Asymptotic Methods

Higher dimensional and moving internal layers

Moving internal layers

Many time-dependent PDEs have internal layers which move as a response to the outer solutions surrounding them. This case is handled using a moving, scaled coordinate system like $z=\left(x-x_{0}(t)\right) / \epsilon^{\alpha}$, where $x_{0}(t)$ is the position of the layer at time t.

Moving internal layers

Many time-dependent PDEs have internal layers which move as a response to the outer solutions surrounding them. This case is handled using a moving, scaled coordinate system like $z=\left(x-x_{0}(t)\right) / \epsilon^{\alpha}$, where $x_{0}(t)$ is the position of the layer at time t. As an example, consider the viscous conservation law

$$
u_{t}+J(u)_{x}=\epsilon u_{x x}, \quad-\infty<x<\infty
$$

where J is a convex ("flux") function. For $\epsilon=0$, there may be discontinuous solutions known as shocks. The effect of the ϵ term is to smooth these out into moving internal layers.

Moving internal layers

Many time-dependent PDEs have internal layers which move as a response to the outer solutions surrounding them. This case is handled using a moving, scaled coordinate system like $z=\left(x-x_{0}(t)\right) / \epsilon^{\alpha}$, where $x_{0}(t)$ is the position of the layer at time t. As an example, consider the viscous conservation law

$$
u_{t}+J(u)_{x}=\epsilon u_{x x}, \quad-\infty<x<\infty
$$

where J is a convex ("flux") function. For $\epsilon=0$, there may be discontinuous solutions known as shocks. The effect of the ϵ term is to smooth these out into moving internal layers.
The outer solution here is prescribed as $u=u_{-}$for $x<x_{0}(t)$ and $u=u_{+}$for $x>x_{0}(t)$. Using $z=\left(x-x_{0}(t)\right) / \epsilon$ as the new spatial variable gives

$$
\epsilon u_{t}-x_{0}^{\prime}(t) u_{z}+J(u)_{z}=u_{z z}
$$

Moving internal layers

Many time-dependent PDEs have internal layers which move as a response to the outer solutions surrounding them. This case is handled using a moving, scaled coordinate system like $z=\left(x-x_{0}(t)\right) / \epsilon^{\alpha}$, where $x_{0}(t)$ is the position of the layer at time t. As an example, consider the viscous conservation law

$$
u_{t}+J(u)_{x}=\epsilon u_{x x}, \quad-\infty<x<\infty
$$

where J is a convex ("flux") function. For $\epsilon=0$, there may be discontinuous solutions known as shocks. The effect of the ϵ term is to smooth these out into moving internal layers.
The outer solution here is prescribed as $u=u_{-}$for $x<x_{0}(t)$ and $u=u_{+}$for $x>x_{0}(t)$. Using $z=\left(x-x_{0}(t)\right) / \epsilon$ as the new spatial variable gives

$$
\epsilon u_{t}-x_{0}^{\prime}(t) u_{z}+J(u)_{z}=u_{z z}
$$

The leading order problem is obtained by ignoring the ϵ term, integrates to

$$
-x_{0}^{\prime}(t) u_{0}+J\left(u_{0}\right)=u_{0 z}+C
$$

Moving internal layers

Many time-dependent PDEs have internal layers which move as a response to the outer solutions surrounding them. This case is handled using a moving, scaled coordinate system like $z=\left(x-x_{0}(t)\right) / \epsilon^{\alpha}$, where $x_{0}(t)$ is the position of the layer at time t. As an example, consider the viscous conservation law

$$
u_{t}+J(u)_{x}=\epsilon u_{x x}, \quad-\infty<x<\infty
$$

where J is a convex ("flux") function. For $\epsilon=0$, there may be discontinuous solutions known as shocks. The effect of the ϵ term is to smooth these out into moving internal layers.
The outer solution here is prescribed as $u=u_{-}$for $x<x_{0}(t)$ and $u=u_{+}$for $x>x_{0}(t)$. Using $z=\left(x-x_{0}(t)\right) / \epsilon$ as the new spatial variable gives

$$
\epsilon u_{t}-x_{0}^{\prime}(t) u_{z}+J(u)_{z}=u_{z z}
$$

The leading order problem is obtained by ignoring the ϵ term, integrates to

$$
-x_{0}^{\prime}(t) u_{0}+J\left(u_{0}\right)=u_{0 z}+C
$$

Matching gives $\lim _{z \rightarrow \infty} u_{0}(z)=u_{ \pm}$so

$$
-x_{0}^{\prime}(t) u_{-}+J\left(u_{-}\right)=C=-x_{0}^{\prime}(t) u_{+}+J\left(u_{+}\right)
$$

or

$$
x_{0}^{\prime}(t)=\frac{J\left(u_{+}\right)-J\left(u_{-}\right)}{u_{+}-u_{-}}, \quad \text { (Rankine-Hugoniot condition) }
$$

