Asymptotic Methods
Multiple scale methods

The need for multiple scales

For boundary layers, a secondary scale (inner variable) was used in the method of matched asymptotic expansions.

For problems which involve rapid oscillation, multiple scale methods are used to determine the macroscopic behavior in terms of "envelope" or "amplitude" equations.

Example: damped oscillator

Consider

$$
y^{\prime \prime}+\epsilon y^{\prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

The exact solution is

$$
\frac{1}{\sqrt{1-\epsilon^{2} / 4}} e^{\epsilon t / 2} \sin \left(t \sqrt{1-\epsilon^{2} / 4}\right)
$$

Notice that oscillations occur on a scale $t \sim \mathcal{O}(1)$, whereas the amplitude decays on a slower timescale $T=\epsilon t$.

Example: damped oscillator

Consider

$$
y^{\prime \prime}+\epsilon y^{\prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

The exact solution is

$$
\frac{1}{\sqrt{1-\epsilon^{2} / 4}} e^{\epsilon t / 2} \sin \left(t \sqrt{1-\epsilon^{2} / 4}\right)
$$

Notice that oscillations occur on a scale $t \sim \mathcal{O}(1)$, whereas the amplitude decays on a slower timescale $T=\epsilon t$.

What if a naive expansion is tried? Let $y=y_{0}+\epsilon y_{1}+\ldots$, giving

$$
y_{0}^{\prime \prime}+y=0, \quad y_{0}(0)=0, \quad y_{0}^{\prime}(0)=1
$$

so that $y_{0}=\sin t$.

Example: damped oscillator

Consider

$$
y^{\prime \prime}+\epsilon y^{\prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

The exact solution is

$$
\frac{1}{\sqrt{1-\epsilon^{2} / 4}} e^{\epsilon t / 2} \sin \left(t \sqrt{1-\epsilon^{2} / 4}\right)
$$

Notice that oscillations occur on a scale $t \sim \mathcal{O}(1)$, whereas the amplitude decays on a slower timescale $T=\epsilon t$.

What if a naive expansion is tried? Let $y=y_{0}+\epsilon y_{1}+\ldots$, giving

$$
y_{0}^{\prime \prime}+y=0, \quad y_{0}(0)=0, \quad y_{0}^{\prime}(0)=1
$$

so that $y_{0}=\sin t$. At next order,

$$
y_{1}^{\prime \prime}+y_{1}=-\cos t, \quad y_{1}(0)=0, \quad y_{1}^{\prime}(0)=0
$$

so that $y_{1}=-(t / 2) \sin t$. Big problem: expansion is disordered when $t=\mathcal{O}\left(\epsilon^{-1}\right)$.

Damped oscillator, cont.

Resolution: $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$, where $T=\epsilon t$. Note

$$
\frac{d}{d t} \rightarrow \frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial T}, \quad \frac{d}{d t} \rightarrow \frac{\partial^{2}}{\partial^{2} t}+2 \epsilon \frac{\partial^{2}}{\partial t \partial T}+\epsilon^{2} \frac{\partial^{2}}{\partial^{2} T}
$$

so equation becomes

$$
y_{t t}+2 \epsilon y_{t T}+\epsilon^{2} y_{T T}+\epsilon\left(y_{t}+\epsilon y_{T}\right)=0 .
$$

Damped oscillator, cont.

Resolution: $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$, where $T=\epsilon t$. Note

$$
\frac{d}{d t} \rightarrow \frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial T}, \quad \frac{d}{d t} \rightarrow \frac{\partial^{2}}{\partial^{2} t}+2 \epsilon \frac{\partial^{2}}{\partial t \partial T}+\epsilon^{2} \frac{\partial^{2}}{\partial^{2} T}
$$

so equation becomes

$$
y_{t t}+2 \epsilon y_{t T}+\epsilon^{2} y_{T T}+\epsilon\left(y_{t}+\epsilon y_{T}\right)=0 .
$$

Leading order solves (easy) problem

$$
y_{0 t t}+y_{0}=0, \quad y_{0}(0,0)=0, \quad y_{0 t}(0,0)=1
$$

so that $y_{0}=A(T) \sin t+B_{1}(T) \cos t$ where $A(0)=1$ and $B(0)=0$.

Damped oscillator, cont.

