
Asymptotic Methods

Multiple scale methods



The need for multiple scales

For boundary layers, a secondary scale (inner variable) was used in the method
of matched asymptotic expansions.

For problems which involve rapid oscillation, multiple scale methods are used to
determine the macroscopic behavior in terms of “envelope” or “amplitude”
equations.



Example: damped oscillator

Consider
y ′′ + εy ′ + y = 0, y(0) = 0, y ′(0) = 1.

The exact solution is

1√
1− ε2/4

eεt/2 sin(t
√

1− ε2/4).

Notice that oscillations occur on a scale t ∼ O(1), whereas the amplitude
decays on a slower timescale T = εt.

What if a naive expansion is tried? Let y = y0 + εy1 + . . ., giving

y ′′0 + y = 0, y0(0) = 0, y ′0(0) = 1

so that y0 = sin t. At next order,

y ′′1 + y1 = − cos t, y1(0) = 0, y ′1(0) = 0,

so that y1 = −(t/2) sin t. Big problem: expansion is disordered when
t = O(ε−1).
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Damped oscillator, cont.

Resolution: y(t) = y0(t,T ) + εy1(t,T ) + . . ., where T = εt. Note

d

dt
→ ∂

∂t
+ ε

∂

∂T
,

d

dt
→ ∂2

∂2t
+ 2ε

∂2

∂t∂T
+ ε2

∂2

∂2T
,

so equation becomes

ytt + 2εytT + ε2yTT + ε(yt + εyT ) = 0.

Leading order solves (easy) problem

y0tt + y0 = 0, y0(0, 0) = 0, y0t(0, 0) = 1,

so that y0 = A(T ) sin t + B1(T ) cos t where A(0) = 1 and B(0) = 0. Next
order:

y1tt + y0 = −2y0tT − y0t , y1(0, 0) = 0, y1t(0, 0) = −y0T (0, 0).

whose solution is

y1 = A1(T ) sin t + B1(t) cos t − 1

2
(2B ′ + B)t sin t − 1

2
(2A′ + A)t cos t.

Still growing (“secular”) terms? Not if we choose 2A′ + A = 0 and
2B ′ + B = 0, leading to A = exp(−T/2) and B = 0.
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Rayleigh oscillator

Consider

y ′′ − ε[1− 1

3
(y ′)2]y ′ + y = 0.

As before, let y(t) = y0(t,T ) + εy1(t,T ) + . . .. Leading order is similar, giving
y0 = A(T )e it + c.c., where c.c. represents the complex conjugate of the
previous terms.

Next order solves

(∂2
t +1)y1 = 2y0tT +[1− 1

3
(y0t)

2]y0t = 2uA′e it + iAe it− 1

3
A3e3it + i |A|2Ae it +c.c.

Secular terms are those which are resonant, i.e. proportional to e it . Elimination
gives

A′ =
1

2
[A− |A|2A].

Letting A = R(T )e iθ(T ), above is same as

R ′ =
1

2
[R − R3], θ′ = 0.

For nonzero initial conditions R → 1 as T →∞, and solution approaches limit
cycle y ∼ e iθ(0)+t + c.c..
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Parametric resonance and the Matheiu equation

Mathieu equation is
ytt + (a + 2ε cos t)y = 0.

First try regular perturbation series y = y0 + εy1 + ε2y2 + . . ., produces
hierarchy of problems

y0tt + ay0 = 0

y1tt + ay1 = −2y0 cos t

y2tt + ay1 = −2y2 cos t.

It follows y0 = A0 exp(i
√
at) + c.c., and the right hand side of y1 equation is

−A0 exp[i(
√
a + 1)t]− A0 exp[i(

√
a− 1)t] + c.c

Secular terms appear if
√
a± 1 = ±

√
a, which happens if a = 1

4
(i.e. driving

frequency is TWICE natural frequency)
For y2, secular terms appear when

√
a± 2 = ±

√
a, so a = 1. In general, secular

terms appear in n-th equation in hierarchy if
√
a± n = ±

√
a, or a = n2/4.
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Parametric resonance and the Matheiu equation,cont.

Want to explore dynamics near first resonance value, so let a = 1/4 + a1ε; with
multiple scale ansatz y(t) = y0(t,T ) + εy1(t,T ) + . . ., leading order is
y0tt + 1

4
y0 = 0, so y0 = A(T )e it/2 + c.c.

Next order is

y1tt +
1

4
y1 = −[a1AiA

′ + A]e it/2 − Ae3it/2 + c.c..

Eliminating secular terms leads to iA′ = a1A− A; decomposing A = B + iC(
B
C

)′
=

(
0 −a1 + 1

a1 + 1 0

)(
B
C

)
The eigenvalues are λ = ±

√
1− a21, so unstable if |a1| < 1.
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A more general approach: the Poincare-Linstedt method

Consider Duffing oscillator

y ′′ + y + εy 3 = 0, y(0) = 1, y ′(0) = 0.

We could try y = y(t, εt) as before, leading to y ∼ 1
2
e i [1+3ε/8]t . This solution

does avoid secular growth, but eventually becomes out of phase, since the true
frequency is not exactly 1 + 3ε/8.

Alternately, we could allow the frequency to have initially arbitrary
ε-dependence:

y = y(T ; ε), T = ω(ε), y periodic in T .

In terms of T variable, problem is ω2(ε)y ′′ + y + εy 3 = 0. Expand both
y = y0 + εy1 + ε2y2 + . . . and ω = ω0 + εω1 + ε2ω2 + . . ..
Leading order problem is

ω0y
′′
0 + y0 = 0, y0(0) = 1, y ′0(0) = 0, y0(T ) = y0(T + 2π),

whose solution is y0 = cosT and w0 = 1.
Next order problem is

y ′′1 +y1 = (2ω1−3/4) cosT−1

4
cos(3T ), y1(0) = 0, y ′1(0) = 0, y1(T ) = y1(T+2π).

Periodicity means cosT secular term must vanish, so ω1 = 3/8, and then

y1 =
1

32
(cos 3T − cosT ).
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