Higher dimensional boundary layers
Problems in two spatial dimensions can have boundary layers which are curved; need a coordinate system (r, s) fitted to geometry

Higher dimensional boundary layers

Problems in two spatial dimensions can have boundary layers which are curved; need a coordinate system (r, s) fitted to geometry

Let $\gamma(s)$ parameterize boundary $\partial \Omega$,
define new coordinates implicitly by

$$
x=\gamma(s(x))+r(x) \hat{\mathbf{n}}(s(x))
$$

Higher dimensional boundary layers

Problems in two spatial dimensions can have boundary layers which are curved; need a coordinate system (r, s) fitted to geometry

$$
\text { Let } \gamma(s) \text { parameterize boundary } \partial \Omega \text {, }
$$

define new coordinates implicitly by

$$
x=\gamma(s(x))+r(x) \hat{\mathbf{n}}(s(x))
$$

Want gradient and Laplacian in new coordinates; differentiation gives

$$
I=\hat{\mathbf{t}}(1-\kappa r) \otimes \nabla s+\hat{\mathbf{n}} \otimes \nabla r
$$

where I is the identity and the Frenet formulas were used.

Higher dimensional boundary layers

Problems in two spatial dimensions can have boundary layers which are curved; need a coordinate system (r, s) fitted to geometry

$$
\text { Let } \gamma(s) \text { parameterize boundary } \partial \Omega \text {, }
$$

define new coordinates implicitly by

$$
x=\gamma(s(x))+r(x) \hat{\mathbf{n}}(s(x))
$$

Want gradient and Laplacian in new coordinates; differentiation gives

$$
I=\hat{\mathbf{t}}(1-\kappa r) \otimes \nabla s+\hat{\mathbf{n}} \otimes \nabla r .
$$

where I is the identity and the Frenet formulas were used. Taking dot products with $\hat{\mathbf{t}}$ and $\hat{\mathbf{n}}$ gives

$$
\nabla s=\hat{\mathbf{t}}(1-\kappa r), \quad \nabla r=\hat{\mathbf{n}} .
$$

Laplacian of r, s obtained by taking divergence

$$
\Delta r=d \hat{\mathbf{n}} / d s \cdot \nabla s=-\kappa /(1-\kappa r), \quad \Delta s=\kappa^{\prime}(s) r /(1-\kappa r)^{3}
$$

Higher dimensional boundary layers

Problems in two spatial dimensions can have boundary layers which are curved; need a coordinate system (r, s) fitted to geometry

$$
\text { Let } \gamma(s) \text { parameterize boundary } \partial \Omega \text {, }
$$

define new coordinates implicitly by

$$
x=\gamma(s(x))+r(x) \hat{\mathbf{n}}(s(x))
$$

Want gradient and Laplacian in new coordinates; differentiation gives

$$
I=\hat{\mathbf{t}}(1-\kappa r) \otimes \nabla s+\hat{\mathbf{n}} \otimes \nabla r
$$

where I is the identity and the Frenet formulas were used. Taking dot products with $\hat{\mathbf{t}}$ and $\hat{\mathbf{n}}$ gives

$$
\nabla s=\hat{\mathbf{t}}(1-\kappa r), \quad \nabla r=\hat{\mathbf{n}} .
$$

Laplacian of r, s obtained by taking divergence

$$
\Delta r=d \hat{\mathbf{n}} / d s \cdot \nabla s=-\kappa /(1-\kappa r), \quad \Delta s=\kappa^{\prime}(s) r /(1-\kappa r)^{3}
$$

Finally, for a function $u(x)=u(r, s)$,

$$
\Delta u=u_{r r}|\nabla r|^{2}+u_{s s}|\nabla s|^{2}+2 u_{s r} \nabla s \cdot \nabla r+u_{r} \Delta r+u_{s} \Delta s=u_{r r}-\frac{\kappa u_{r}}{1-\kappa r}+\frac{1}{1-\kappa r}\left(\frac{u_{s}}{1-\kappa r}\right)_{s}
$$

Example: diffusion layer

We want behavior for small t for

$$
u_{t}=D \Delta u, \quad u=u_{b} \text { on } \partial \Omega, \quad u(x, 0)=0
$$

Example: diffusion layer

We want behavior for small t for

$$
u_{t}=D \Delta u, \quad u=u_{b} \text { on } \partial \Omega, \quad u(x, 0)=0
$$