Resolution: $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$, where $T=\epsilon t$. Note

$$
\frac{d}{d t} \rightarrow \frac{\partial}{\partial t}+\epsilon \frac{\partial}{\partial T}, \quad \frac{d}{d t} \rightarrow \frac{\partial^{2}}{\partial^{2} t}+2 \epsilon \frac{\partial^{2}}{\partial t \partial T}+\epsilon^{2} \frac{\partial^{2}}{\partial^{2} T}
$$

so equation becomes

$$
y_{t t}+2 \epsilon y_{t T}+\epsilon^{2} y_{T T}+\epsilon\left(y_{t}+\epsilon y_{T}\right)=0 .
$$

Leading order solves (easy) problem

$$
y_{0 t t}+y_{0}=0, \quad y_{0}(0,0)=0, \quad y_{0 t}(0,0)=1,
$$

so that $y_{0}=A(T) \sin t+B_{1}(T) \cos t$ where $A(0)=1$ and $B(0)=0$. Next order:

$$
y_{1 t t}+y_{0}=-2 y_{0 t T}-y_{0 t}, \quad y_{1}(0,0)=0, \quad y_{1 t}(0,0)=-y_{0 T}(0,0)
$$

whose solution is

$$
y_{1}=A_{1}(T) \sin t+B_{1}(t) \cos t-\frac{1}{2}\left(2 B^{\prime}+B\right) t \sin t-\frac{1}{2}\left(2 A^{\prime}+A\right) t \cos t
$$

Still growing ("secular") terms? Not if we choose $2 A^{\prime}+A=0$ and $2 B^{\prime}+B=0$, leading to $A=\exp (-T / 2)$ and $B=0$.

Rayleigh oscillator

Consider

$$
y^{\prime \prime}-\epsilon\left[1-\frac{1}{3}\left(y^{\prime}\right)^{2}\right] y^{\prime}+y=0
$$

As before, let $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$. Leading order is similar, giving $y_{0}=A(T) e^{i t}+$ c.c., where c.c. represents the complex conjugate of the previous terms.

Rayleigh oscillator

Consider

$$
y^{\prime \prime}-\epsilon\left[1-\frac{1}{3}\left(y^{\prime}\right)^{2}\right] y^{\prime}+y=0
$$

As before, let $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$. Leading order is similar, giving $y_{0}=A(T) e^{i t}+$ c.c., where c.c. represents the complex conjugate of the previous terms.

Next order solves

$$
\left(\partial_{t}^{2}+1\right) y_{1}=2 y_{0 t T}+\left[1-\frac{1}{3}\left(y_{0 t}\right)^{2}\right] y_{0 t}=2 u A^{\prime} e^{i t}+i A e^{i t}-\frac{1}{3} A^{3} e^{3 i t}+i|A|^{2} A e^{i t}+\text { c.c. }
$$

Secular terms are those which are resonant, i.e. proportional to $e^{i t}$.

Rayleigh oscillator

Consider

$$
y^{\prime \prime}-\epsilon\left[1-\frac{1}{3}\left(y^{\prime}\right)^{2}\right] y^{\prime}+y=0
$$

As before, let $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$. Leading order is similar, giving $y_{0}=A(T) e^{i t}+$ c.c., where c.c. represents the complex conjugate of the previous terms.

Next order solves
$\left(\partial_{t}^{2}+1\right) y_{1}=2 y_{0 t T}+\left[1-\frac{1}{3}\left(y_{0 t}\right)^{2}\right] y_{0 t}=2 u A^{\prime} e^{i t}+i A e^{i t}-\frac{1}{3} A^{3} e^{3 i t}+i|A|^{2} A e^{i t}+$ c.c.
Secular terms are those which are resonant, i.e. proportional to $e^{i t}$. Elimination gives

$$
A^{\prime}=\frac{1}{2}\left[A-|A|^{2} A\right]
$$

Letting $A=R(T) e^{i \theta(T)}$, above is same as

$$
R^{\prime}=\frac{1}{2}\left[R-R^{3}\right], \quad \theta^{\prime}=0
$$

For nonzero initial conditions $R \rightarrow 1$ as $T \rightarrow \infty$, and solution approaches limit cycle $y \sim e^{i \theta(0)+t}+$ c.c..

Parametric resonance and the Matheiu equation

Mathieu equation is

$$
y_{t t}+(a+2 \epsilon \cos t) y=0
$$

Parametric resonance and the Matheiu equation

Mathieu equation is

$$
y_{t t}+(a+2 \epsilon \cos t) y=0
$$

First try regular perturbation series $y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots$, produces hierarchy of problems

$$
\begin{aligned}
& y_{0 t t}+a y_{0}=0 \\
& y_{1 t t}+a y_{1}=-2 y_{0} \cos t \\
& y_{2 t t}+a y_{1}=-2 y_{2} \cos t
\end{aligned}
$$

