
Asymptotic Methods

Higher dimensional and moving internal layers



Moving internal layers

Many time-dependent PDEs have internal layers which move as a response to
the outer solutions surrounding them. This case is handled using a moving,
scaled coordinate system like z = (x − x0(t))/εα, where x0(t) is the position of
the layer at time t.

As an example, consider the viscous conservation law

ut + J(u)x = εuxx , −∞ < x <∞,
where J is a convex (“flux”) function. For ε = 0, there may be discontinuous
solutions known as shocks. The effect of the ε term is to smooth these out into
moving internal layers.

The outer solution here is prescribed as u = u− for x < x0(t) and u = u+ for
x > x0(t). Using z = (x − x0(t))/ε as the new spatial variable gives

εut − x ′0(t)uz + J(u)z = uzz .

The leading order problem is obtained by ignoring the ε term, integrates to

−x ′0(t)u0 + J(u0) = u0z + C .

Matching gives limz→∞ u0(z) = u± so

−x ′0(t)u− + J(u−) = C = −x ′0(t)u+ + J(u+)

or

x ′0(t) =
J(u+)− J(u−)

u+ − u−
, (Rankine-Hugoniot condition)
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Higher dimensional boundary layers

Problems in two spatial dimensions can have boundary layers which are curved;
need a coordinate system (r , s) fitted to geometry

Let γ(s) parameterize boundary ∂Ω,
define new coordinates implicitly by

x = γ(s(x)) + r(x)n̂(s(x)).

Want gradient and Laplacian in new coordinates; differentiation gives

I = t̂(1− κr)⊗∇s + n̂⊗∇r .
where I is the identity and the Frenet formulas were used. Taking dot products
with t̂ and n̂ gives

∇s = t̂(1− κr), ∇r = n̂.

Laplacian of r , s obtained by taking divergence

∆r = d n̂/ds · ∇s = −κ/(1− κr), ∆s = κ′(s)r/(1− κr)3.

Finally, for a function u(x) = u(r , s),

∆u = urr |∇r |2+uss |∇s|2+2usr∇s·∇r+ur∆r+us∆s = urr−
κur

1− κr +
1

1− κr

(
us

1− κr

)
s

.
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Example: diffusion layer

We want behavior for small t for

ut = D∆u, u = ub on ∂Ω, u(x , 0) = 0.

Use Laplace transform U(x , σ) =
∫∞
0

e−σtu(x , t)dt. The limit t → 0 is the
same as σ →∞, so set ε = D/σ, V = σU where

ε∆V − V = 0, V = ub on ∂Ω.

The outer solution away from the boundary is simply V = 0. The inner uses
fitted coordinates and solves

ε

[
Vrr −

κVr

1− κr +
1

1− κr

(
Vs

1− κr

)
s

]
− V = 0, V (r = 0, s) = ub(s).
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Diffusion layer,cont.

Introduce stretched coordinate z = r/ε1/2 so equation becomes
Vzz − κε1/2Vz − V = O(ε). Expand V = V0 + ε1/2V1 + . . . so

V0zz − V0 = 0, V0(0, s) = ub, V0(∞, s) = 0.

whose solution is V0 = ube
−z .

Next order solves

V1zz − V1 = κ(s)V0z , V1(0, s) = 0, V1(∞, s) = 0.

whose solution is V1 = ubκze
−z/2.

It follows that U ∼ (ub/σ)[e−x/ε1/2 + (κr/2)e−r/ε1/2 ], whose inverse Laplace
transform is

u(x , t) ∼ ub(1 + κ(s)r/2)erfc(r/(2
√
Dt)).
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A moving, multidimensional internal layer

The Allen-Cahn equation is

ε2ut = ε2∆u + 2u(1− u2), x ∈ R2.

where initial condition is u = −1 outside a closed curve Γ(0) and u = 1 inside.
Question: how does curve Γ(t) move?

In this problem, the outer solution is always u = ±1. The inner solution uses
fitted, stretched coordinates (z , s, t) where z = r/ε and r = r(x , t),
s = s(x , t); equation is

ε2ut + εuz rt + ε2usst = uzz − εκuz + 2u(1− u2) +O(ε2)

Leading order solves u0zz + 2u(1− u2) = 0, u0(±∞, s, t) = ±1, so that
u0 = tanh(z).

Next order is inhomogeneous equation

u1zz + u1z − 3u2
0u1z = u0z rt + κu0z .

It is not hard to show that the linear operator on the left is self-adjoint and has
a nullspace spanned by eigenfunction u′0(z).

The Fredholm alternative says that∫ ∞
−∞

(u0z rt + κu0z)u0zdz = 0

so that inward normal velocity is rt = −κ.
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