / \epsilon} e^{-1 / \epsilon}$.

Effect of transcendentally small terms

Very surprising: exponentially small (i.e. $\mathcal{O}\left(e^{-1 / \epsilon}\right)$) correction terms in the expansion are sometimes needed to determine even the leading order outer solution!

Effect of transcendentally small terms

Very surprising: exponentially small (i.e. $\mathcal{O}\left(e^{-1 / \epsilon}\right)$) correction terms in the expansion are sometimes needed to determine even the leading order outer solution!

Consider

$$
\epsilon y^{\prime \prime}-x y^{\prime}+\epsilon x y=0, \quad y(-1)=a, \quad y(1)=b
$$

The leading order outer solution solves $y_{0}^{\prime}=0$ so $y_{0}=c$.

Very surprising: exponentially small (i.e. $\mathcal{O}\left(e^{-1 / \epsilon}\right)$) correction terms in the expansion are sometimes needed to determine even the leading order outer solution!

Consider

$$
\epsilon y^{\prime \prime}-x y^{\prime}+\epsilon x y=0, \quad y(-1)=a, \quad y(1)=b .
$$

The leading order outer solution solves $y_{0}^{\prime}=0$ so $y_{0}=c$.
In general, boundary layers on both boundaries, so use $X=(x \pm 1) / \epsilon$, and let $y=Y_{0}(X)+\epsilon Y_{1}(X)+\ldots$. Leading order solution is

$$
Y_{0}=\left\{\begin{array}{lr}
c+(a-c) e^{-x}, & (\text { left }), \\
c+(b-c) e^{x}, & \text { (right) }
\end{array}\right.
$$

but nothing determines c, even at further orders Y_{n} !

Effect of transcendentally small terms,cont.

Resolution: expand outer $y=y_{0}+\epsilon y_{1}+\ldots+z_{0}(x ; \epsilon)+\ldots$ where z_{0} is transcendentally small, e.g. $z_{0} \sim e^{-x / \epsilon}$. In this case, we have dominant balance $\epsilon z_{0}^{\prime \prime}-x z_{0}^{\prime}=0$, whose solution is

$$
z_{0}=B(\epsilon)+A(\epsilon) \int_{-1}^{x} e^{s^{2} / 2 \epsilon} d s
$$

Effect of transcendentally small terms,cont.

Resolution: expand outer $y=y_{0}+\epsilon y_{1}+\ldots+z_{0}(x ; \epsilon)+\ldots$ where z_{0} is transcendentally small, e.g. $z_{0} \sim e^{-x / \epsilon}$. In this case, we have dominant balance $\epsilon z_{0}^{\prime \prime}-x z_{0}^{\prime}=0$, whose solution is

$$
z_{0}=B(\epsilon)+A(\epsilon) \int_{-1}^{x} e^{s^{2} / 2 \epsilon} d s
$$

To match, write in terms of inner variable and re-expand for small ϵ,

$$
\int_{-1}^{-1+\epsilon X} e^{s^{2} / 2 \epsilon} d s \sim \epsilon\left(\frac{e^{(-1+\epsilon X)^{2} / 2 \epsilon}}{-1+\epsilon X}+e^{1 / 2 \epsilon}\right) \sim \epsilon\left(1-e^{-X}\right) e^{1 / 2 \epsilon}
$$

with a similar expression for right boundary layer.

Effect of transcendentally small terms,cont.

Resolution: expand outer $y=y_{0}+\epsilon y_{1}+\ldots+z_{0}(x ; \epsilon)+\ldots$ where z_{0} is transcendentally small, e.g. $z_{0} \sim e^{-x / \epsilon}$. In this case, we have dominant balance $\epsilon z_{0}^{\prime \prime}-x z_{0}^{\prime}=0$, whose solution is

$$
z_{0}=B(\epsilon)+A(\epsilon) \int_{-1}^{x} e^{s^{2} / 2 \epsilon} d s
$$

To match, write in terms of inner variable and re-expand for small ϵ,

$$
\int_{-1}^{-1+\epsilon X} e^{s^{2} / 2 \epsilon} d s \sim \epsilon\left(\frac{e^{(-1+\epsilon X)^{2} / 2 \epsilon}}{-1+\epsilon X}+e^{1 / 2 \epsilon}\right) \sim \epsilon\left(1-e^{-X}\right) e^{1 / 2 \epsilon}
$$

with a similar expression for right boundary layer.
The exponentially decaying terms in the leading order boundary layers now have something to match onto; this gives $\epsilon A(\epsilon) e^{1 / 2 \epsilon}=c-a$ for left boundary layer and $\epsilon A(\epsilon) e^{1 / 2 \epsilon}=b-c$ for right, with $B(\epsilon)=-\epsilon A(\epsilon) e^{1 / 2 \epsilon}$ for both. Elimination yields $c=(a+b) / 2$.