Mathieu equation is

$$
y_{t t}+(a+2 \epsilon \cos t) y=0
$$

First try regular perturbation series $y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots$, produces hierarchy of problems

$$
\begin{aligned}
& y_{0 t t}+a y_{0}=0 \\
& y_{1 t t}+a y_{1}=-2 y_{0} \cos t \\
& y_{2 t t}+a y_{1}=-2 y_{2} \cos t
\end{aligned}
$$

It follows $y_{0}=A_{0} \exp (i \sqrt{ } a t)+$ c.c., and the right hand side of y_{1} equation is

$$
-A_{0} \exp [i(\sqrt{a}+1) t]-A_{0} \exp [i(\sqrt{a}-1) t]+c . c
$$

Parametric resonance and the Matheiu equation

Mathieu equation is

$$
y_{t t}+(a+2 \epsilon \cos t) y=0
$$

First try regular perturbation series $y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots$, produces hierarchy of problems

$$
\begin{aligned}
& y_{0 t t}+a y_{0}=0 \\
& y_{1 t t}+a y_{1}=-2 y_{0} \cos t \\
& y_{2 t t}+a y_{1}=-2 y_{2} \cos t
\end{aligned}
$$

It follows $y_{0}=A_{0} \exp (i \sqrt{ } a t)+$ c.c., and the right hand side of y_{1} equation is

$$
-A_{0} \exp [i(\sqrt{a}+1) t]-A_{0} \exp [i(\sqrt{a}-1) t]+c . c
$$

Secular terms appear if $\sqrt{a} \pm 1= \pm \sqrt{a}$, which happens if $a=\frac{1}{4}$ (i.e. driving frequency is TWICE natural frequency)

Parametric resonance and the Matheiu equation

Mathieu equation is

$$
y_{t t}+(a+2 \epsilon \cos t) y=0
$$

First try regular perturbation series $y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots$, produces hierarchy of problems

$$
\begin{aligned}
& y_{0 t t}+a y_{0}=0 \\
& y_{1 t t}+a y_{1}=-2 y_{0} \cos t \\
& y_{2 t t}+a y_{1}=-2 y_{2} \cos t
\end{aligned}
$$

It follows $y_{0}=A_{0} \exp (i \sqrt{ } a t)+$ c.c., and the right hand side of y_{1} equation is

$$
-A_{0} \exp [i(\sqrt{a}+1) t]-A_{0} \exp [i(\sqrt{a}-1) t]+c . c
$$

Secular terms appear if $\sqrt{a} \pm 1= \pm \sqrt{a}$, which happens if $a=\frac{1}{4}$ (i.e. driving frequency is TWICE natural frequency)
For y_{2}, secular terms appear when $\sqrt{a} \pm 2= \pm \sqrt{a}$, so $a=1$. In general, secular terms appear in n-th equation in hierarchy if $\sqrt{a} \pm n= \pm \sqrt{a}$, or $a=n^{2} / 4$.

Parametric resonance and the Matheiu equation,cont.

Want to explore dynamics near first resonance value, so let $a=1 / 4+a_{1} \epsilon$; with multiple scale ansatz $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$, leading order is $y_{0 t t}+\frac{1}{4} y_{0}=0$, so $y_{0}=A(T) e^{i t / 2}+$ c.c.

Parametric resonance and the Matheiu equation,cont.

Want to explore dynamics near first resonance value, so let $a=1 / 4+a_{1} \epsilon$; with multiple scale ansatz $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$, leading order is $y_{0 t t}+\frac{1}{4} y_{0}=0$, so $y_{0}=A(T) e^{i t / 2}+$ c.c.
Next order is

$$
y_{1 t t}+\frac{1}{4} y_{1}=-\left[a_{1} A i A^{\prime}+\bar{A}\right] e^{i t / 2}-A e^{3 i t / 2}+\text { c.c. }
$$

Eliminating secular terms leads to $i A^{\prime}=a_{1} A-\bar{A}$; decomposing $A=B+i C$

$$
\binom{B}{C}^{\prime}=\left(\begin{array}{cc}
0 & -a_{1}+1 \\
a_{1}+1 & 0
\end{array}\right)\binom{B}{C}
$$

Parametric resonance and the Matheiu equation,cont.

Want to explore dynamics near first resonance value, so let $a=1 / 4+a_{1} \epsilon$; with multiple scale ansatz $y(t)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\ldots$, leading order is $y_{0 t t}+\frac{1}{4} y_{0}=0$, so $y_{0}=A(T) e^{i t / 2}+$ c.c.
Next order is

$$
y_{1 t t}+\frac{1}{4} y_{1}=-\left[a_{1} A i A^{\prime}+\bar{A}\right] e^{i t / 2}-A e^{3 i t / 2}+\text { c.c. }
$$

Eliminating secular terms leads to $i A^{\prime}=a_{1} A-\bar{A}$; decomposing $A=B+i C$

$$
\binom{B}{C}^{\prime}=\left(\begin{array}{cc}
0 & -a_{1}+1 \\
a_{1}+1 & 0
\end{array}\right)\binom{B}{C}
$$

The eigenvalues are $\lambda= \pm \sqrt{1-a_{1}^{2}}$, so unstable if $\left|a_{1}\right|<1$.