Use Laplace transform $U(x, \sigma)=\int_{0}^{\infty} e^{-\sigma t} u(x, t) d t$. The limit $t \rightarrow 0$ is the same as $\sigma \rightarrow \infty$, so set $\epsilon=D / \sigma, V=\sigma U$ where

$$
\epsilon \Delta V-V=0, \quad V=u_{b} \text { on } \partial \Omega
$$

Example: diffusion layer

We want behavior for small t for

$$
u_{t}=D \Delta u, \quad u=u_{b} \text { on } \partial \Omega, \quad u(x, 0)=0
$$

Use Laplace transform $U(x, \sigma)=\int_{0}^{\infty} e^{-\sigma t} u(x, t) d t$. The limit $t \rightarrow 0$ is the same as $\sigma \rightarrow \infty$, so set $\epsilon=D / \sigma, V=\sigma U$ where

$$
\epsilon \Delta V-V=0, \quad V=u_{b} \text { on } \partial \Omega
$$

The outer solution away from the boundary is simply $V=0$. The inner uses fitted coordinates and solves

$$
\epsilon\left[V_{r r}-\frac{\kappa V_{r}}{1-\kappa r}+\frac{1}{1-\kappa r}\left(\frac{V_{s}}{1-\kappa r}\right)_{s}\right]-V=0, \quad V(r=0, s)=u_{b}(s)
$$

Diffusion layer,cont.

Introduce stretched coordinate $z=r / \epsilon^{1 / 2}$ so equation becomes

$$
\begin{array}{r}
V_{z z}-\kappa \epsilon^{1 / 2} V_{z}-V=\mathcal{O}(\epsilon) . \text { Expand } V=V_{0}+\epsilon^{1 / 2} V_{1}+\ldots \text { so } \\
V_{0 z z}-V_{0}=0, \quad V_{0}(0, s)=u_{b}, \quad V_{0}(\infty, s)=0 .
\end{array}
$$

whose solution is $V_{0}=u_{b} e^{-z}$.

Introduce stretched coordinate $z=r / \epsilon^{1 / 2}$ so equation becomes

$$
V_{z z}-\kappa \epsilon^{1 / 2} V_{z}-V=\mathcal{O}(\epsilon) \text {. Expand } V=V_{0}+\epsilon^{1 / 2} V_{1}+\ldots \text { so }
$$

$$
V_{0 z z}-V_{0}=0, \quad V_{0}(0, s)=u_{b}, \quad V_{0}(\infty, s)=0 .
$$

whose solution is $V_{0}=u_{b} e^{-z}$.
Next order solves

$$
V_{1 z z}-V_{1}=\kappa(s) V_{0 z}, \quad V_{1}(0, s)=0, \quad V_{1}(\infty, s)=0 .
$$

whose solution is $V_{1}=u_{b} \kappa z e^{-z} / 2$.

Introduce stretched coordinate $z=r / \epsilon^{1 / 2}$ so equation becomes $V_{z z}-\kappa \epsilon^{1 / 2} V_{z}-V=\mathcal{O}(\epsilon)$. Expand $V=V_{0}+\epsilon^{1 / 2} V_{1}+\ldots$ so

$$
V_{0 z z}-V_{0}=0, \quad V_{0}(0, s)=u_{b}, \quad V_{0}(\infty, s)=0
$$

whose solution is $V_{0}=u_{b} e^{-z}$.
Next order solves

$$
V_{1 z z}-V_{1}=\kappa(s) V_{0 z}, \quad V_{1}(0, s)=0, \quad V_{1}(\infty, s)=0
$$

whose solution is $V_{1}=u_{b} \kappa z e^{-z} / 2$.
It follows that $U \sim\left(u_{b} / \sigma\right)\left[e^{-x / \epsilon^{1 / 2}}+(\kappa r / 2) e^{-r / \epsilon^{1 / 2}}\right]$, whose inverse Laplace transform is

$$
u(x, t) \sim u_{b}(1+\kappa(s) r / 2) \operatorname{erfc}(r /(2 \sqrt{D t}))
$$

A moving, multidimensional internal layer

The Allen-Cahn equation is

$$
\epsilon^{2} u_{t}=\epsilon^{2} \Delta u+2 u\left(1-u^{2}\right), \quad x \in \mathbb{R}^{2} .
$$

where initial condition is $u=-1$ outside a closed curve $\Gamma(0)$ and $u=1$ inside. Question: how does curve $\Gamma(t)$ move?

