Asymptotic Methods

Multiple scale methods



The need for multiple scales

For boundary layers, a secondary scale (inner variable) was used in the method
of matched asymptotic expansions.
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For problems which involve rapid oscillation, multiple scale methods are used to
determine the macroscopic behavior in terms of “envelope” or “amplitude”
equations.
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Example: damped oscillator

Consider
y'+ey'+y=0, y(0)=0, y'(0)=1.
The exact solution is
L e sin(ty/1 — €2/4).

1—e2/4

Notice that oscillations occur on a scale t ~ O(1), whereas the amplitude
decays on a slower timescale T = et.
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Example: damped oscillator

Consider
y'+ey'+y=0, y(0)=0, y(0)=1.

The exact solution is

L e sin(ty/1 — €2/4).

1—e2/4

Notice that oscillations occur on a scale t ~ O(1), whereas the amplitude
decays on a slower timescale T = et.

What if a naive expansion is tried? Let y = yo + €y1 + ..., giving
¥ +y =0, »(0)=0, x0)=1
so that yp = sint. At next order,
yi'+y1=—cost, y(0)=0, y(0)=0,

so that y1 = —(t/2)sin t. Big problem: expansion is disordered when
t=0(1).



Damped oscillator, cont.

Resolution: y(t) = yo(t, T) + ey1(t, T) + ..., where T = et. Note

i_}g_'_ei i_>672+2€ 82 +€2872
dt =~ Ot oT’ dt 9%t otoT 02T’

so equation becomes

Yee + 2eyeT + EZyTT + e(y: + eyr) = 0.
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so equation becomes
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Damped oscillator, cont.

Resolution: y(t) = yo(t, T) + ey1(t, T) + ..., where T = et. Note

i_}g_'_i i_>672+2€ 82 +€2872
dt ot aT dt ot ““oroT T T

so equation becomes

Yee + 2eyeT + EZyTT + e(y: + eyr) = 0.
Leading order solves (easy) problem
yorr 0 =0, y(0,0) =0, y0(0,0) =1,

so that yo = A(T)sint + Bi(T)cost where A(0) =1 and B(0) = 0. Next
order:

yiee + o = =2yorr — Yor,  ¥1(0,0) =0, y1:(0,0) = —yo7(0,0).
whose solution is
y1 = Ai(T)sint + Bi(t)cost — %(28' + B)tsint — %(2A' + A)tcost.

Still growing (“secular”) terms? Not if we choose 2A’ + A = 0 and
2B’ + B =0, leading to A = exp(—T/2) and B =0.



Rayleigh oscillator

Consider 1
y' =l =30 +y=0.
As before, let y(t) = yo(t, T) + ey1(t, T) + ... Leading order is similar, giving

yo = A(T)e" + c.c., where c.c. represents the complex conjugate of the
previous terms.
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Secular terms are those which are resonant, i.e. proportional to e".



Rayleigh oscillator

Consider 1
y' =l =30 +y=0.

As before, let y(t) = yo(t, T) + ey1(t, T) + ... Leading order is similar, giving
yo = A(T)e" + c.c., where c.c. represents the complex conjugate of the
previous terms.

Next order solves
1 it e 1 it - i
(8t2+1)y1 = 2yoeT +[1— g(}fo:)2]y0t =2uA'e"+iAe" — §A3e3 t+l|A|2Ae ‘Yce.

Secular terms are those which are resonant, i.e. proportional to e”. Elimination
gives

N:%M—wM}
Letting A = R(T)e®™), above is same as
/ 1 3 r_
R _E[R_R]’ 6" =0.

For nonzero initial conditions R — 1 as T — oo, and solution approaches limit
cycle y ~ O+t | cc.
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Parametric resonance and the Matheiu equation

Mathieu equation is
yee + (@+ 2ecost)y = 0.

First try regular perturbation series y = yo + ey1 + €2y» + . .., produces
hierarchy of problems

Yorr +ayo =0

Yiee +ay1 = —2ypcost

Yor +ayr = —2y»cost.

It follows yo = Ag exp(iv/at) + c.c., and the right hand side of y; equation is
—Aoexpli(va+ 1)t] — Asexpli(v/a—1)t] + c.c

Secular terms appear if /a+ 1 = £./a, which happens if a =} (i.e. driving
frequency is TWICE natural frequency)

For y», secular terms appear when \/a+2 = +,/a, so a = 1. In general, secular
terms appear in n-th equation in hierarchy if v/a+ n = ++/a, or a = n*/4.



Parametric resonance and the Matheiu equation,cont.

Want to explore dynamics near first resonance value, so let a = 1/4 + a;¢; with
multiple scale ansatz y(t) = yo(t, T) +ey1(t, T) + ..., leading order is
yorr + 3¥0 = 0, s0 yo = A( T)e"/? +cc.



Parametric resonance and the Matheiu equation,cont.

Want to explore dynamics near first resonance value, so let a = 1/4 + a;¢; with
multiple scale ansatz y(t) = yo(t, T) +ey1(t, T) + ..., leading order is
yorr + 3¥0 = 0, s0 yo = A( T)e"/? +cc.

Next order is
Yiee + %)ﬁ = —[aAiA" + Z]e'-t/2 — A% 4 cc..

Eliminating secular terms leads to iA’ = a1A — A; decomposing A = B + iC
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Parametric resonance and the Matheiu equation,cont.

Want to explore dynamics near first resonance value, so let a = 1/4 + a;¢; with
multiple scale ansatz y(t) = yo(t, T) +ey1(t, T) + ..., leading order is
yorr + 3¥0 = 0, s0 yo = A( T)e"/? +cc.

Next order is
Yiee + %)ﬁ = —[aAiA" + Z]e'-t/2 — A% 4 cc..
Eliminating secular terms leads to iA’ = a1A — A; decomposing A = B + iC
B\ [ 0 —a+1\/(B
C) \a+1 0 C

The eigenvalues are A\ = ++/1 — a2, so unstable if |a;| < 1.
€
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A more general approach: the Poincare-Linstedt method

Consider Duffing oscillator

Y'+y+ey’=0, y(0)=1, y'(0)=0.

We could try y = y(t, et) as before, leading to y ~ %ei[1+36/8]t. This solution

does avoid secular growth, but eventually becomes out of phase, since the true
frequency is not exactly 1+ 3¢/8.
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A more general approach: the Poincare-Linstedt method

Consider Duffing oscillator
Y'+y+et=0, y(0)=1, y'(0)=0.

We could try y = y(t, et) as before, leading to y ~ %ei[1+3€/8]t. This solution
does avoid secular growth, but eventually becomes out of phase, since the true
frequency is not exactly 1+ 3¢/8.

Alternately, we could allow the frequency to have initially arbitrary
e-dependence:

y=y(T;e), T =uw(e), y periodicin T.

In terms of T variable, problem is w?(e)y” + y + ey® = 0. Expand both
y:yo+ey1+62y2+... andw:wo+ew1+e2w2+....
Leading order problem is

woys +y0 =0, y(0)=1, y(0)=0, y(T)=y(T +2n),
whose solution is yop = cos T and wy = 1.
Next order problem is

1
yi'4y1 = (2wi1—3/4) cos T cos(3T), yi(0)=0, yi(0)=0, y(T)=y(T+2r
Periodicity means cos T secular term must vanish, so w; = 3/8, and then

1
- = _ )
=3 (cos3T —cos T)