A more general approach: the Poincare-Linstedt method

Consider Duffing oscillator

$$
y^{\prime \prime}+y+\epsilon y^{3}=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

We could try $y=y(t, \epsilon t)$ as before, leading to $y \sim \frac{1}{2} e^{i[1+3 \epsilon / 8] t}$. This solution does avoid secular growth, but eventually becomes out of phase, since the true frequency is not exactly $1+3 \epsilon / 8$.

A more general approach: the Poincare-Linstedt method

Consider Duffing oscillator

$$
y^{\prime \prime}+y+\epsilon y^{3}=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

We could try $y=y(t, \epsilon t)$ as before, leading to $y \sim \frac{1}{2} e^{i[1+3 \epsilon / 8] t}$. This solution does avoid secular growth, but eventually becomes out of phase, since the true frequency is not exactly $1+3 \epsilon / 8$.
Alternately, we could allow the frequency to have initially arbitrary ϵ-dependence:

$$
y=y(T ; \epsilon), \quad T=\omega(\epsilon), \quad y \text { periodic in } T .
$$

In terms of T variable, problem is $\omega^{2}(\epsilon) y^{\prime \prime}+y+\epsilon y^{3}=0$. Expand both $y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots$ and $\omega=\omega_{0}+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\ldots$.

A more general approach: the Poincare-Linstedt method

Consider Duffing oscillator

$$
y^{\prime \prime}+y+\epsilon y^{3}=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

We could try $y=y(t, \epsilon t)$ as before, leading to $y \sim \frac{1}{2} e^{i[1+3 \epsilon / 8] t}$. This solution does avoid secular growth, but eventually becomes out of phase, since the true frequency is not exactly $1+3 \epsilon / 8$.
Alternately, we could allow the frequency to have initially arbitrary ϵ-dependence:

$$
y=y(T ; \epsilon), \quad T=\omega(\epsilon), \quad y \text { periodic in } T
$$

In terms of T variable, problem is $\omega^{2}(\epsilon) y^{\prime \prime}+y+\epsilon y^{3}=0$. Expand both $y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots$ and $\omega=\omega_{0}+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\ldots$.
Leading order problem is

$$
\omega_{0} y_{0}^{\prime \prime}+y_{0}=0, \quad y_{0}(0)=1, \quad y_{0}^{\prime}(0)=0, \quad y_{0}(T)=y_{0}(T+2 \pi)
$$

whose solution is $y_{0}=\cos T$ and $w_{0}=1$.

A more general approach: the Poincare-Linstedt method

Consider Duffing oscillator

$$
y^{\prime \prime}+y+\epsilon y^{3}=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

We could try $y=y(t, \epsilon t)$ as before, leading to $y \sim \frac{1}{2} e^{i[1+3 \epsilon / 8] t}$. This solution does avoid secular growth, but eventually becomes out of phase, since the true frequency is not exactly $1+3 \epsilon / 8$.
Alternately, we could allow the frequency to have initially arbitrary ϵ-dependence:

$$
y=y(T ; \epsilon), \quad T=\omega(\epsilon), \quad y \text { periodic in } T .
$$

In terms of T variable, problem is $\omega^{2}(\epsilon) y^{\prime \prime}+y+\epsilon y^{3}=0$. Expand both $y=y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}+\ldots$ and $\omega=\omega_{0}+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\ldots$.
Leading order problem is

$$
\omega_{0} y_{0}^{\prime \prime}+y_{0}=0, \quad y_{0}(0)=1, \quad y_{0}^{\prime}(0)=0, \quad y_{0}(T)=y_{0}(T+2 \pi)
$$

whose solution is $y_{0}=\cos T$ and $w_{0}=1$.
Next order problem is
$y_{1}^{\prime \prime}+y_{1}=\left(2 \omega_{1}-3 / 4\right) \cos T-\frac{1}{4} \cos (3 T), \quad y_{1}(0)=0, \quad y_{1}^{\prime}(0)=0, \quad y_{1}(T)=y_{1}(T+2 \pi$
Periodicity means $\cos T$ secular term must vanish, so $\omega_{1}=3 / 8$, and then

$$
y_{1}=\frac{1}{32}(\cos 3 T-\cos T)
$$