A moving, multidimensional internal layer

The Allen-Cahn equation is

$$
\epsilon^{2} u_{t}=\epsilon^{2} \Delta u+2 u\left(1-u^{2}\right), \quad x \in \mathbb{R}^{2}
$$

where initial condition is $u=-1$ outside a closed curve $\Gamma(0)$ and $u=1$ inside. Question: how does curve $\Gamma(t)$ move?
In this problem, the outer solution is always $u= \pm 1$. The inner solution uses fitted, stretched coordinates (z, s, t) where $z=r / \epsilon$ and $r=r(x, t)$, $s=s(x, t)$; equation is

$$
\epsilon^{2} u_{t}+\epsilon u_{z} r_{t}+\epsilon^{2} u_{s} s_{t}=u_{z z}-\epsilon \kappa u_{z}+2 u\left(1-u^{2}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

A moving, multidimensional internal layer

The Allen-Cahn equation is

$$
\epsilon^{2} u_{t}=\epsilon^{2} \Delta u+2 u\left(1-u^{2}\right), \quad x \in \mathbb{R}^{2}
$$

where initial condition is $u=-1$ outside a closed curve $\Gamma(0)$ and $u=1$ inside. Question: how does curve $\Gamma(t)$ move?
In this problem, the outer solution is always $u= \pm 1$. The inner solution uses fitted, stretched coordinates (z, s, t) where $z=r / \epsilon$ and $r=r(x, t)$, $s=s(x, t)$; equation is

$$
\epsilon^{2} u_{t}+\epsilon u_{z} r_{t}+\epsilon^{2} u_{s} s_{t}=u_{z z}-\epsilon \kappa u_{z}+2 u\left(1-u^{2}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

Leading order solves $u_{0 z z}+2 u\left(1-u^{2}\right)=0, u_{0}(\pm \infty, s, t)= \pm 1$, so that $u_{0}=\tanh (z)$.

A moving, multidimensional internal layer

The Allen-Cahn equation is

$$
\epsilon^{2} u_{t}=\epsilon^{2} \Delta u+2 u\left(1-u^{2}\right), \quad x \in \mathbb{R}^{2}
$$

where initial condition is $u=-1$ outside a closed curve $\Gamma(0)$ and $u=1$ inside. Question: how does curve $\Gamma(t)$ move?
In this problem, the outer solution is always $u= \pm 1$. The inner solution uses fitted, stretched coordinates (z, s, t) where $z=r / \epsilon$ and $r=r(x, t)$, $s=s(x, t)$; equation is

$$
\epsilon^{2} u_{t}+\epsilon u_{z} r_{t}+\epsilon^{2} u_{s} s_{t}=u_{z z}-\epsilon \kappa u_{z}+2 u\left(1-u^{2}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

Leading order solves $u_{0 z z}+2 u\left(1-u^{2}\right)=0, u_{0}(\pm \infty, s, t)= \pm 1$, so that $u_{0}=\tanh (z)$.
Next order is inhomogeneous equation

$$
u_{1 z z}+u_{1 z}-3 u_{0}^{2} u_{1 z}=u_{0 z} r_{t}+\kappa u_{0 z}
$$

It is not hard to show that the linear operator on the left is self-adjoint and has a nullspace spanned by eigenfunction $u_{0}^{\prime}(z)$.

A moving, multidimensional internal layer

The Allen-Cahn equation is

$$
\epsilon^{2} u_{t}=\epsilon^{2} \Delta u+2 u\left(1-u^{2}\right), \quad x \in \mathbb{R}^{2}
$$

where initial condition is $u=-1$ outside a closed curve $\Gamma(0)$ and $u=1$ inside. Question: how does curve $\Gamma(t)$ move?
In this problem, the outer solution is always $u= \pm 1$. The inner solution uses fitted, stretched coordinates (z, s, t) where $z=r / \epsilon$ and $r=r(x, t)$, $s=s(x, t)$; equation is

$$
\epsilon^{2} u_{t}+\epsilon u_{z} r_{t}+\epsilon^{2} u_{s} s_{t}=u_{z z}-\epsilon \kappa u_{z}+2 u\left(1-u^{2}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

Leading order solves $u_{0 z z}+2 u\left(1-u^{2}\right)=0, u_{0}(\pm \infty, s, t)= \pm 1$, so that $u_{0}=\tanh (z)$.
Next order is inhomogeneous equation

$$
u_{1 z z}+u_{1 z}-3 u_{0}^{2} u_{1 z}=u_{0 z} r_{t}+\kappa u_{0 z}
$$

It is not hard to show that the linear operator on the left is self-adjoint and has a nullspace spanned by eigenfunction $u_{0}^{\prime}(z)$.
The Fredholm alternative says that

$$
\int_{-\infty}^{\infty}\left(u_{0 z} r_{t}+\kappa u_{0 z}\right) u_{0 z} d z=0
$$

so that inward normal velocity is $r_{t}=-\kappa$.