Switchback terms

Occasionally, logarithmic behavior in x can't be matched without logarithmic order functions in the expansion. These extra terms are called switchbacks.

Switchback terms

Occasionally, logarithmic behavior in x can't be matched without logarithmic order functions in the expansion. These extra terms are called switchbacks.

To illustrate this, consider the Lagerstrom model

$$
y^{\prime \prime}+\frac{2}{x} y^{\prime}+\epsilon y y^{\prime}=0, \quad y(1)=0, \quad y(\infty)=1
$$

Expanding $y=y_{0}+\epsilon y_{1}+\ldots, y_{0}^{\prime \prime}+2 y_{0}^{\prime} / x=0$, so that $y_{0}=C_{0}(1-1 / x)$. Continuing, $y_{1}^{\prime \prime}+2 y_{1} / x+1 / x^{2}-1 / x^{3}=0$ with $y_{1}(0)=0$, so that

$$
y_{1}=c_{1}(1-1 / x)+\ln x-\ln x / x
$$

Notice that since $\epsilon y_{0} y_{0}^{\prime} \sim x^{-2}$, not valid for large x .

Switchback terms

Occasionally, logarithmic behavior in x can't be matched without logarithmic order functions in the expansion. These extra terms are called switchbacks.

To illustrate this, consider the Lagerstrom model

$$
y^{\prime \prime}+\frac{2}{x} y^{\prime}+\epsilon y y^{\prime}=0, \quad y(1)=0, \quad y(\infty)=1
$$

Expanding $y=y_{0}+\epsilon y_{1}+\ldots, y_{0}^{\prime \prime}+2 y_{0}^{\prime} / x=0$, so that $y_{0}=C_{0}(1-1 / x)$.
Continuing, $y_{1}^{\prime \prime}+2 y_{1} / x+1 / x^{2}-1 / x^{3}=0$ with $y_{1}(0)=0$, so that

$$
y_{1}=c_{1}(1-1 / x)+\ln x-\ln x / x
$$

Notice that since $\epsilon y_{0} y_{0}^{\prime} \sim x^{-2}$, not valid for large x .
For large x, use variable $X=x \epsilon, y=Y(X)$ and expand in powers of ϵ. Then $Y_{0}=1$ and $Y_{1}^{\prime \prime}+(2 / X+1) Y_{1}^{\prime}=0$ where $Y_{1}(\infty)=0$. The solution is

$$
Y_{1}=A_{1} E_{2}(X), \quad E_{2}=\int_{X}^{\infty} e^{-t} t^{-2} d t
$$

Matching will need behavior for small X, found by integration by parts as

$$
E_{2} \sim 1 / X+\ln X+(\gamma-1)-X / 2+\mathcal{O}\left(X^{2}\right)
$$

Switchback terms,cont.

Matching compares

$$
y \sim(1-\epsilon / X)+\epsilon c_{1}(1-\epsilon / X)-\epsilon \ln X+\epsilon \ln \epsilon
$$

to

$$
Y \sim 1+A_{1}(\epsilon / X+\epsilon \ln X+\epsilon(\gamma-1))
$$

so $A_{1}=-1$ and $c_{1}=\gamma-1$. But what matches $\epsilon \ln \epsilon$ term???

Switchback terms,cont.

Matching compares

$$
y \sim(1-\epsilon / X)+\epsilon c_{1}(1-\epsilon / X)-\epsilon \ln X+\epsilon \ln \epsilon
$$

to

$$
Y \sim 1+A_{1}(\epsilon / X+\epsilon \ln X+\epsilon(\gamma-1))
$$

so $A_{1}=-1$ and $c_{1}=\gamma-1$. But what matches $\epsilon \ln \epsilon$ term???
Resolution: amend expansion $y=y_{0}+\epsilon \ln \epsilon y^{*}+\epsilon y_{1}+\ldots$, where y^{*} solves

$$
\left(y^{*}\right)^{\prime \prime}+(2 / x)\left(y^{*}\right)^{\prime}=0, \quad y^{*}(1)=0
$$

thus $y^{*}=c^{*}(1-1 / x)$. Effect is new term when matching $c^{*} \epsilon \ln \epsilon(1-\epsilon / x)$, which counterbalances existing $\epsilon \ln \epsilon$ term by the choice $c^{*}=-1$.

Switchback terms,cont.

Matching compares

$$
y \sim(1-\epsilon / X)+\epsilon c_{1}(1-\epsilon / X)-\epsilon \ln X+\epsilon \ln \epsilon
$$

to

$$
Y \sim 1+A_{1}(\epsilon / X+\epsilon \ln X+\epsilon(\gamma-1))
$$

so $A_{1}=-1$ and $c_{1}=\gamma-1$. But what matches $\epsilon \ln \epsilon$ term???
Resolution: amend expansion $y=y_{0}+\epsilon \ln \epsilon y^{*}+\epsilon y_{1}+\ldots$, where y^{*} solves

$$
\left(y^{*}\right)^{\prime \prime}+(2 / x)\left(y^{*}\right)^{\prime}=0, \quad y^{*}(1)=0
$$

thus $y^{*}=c^{*}(1-1 / x)$. Effect is new term when matching $c^{*} \epsilon \ln \epsilon(1-\epsilon / x)$, which counterbalances existing $\epsilon \ln \epsilon$ term by the choice $c^{*}=-1$.
Physical relevance: surface shear stress is

$$
y^{\prime}(1) \sim 1-\epsilon \ln \epsilon-(\gamma+1) \epsilon
$$

Triple deck

Boundary layers can occur within boundary layers!
Consider

$$
\epsilon^{3} y^{\prime \prime}+x^{3} y^{\prime}+\left(x^{3}-\epsilon\right) y=0, \quad y(0)=A, \quad y(1)=B
$$

Triple deck

Boundary layers can occur within boundary layers!
Consider

$$
\epsilon^{3} y^{\prime \prime}+x^{3} y^{\prime}+\left(x^{3}-\epsilon\right) y=0, \quad y(0)=A, \quad y(1)=B
$$

The outer expansion solves $x^{3} y_{0}^{\prime}+x^{3} y_{0}=0$ with $y_{0}(1)=B$ so that $y_{0}=B e^{1-x}$.

Triple deck

Boundary layers can occur within boundary layers!
Consider

$$
\epsilon^{3} y^{\prime \prime}+x^{3} y^{\prime}+\left(x^{3}-\epsilon\right) y=0, \quad y(0)=A, \quad y(1)=B .
$$

The outer expansion solves $x^{3} y_{0}^{\prime}+x^{3} y_{0}=0$ with $y_{0}(1)=B$ so that $y_{0}=B e^{1-x}$.
For inner expansion(s), let $X=x / \epsilon^{\alpha}$, so $y=Y(X)$ solves

$$
\epsilon^{3-2 \alpha} Y^{\prime \prime}+\epsilon^{2 \alpha} X^{3} Y+\left(\epsilon^{3 \alpha} X^{3}-\epsilon\right) Y=0
$$

There are two possibilities for dominant balance: $\alpha=1$ and $\alpha=1 / 2$.

Triple deck

Boundary layers can occur within boundary layers!
Consider

$$
\epsilon^{3} y^{\prime \prime}+x^{3} y^{\prime}+\left(x^{3}-\epsilon\right) y=0, \quad y(0)=A, \quad y(1)=B .
$$

The outer expansion solves $x^{3} y_{0}^{\prime}+x^{3} y_{0}=0$ with $y_{0}(1)=B$ so that $y_{0}=B e^{1-x}$.
For inner expansion(s), let $X=x / \epsilon^{\alpha}$, so $y=Y(X)$ solves

$$
\epsilon^{3-2 \alpha} Y^{\prime \prime}+\epsilon^{2 \alpha} X^{3} Y+\left(\epsilon^{3 \alpha} X^{3}-\epsilon\right) Y=0
$$

There are two possibilities for dominant balance: $\alpha=1$ and $\alpha=1 / 2$.
With $\alpha=1$, get $Y_{0}^{\prime \prime}-Y_{0}=0$. If this is only boundary layer, $Y_{0}(0)=A$ and $Y_{0}=A e^{-X}$. But this does not match outer solution!

Boundary layers can occur within boundary layers!
Consider

$$
\epsilon^{3} y^{\prime \prime}+x^{3} y^{\prime}+\left(x^{3}-\epsilon\right) y=0, \quad y(0)=A, \quad y(1)=B
$$

The outer expansion solves $x^{3} y_{0}^{\prime}+x^{3} y_{0}=0$ with $y_{0}(1)=B$ so that $y_{0}=B e^{1-x}$.
For inner expansion(s), let $X=x / \epsilon^{\alpha}$, so $y=Y(X)$ solves

$$
\epsilon^{3-2 \alpha} Y^{\prime \prime}+\epsilon^{2 \alpha} X^{3} Y+\left(\epsilon^{3 \alpha} X^{3}-\epsilon\right) Y=0
$$

There are two possibilities for dominant balance: $\alpha=1$ and $\alpha=1 / 2$.
With $\alpha=1$, get $Y_{0}^{\prime \prime}-Y_{0}=0$. If this is only boundary layer, $Y_{0}(0)=A$ and $Y_{0}=A e^{-X}$. But this does not match outer solution!
With $\alpha=1 / 2$, let $y=W(Z)$ with $x=Z / \epsilon^{1 / 2}$. Then $X^{3} W_{0}^{\prime}-W_{0}=0$, so that $W_{0}=c_{0} e^{-1 / 2 X^{2}}$. Note that $W_{0}(0)=0$ so this automatically matches the behavior of the first boundary layer for $X \rightarrow \infty$. Also,
$Y_{0}(\infty)=c_{0}=y_{0}(0)=B e$.

